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Abstract

The cytochrome P450 (CYP) superfamily defends organisms from endogenous and noxious environmental compounds, and thus is

crucial for survival. However, beyond mammals the molecular evolution of CYP2 subfamilies is poorly understood. Here, we char-

acterized theCYP2familyacross48avianwholegenomes representingallmajorextantbirdclades.Overall,12CYP2subfamilieswere

identified, includingthefirstdescriptionof theCYP2F,CYP2G,andseveralCYP2AFgenes inaviangenomes.Someof theCYP2genes

previously described as being lineage-specific, such as CYP2K and CYP2W, are ubiquitous to all avian groups. Furthermore, we

identified a large number of CYP2J copies, which have been associated previously with water reabsorption. We detected positive

selection in the avian CYP2C, CYP2D, CYP2H, CYP2J, CYP2K, and CYP2AC subfamilies. Moreover, we identified new substrate

recognition sites (SRS0, SRS2_SRS3, and SRS3.1) and heme binding areas that influence CYP2 structure and function of functional

importance as under significant positive selection. Some of the positively selected sites in avian CYP2D are located within the same

SRS1 region that was previously linked with the metabolism of plant toxins. Additionally, we find that selective constraint variations in

some avian CYP2 subfamilies are consistently associated with different feeding habits (CYP2H and CYP2J), habitats (CYP2D, CYP2H,

CYP2J, and CYP2K), and migratory behaviors (CYP2D, CYP2H, and CYP2J). Overall, our findings indicate that there has been active

enzyme site selection on CYP2 subfamilies and differential selection associated with different life history traits among birds.

Key words: avian genomes, cytochrome P450 (CYPs), substrate recognition sites (SRS), heme binding areas (HEM), positive

selection.

Introduction

Cytochrome P450 (CYP) genes encode hemeproteins (Palmer

and Reedijk 1991) in a wide variety of organisms (Nelson

2009). CYPs confer protection against reactive oxygen species

that form in organisms after exposure to toxins and other

environmental contaminants, including the drugs and carcino-

genic compounds present in food. They are mainly expressed

in the liver endoplasmic reticulum, but are also highly ex-

pressed in the small intestine and olfactory mucosa, suggest-

ing that they have tissue-specific roles (Guengerich 2008).

CYP enzymes are involved in phase I of detoxification

(Konstandi et al. 2014) and are typically membrane-bound

(Pochapsky et al. 2010). Usually they act as terminal oxi-

dases in multicomponent electron-transfer chains called
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P450-containing monooxygenase systems (Nebert and

Gonzalez 1987) and contribute to the inactivation and excre-

tion of several endogenous and exogenous noxious metabo-

lites via urine or bile (Konstandi et al. 2014). The large variety

and number of xenobiotics constantly encountered by species

offer numerous challenges. To recognize and efficiently me-

tabolize the array of common and novel substrates (Konstandi

et al. 2014), CYPs have evolved multiple gene families consist-

ing of several members with a diverse range of substrate

specificities and regulation pathways (Nelson et al. 1993).

These genes are suggested to be among the fastest-evolving

gene systems (Konstandi et al. 2014) and have been linked

with migratory behaviors, adaptations to novel habitats

(Nelson et al. 1993; Nebert 2000; Nebert and Russell 2002;

Nebert et al. 2013), more-efficient water retention (Jirimutu et

al. 2012), and food selection (Sullivan et al. 2008). Their role in

drug interactions and processing are also of interest to the

pharmaceutical industry (Saxena et al. 2008). CYPs are vital

in mechanisms of resistance to natural and synthetic com-

pounds that potentially interfere with normal growth, devel-

opment, and reproduction through their role in the processing

of endogenous substrates (Danielson 2002). CYPs unique fea-

tures, including high genetic diversity, broad substrate speci-

ficity, and catalytic versatility, enable them to deal with a wide

variety of substrates (Scott and Wen 2001), fostering adapta-

tion to and survival in new environments (e.g., migratory spe-

cies, invasive species and resistance to pest controls drugs).

Since CYPs are a gene superfamily, their nomenclature

system is based on a hierarchical clustering of genes into fam-

ilies and subfamilies (Nelson 2003). CYP families are named by

number (e.g., CYP2), the subfamilies by capital letters (e.g.,

CYP2C), and the specific genes by a second number (e.g.,

CYP2C8). By convention, members of new CYP families

must share greater than 40% amino acid identity, while

members of subfamilies must share greater than 55%

amino acid identity (Nelson 2003, 2009; Nelson et al. 2004).

In vertebrates, the CYP2 family (29 subfamilies) is one of

the largest and most diverse and has the least-conserved nu-

cleotide sequences (Nelson 1998, 2003). Typically, these

genes have nine exons and are approximately 1,500 base

pairs (bp) long. The CYP2U and CYP2R subfamilies are con-

sidered to be the most basal (Nelson 2003; Thomas 2007). In

spite of their diverse and critical roles, understanding of the

relationships among CYP2 subfamilies beyond the mammals

is limited (Kirischian et al. 2011). Prior to our analyses, eight

CYP2 subfamilies had been characterized (CYP2AB, CYP2AC,

CYP2C, CYP2D, CYP2J, CYP2R, CYP2U, and CYP2W) in a

limited number of bird species (chicken—Gallus gallus, tur-

key—Meleagris gallopavo, and zebra finch—Taeniopygia gut-

tata) (Watanabe et al. 2013). Because avian species have

diverse feeding habits, specific adaptations, and a worldwide

distribution, they are exposed to a wide variety of compounds

(environmental chemicals) and likely have developed an array

of novel xenobiotic-metabolizing mechanisms (Watanabe

et al. 2013). To test this idea, here we assessed the evolution-

ary history of the avian CYP2 family by conducting detailed

analyses of gene content, adaptive evolution, and phyloge-

netic patterns across the whole genomes of 48 bird species

from 36 orders from the recently conducted avian

Phylogenomics Project (Jarvis et al. 2014; Zhang et al.

2014b), including species from the three major avian evolu-

tionary groups: Palaeognathae, Galloanserae, and Neoaves.

Materials and Methods

CYP2 Gene Sequences

To characterize avian CYP2 genomics evolutionary diversity,

we employed tBLASTn searches (Camacho et al. 2009) on

48 sequenced avian genomes from the Avian Phylogenomics

Project in the GigaScience Database (Zhang et al. 2014a) and

other sources (International Chicken Genome Sequencing

2004; Dalloul et al. 2010; Warren et al. 2010) using as query

sequences individual CYP2 subfamily protein sequences anno-

tated in Ensembl (Flicek et al. 2014) (release 75) for chicken (G.

gallus), turkey (M. gallopavo), anole lizard (Anolis carolinen-

esis), frog (Xenopus tropicalis), zebrafish (Danio rerio), and

human (Homo sapiens). From the CYP2 sequences retrieved,

only nucleotide sequences with more than 1,125bp and high-

identity (e-value< 1e�5) were considered for further analyses.

We then submitted these sequences from all 48 avian species

to a BLASTx search (NCBI), which searches the protein data-

base of all vertebrate species in NCBI using a translated nucle-

otide query optimized to find highly similar sequences, to

accurately characterize the avian CYP2 subfamilies.

CYP2 Phylogenetic Analysis and Filtering of Gene
Subfamily Data Sets

We performed a codon-based alignment of all identified avian

nucleotide CYP2 sequences (genes and pseudogenes) along

with some reference sequences of CYP2 subfamilies found in

public databases (Ensembl release 75: http://www.ensembl.

org and NCBI: http://www.ncbi.nlm.nih.gov, last accessed

March 2014) for anole lizard, Chinese alligator (Alligator sinen-

sis), green turtle (Chelonia mydas), frog, zebrafish, human,

chicken, medium ground-finch (Geospiza fortis), common os-

trich (Struthio camelus australis), and cormorant

(Phalacrocorax carbo). Sequences were aligned in a “global

data set” using MUSCLE (Edgar 2004) as integrated in the

SEAVIEW 4.4.0 software package (Gouy et al. 2010). This

alignment was tested for saturation bias using the Xia et al.

statistic test (Xia et al. 2003) implemented in DAMBE 5.3.31

(Xia and Xie 2001).

To assess the adequacy of current consensus avian CYP2

subfamily nomenclature, a maximum likelihood (ML) phylog-

eny was estimated using our “global data set,” which showed

no significant evidence of saturation (P value< 0.05). This ML

phylogeny assumed a General Time Reversible (GTR)

Almeida et al. GBE
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evolutionary model, with a proportion of invariable sites (I) and

heterogeneity of substitution rates among sites modeled fol-

lowing a gamma distribution (G), as determined by jModelTest

2.1.1 (Darriba et al. 2012). The ML phylogeny was estimated

using PHYML 3.0 (Guindon et al. 2010) with 100 bootstrap

replicates and the Nearest Neighbor Interchange (NNI) branch

search algorithm.

Based on this ML phylogeny, we retrieved the CYP2 nucle-

otide sequences from each well-defined clade in order to guar-

antee high identity among sequences that were compiled to

create the “CYP2 subfamily data sets.” Each subfamily data set

was inspected closely to ensure there was only one CYP2 se-

quence per avian species and to remove pseudogenes and

databases reference sequences. Several MUSCLE (Edgar

2004) alignments were constructed to corroborate previous

avian CYP2 gene classifications, a process which led to the

identification of smaller (incomplete) sequences, which were

removed from their respective data sets. Avian CYP2 sequences

with evidence of recombination or gene conversion events

(Bonferroni corrected P values< 0.05) were also removed

from the data sets. Recombination was assessed with the

RDP4 software package using default settings and seven algo-

rithms (RDP, GENECONV, Chimaera, MaxChi, SiScan,

BootScan, and 3Seq) (Martin et al. 2010). Following this ap-

proach we obtained 17 “final avian CYP2 subfamily data sets”:

“CYP2AC,” “CYP2AF,” “CYP2C,” “CYP2D,” “CYP2H,”

“CYP2J,” “CYP2J_1,” “CYP2J_2,” “CYP2J_3,” “CYP2J_4,”

“CYP2J_5,” “CYP2K_1,” “CYP2K_2,” “CYP2R,” “CYP2U,”

“CYP2W_1,” and “CYP2W_2,” which were used for selection

analyses. Supplementary table S1, Supplementary Material on-

line, details which species are represented in each data set.

Ancestral Reconstruction Analysis of Avian
CYP2 Subfamilies

To elucidate the evolutionary process of avian CYP2 subfami-

lies, we performed ancestral reconstructions using the COUNT

software and employing default parameters (Csuros 2010).

We used only the CYP2 subfamilies as identified above

(threshold > 1,125 bp), and the total evidence nucleotide

species tree (TENT) of the Avian Phylogenomics Project

(Jarvis et al. 2014), which was converted into an ultrametric

format with the R8S 1.8 software following the author’s in-

structions (Sanderson 2002). In this approach, the numerical

gene profiles (number of genes present in each avian species

per subfamily) were first converted into binary format (1—

present or 0—absent) and the data were posteriorly analyzed

using the Dollo parsimony model (Farris 1977).

Selection Analyses and Reassessment of the
CYP2 Substrate Recognition Sites

We estimated the nature and strength of the evolutionary

selection pressures at the molecular level by assessing ratios

of nonsynonymous (dN) to synonymous (dS) substitution

rates, or omega (!= dN/dS), where ! greater than, equal to

and less than 1 is indicative of positive, neutral and negative

selection, respectively. Strong negative selection (!< 1) pres-

sures generally prevent the accumulation of amino acid

changes in the regions of proteins that are essential for its

structure and/or function (da Fonseca et al. 2007). In contrast,

novel functionalities are often driven through positive selec-

tion (!>1) favoring amino acid replacements in protein-

coding genes (Antunes and Ramos 2007).

We started by employing site-models (Nielsen and Yang

1998; Yang et al. 2000) and branch-specific (Yang 1998;

Yang and Nielsen 1998) likelihood analyses. For both analyses,

we submitted the codon-based alignments of the “final avian

CYP2 subfamily data sets” (supplementary table S1,

Supplementary Material online) with the respective unrooted

avian TENT (Jarvis et al. 2014) to the Codeml program from

the PAML 4.7 package (Yang 1997, 2007).

We considered different codon substitution models (site-

models) which allow the ! ratio to vary along sequences in

different ways: 1) null models—M0 model that admits uni-

form selective pressure among sites and M1a, M7, and M8a

models that do not allow sites with !> 1 and 2) alternative

models—M3 model which assumes variable selective pres-

sures among sites and M2a and M8 models which allow

sites with !> 1 (Wong et al. 2004). In these analyses, likeli-

hood-ratio tests (LRTs) were conducted by comparing the null

models with the alternative models: M0 versus M3 (Anisimova

et al. 2001, 2002; Suzuki and Nei 2001, 2002), M1a versus

M2a (Nielsen and Yang 1998; Wong et al. 2004; Yang et al.

2005), M7 versus M8 (Yang et al. 2000), and M8a versus M8

(Swanson et al. 2003) to infer which models best fit the data.

Whenever the LRT was significant (P value< 0.05) under the

models M2a and/or M8, the codon sites under positive selec-

tion were identified using the Bayes Empirical Bayes (BEB) cal-

culation, which analyzes the posterior probabilities (PP) for

these sites (Yang et al. 2005). We only considered positively

selected sites with PP> 95%.

CYP2 subfamily data sets with evidence of positively se-

lected sites (from site-models) were also submitted to

branch-specific likelihood analyses (Yang 1998; Yang and

Nielsen 1998) to assess if its !-ratio varied significantly

among distinct avian groups (branches of interest—

foreground lineages) of the phylogeny. In these analyses, al-

ternative branch models (with multiple!-ratios for foreground

lineages) were tested against simpler null models (which

assume that all branches in the phylogeny are evolving at

the same rate). The foreground lineages for alternative

models were specified a priori based on the following catego-

ries: feeding habits (carnivorous, herbivorous, and/or omnivo-

rous birds), habitat (dry, moist, and/or semi-moist) and

migration (migratory and non-migratory). Supplementary

table S2, Supplementary Material online contains the corre-

spondence between each avian species and the above-

mentioned traits. In order to guarantee a robust grouping of

Evolution of the Cytochrome P450 Family 2 Subfamilies in Birds GBE
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branches into several partitions, where the strength of selec-

tion may be different (alternative models), we: 1) generated

stochastic character maps for each trait across the previously

obtained ultrametric TENT (Jarvis et al. 2014), following the

method of Bollback (Bollback 2006), as implemented in phy-

tools (Revell 2012) and geiger (Pennell et al. 2014) R packages,

using R 3.2.2 software (R Core Team 2015); 2) labeled the

unrooted TENT according to these mapping results; and 3)

trimmed the resulting labeled TENT to retain only the avian

species represented in each one of the corresponding “final

avian CYP2 subfamily data set” (supplementary figs. S1–S11,

Supplementary Material online).

For both site-models and branch-specific selection analyses

we applied the F3x4 codon model (Yang and Nielsen 2008)

allowing for ML estimation of � (transition/transversion ratio)

and !. All the models were run several times, adjusting the

initial � and ! values in order to avoid possible local-likelihood

peaks. For all model comparisons, the hypothesis decision

threshold was calculated by doubling the difference between

the alternative and null model log likelihood (2DlnL) and as-

suming that the null distribution of these results could be ap-

proximated by a chi-square (�2) distribution (P value< 0.05).

The number of degrees of freedom (df) was calculated as the

difference in the number of estimated parameters between

the models (Yang 2000; Wong et al. 2004). We used the

IMPACT_S software to automate these calculations

(Maldonado et al. 2014).

To search for site-specific amino acid properties that are

being preserved (conserved properties) or modified (changing

properties) through the evolutionary process, we used

the PRoperty Informed Models of Evolution (PRIME) method

(Pond, unpublished work) as implemented in the Datamonkey

webserver (Pond and Frost 2005; Delport et al. 2010). The

PRIME method considers two predefined sets of five physico-

chemical amino acid properties. These include five empirically

measured amino acid properties proposed by Conant et al.

(2007): 1) chemical composition (McClellan et al. 2005) of the

side chain [CC], 2) residue polarity [P], 3) volume [V] of the

residue side chain, 4) isoelectric point [pHi] of the side chain,

and 5) hydropathy [H] (Conant et al. 2007) and five composite

properties proposed by Atchley et al. (2005): 1) polarity index

[P], 2) secondary structure factor [SS] (McClellan et al. 2005),

3) volume [V], 4) refractivity [m], and 5) isoelectric point [pHi]

(Atchley et al. 2005). The estimates of amino acid exchange-

abilities implemented by this method are based on multiple

tests performed on the same residue site. Therefore this

method includes the Bonferroni correction to control the

number of false positives reported at a site. From the sites

reported by this approach, we only considered and analyzed

those that were coincident with previously identified sites with

significant evidence of positive selection by BEB.

CYP2 enzymes have substrate recognition sites (SRS),

where the amino acids are close to the ligands and thus influ-

ence substrate recognition and/or binding (Gotoh 1992) and

induce chemical and structural variations that are reflected on

the size, shape, and chemical features of substrates and prod-

ucts (da Fonseca et al. 2007). To map the positively selected

sites onto the tridimensional (3D) structure of the CYP2 sub-

families and to facilitate visualization of sites hypothesized to

be under important SRS, we first considered the available in-

formation about six CYP2 SRS (Gotoh 1992). These six SRS

were described by Gotoh in 1992 (SRS*) from the alignment

of mammalian CYP (1, 2 and 3) sequences with the

CYP101A1 sequence from the bacterium Pseudomonas

putida, whose substrate-binding sites were identified by

X-ray crystallography of a substrate-bound form (Poulos

et al. 1987). To update these six regions, we first searched

the Protein Data Bank (PDB) database (release April 8, 2014)

to obtain CYP2 X-ray crystal structures with the appropriate

ligand annotations, to further perform their amino acid align-

ment (MUSCLE) (Edgar 2004) with a consensus sequence

showing the six Gotoh’s SRS. Through consensus align-

ments—using the GENEIOUS 5.6.7 consensus align option

(Kearse et al. 2012)—of the sequence containing the annota-

tions of updated SRS with each one of the avian CYP2 sub-

family alignments, we verified if their positively selected sites

were within important SRS. We then performed homology

modeling of the 3D structure of the avian CYP2, which

showed evidence of positive selection, using the SWISS-

MODEL webserver (Arnold et al. 2006; Biasini et al. 2014). If

the avian predicted models were not reliable, we only mapped

the positively selected sites onto the 3D structure when such

models (from the same subfamily) were available in the PDB

database for other vertebrates (i.e., human CYP2C and CYP2D

PDB codes: 2VN0 and 3TDA, respectively). The superimposi-

tion, visualization and manipulation of the 3D structures were

performed with PYMOL 1.5.0.4 software (DeLano 2002).

Statistical Analyses on Trait Associations

In order to understand if the distribution of the number of

CYP2 genes could be used to differentiate bird species accord-

ing to their migratory/nonmigratory behavior, we performed a

linear discriminant analysis (LDA). The classification variable

was the migratory behavior of the species, with two classes

(migratory/non-migratory) and the independent variables

were the ten CYP2 subfamilies (CYP2F and CYP2G were ex-

cluded as they are outliers). The percent of correct predictions

in each class was evaluated by cross-validation. These analyses

were performed with the lda function from MASS R package,

using R 3.2.2 software (R Core Team 2015).

Results

CYP2 Genes Have Diverse Paralogs Depending on
Subfamily

The BLAST analyses performed in the 48 avian genomes iden-

tified 642 CYP2 (including genes and pseudogenes) with

Almeida et al. GBE
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sequence identity with other gene members available varying

between 61% and 100%. Following the current nomencla-

ture system (Nelson 2003, 2009; Nelson et al. 2004), these

BLAST results identified 12 CYP2 subfamilies in birds:

CYP2AC, CYP2AF, CYP2C, CYP2D, CYP2F, CYP2G, CYP2H,

CYP2J, CYP2K, CYP2R, CYP2U, and CYP2W (fig. 1).

Subfamilies CYP2C (38 genes and 4 pseudogenes across

40 species), CYP2D (36 genes and 1 pseudogene across 37

species), CYP2H (40 genes and 1 pseudogene across 39 spe-

cies), CYP2J (205 genes and 13 pseudogenes across 48 spe-

cies), CYP2K (84 genes and 3 pseudogenes across 47 species),

CYP2R (43 genes across 43 species), CYP2U (43 genes across

43 species), and CYP2W (77 genes and 2 pseudogenes across

46 species) were widely present in birds (fig. 1). We also found

members of the CYP2AC subfamily in birds (22 genes and 2

pseudogenes across 24 species). Our analyses also revealed

several previously undescribed subfamilies in birds: CYP2F in

the grey-crowned crane genome, CYP2G in the chimney

swift, and 26 CYP2AF genes in 26 avian species (fig. 1).

Overall, most subfamilies only had one paralog across species

(CYP2C, 2D, 2H, 2R, 2U, 2AC, and 2AF), but the CYP2K and

CYP2W had two paralogs each, whereas the CYP2J had be-

tween 1 and 7 paralogs per species (fig. 1).

The ML phylogeny from the “global alignment” replicated

the currently accepted basal nomenclature (based on BLAST

analyses) with high node bootstrap support (73–100%) for

each CYP2 subfamily clade (fig. 2). However, the support

within each subfamily across species were not as clearly re-

solved (<50% node bootstrap support). This is consistent

with the findings of (Jarvis et al. 2014), where most individual

gene trees of birds do not have enough phylogenetic resolu-

tion or have a large amount of incomplete lineage sorting

such that no gene tree completely matches the genome-

scale species tree. Therefore, our analyses of the avian CYP2

subfamily evolution and selection analyses were done using

the more-robust genome-scale TENT tree as reference (Jarvis

et al. 2014).

Evolutionary Process of CYP2 Subfamilies among Avian
Lineages

The ancestral reconstruction (fig. 3), performed by COUNT

software (Csuros 2010), suggested that: 1) the most recent

common ancestor of modern birds must have had elements of

CYP2C, 2J, 2K, 2R, 2U, 2W, 2AC, and 2AF and then, over

time, several genes might have been lost, mainly during the

evolution of Neoaves; 2) CYP2D and CYP2H subfamilies are

likely to have been lost in the Paleognathae lineage. Moreover,

we detected a very large number of CYP2AC and CYP2AF

subfamily genes that were lost, in sharp contrast with CYP2J,

which is the most conserved subfamily across birds.

Interestingly, the emperor penguin lost seven subfamilies

during its evolution, in contrast with its close relative, the

Adelie penguin, which lost only one (fig. 3).

Active Sites of CYP2 Enzymes Have Been
Differentially Selected

The PAML LRT site-model analyses of the filtered 17 final CYP2

data sets’ without pseudogenes, revealed significant evidence

of positive selection in six of the 12 avian CYP2 subfamilies: 1)

CYP2C, 2) CYP2D, 3) CYP2H, 4) “CYP2J” (“CYP2J_1,”

“CYP2J_2,” “CYP2J_3,” “CYP2J_4,” and “CYP2J_5” data

sets), 5) CYP2K (“CYP2K_1” and “CYP2K_2” data sets),

and 6) CYP2AC. To determine the impact of positive selection

at these sites, we performed a detailed molecular analysis

based on the 3D structure of the CYP2 proteins, including

SRS* sites identified by Gotoh (1992). Search of the PDB data-

base (release April 8, 2014) identified 61 available 3D CYP2 (A,

B, C, D, E, and R subfamilies) structures and their sequences.

Our comparative analyses (supplementary fig. S12,

Supplementary Material online) of these PDB sequences and

their respective ligand annotations with a consensus sequence

with the six SRS* revealed several SRS areas (updated SRS):

SRS0 (new), SRS1, SRS2_SRS3 (new, resulting from the

fusion of SRS2* and SRS3*), SRS3.1 (new, between the

SRS3* and SRS4*), SRS4, SRS5, and SRS6 (fig. 4).

Comparative analyses of updated SRS with each one of the

avian CYP2 subfamily alignments allowed the identification of

several positively selected sites within important SRS. Below we

highlight the SRS sites for each of six subfamilies with evidence

of positive selection (the numbering of the sites is based on

their corresponding amino acid sequences shown in supple-

mentary table S5, Supplementary Material online).

CYP2C: Model M2a indicated that approximately 2% of

the sites were under positive selection (!2 = 4.159) whereas

model M8 showed that approximately 3% were under posi-

tive selection (!= 3.240) (supplementary table S3,

Supplementary Material online). These included the following

seven sites: 239, 254, 281, 333, 369, 379, and 453 (supple-

mentary table S4, Supplementary Material online). Three of

these are located within SRS: sites 239 and 254 are located

within SRS2_SRS3 (fig. 5A) and site 369 is within SRS5

(fig. 5B), a recognized heme binding area (HEM). The PRIME

analyses suggested that several of the positively selected sites

detected by PAML (Yang 2007) would have amino acid

changing properties that could affect the chemical composi-

tion, secondary structure, isoelectric point and refractivity

of the CYP2C sequences (supplementary table S4,

Supplementary Material online). This is the case of sites 239

and 281 (fig. 5A), 369 (fig. 5B), and 453 (fig. 5C) (supplemen-

tary table S4, Supplementary Material online).

CYP2D: Model M2a indicated that approximately 5% of

the sites were under positive selection (!2 = 2.983) whereas

model M8 indicated 8% (!= 2.504) (supplementary table S6,

Supplementary Material online). Of the seven sites that were

identified to be under positive selection by both methods (54,

74, 123, 236, 240, 359, and 437— supplementary table S5,

Supplementary Material online, line 2), two (54 and 74) were
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located within the SRS1 and HEM regions (fig. 6), which have

been linked with CYP2D catalytic activity. The PRIME results

showed that some of the positively selected sites located out-

side the active site areas (that were also detected by PAML

analyses) also would likely change the properties of the se-

lected amino acid and thus affect the hydropathy (123), po-

larity (236), and volume (359) of this enzyme (supplementary

table S7, Supplementary Material online).

FIG. 2.—Evolutionary relationships of avian CYP2 subfamilies. The phylogenetic tree was built in PHYML 3.0 software using the ML method, with 100

bootstrap replicates and the NNI branch search algorithm. The bootstrap consensus tree inferred from 100 replicates is taken to represent the evolutionary

history of the 642 avian CYP2 nucleotide sequences from 48 avian genomes and 31 CYP2 nucleotide sequences from reference species available in the public

databases. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test is shown next to the branches or

represented by an asterisk mark (* indicating 100% support) for each one of the CYP2 subfamily clades. Values less than 50% support are not shown.
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FIG. 4.—SRS of CYP2 proteins. The SRS are inferred from comparative analyses of amino acid sequences from available 3D CYP2 structures (supple-

mentary fig. S12, Supplementary Material online) with the six SRS previously identified by Gotoh (1992). (A) Schematic representation of the consensus

sequence resulting from the alignment of 61 CYP2 amino acid sequences (supplementary fig. S12, Supplementary Material online), containing ligand

annotations, with the annotations of the six SRS (in blue: SRS1*, SRS2*, SRS3*, SRS4*, SRS5*, and SRS6*) inferred by Gotoh (1992). The sites where these

substrates bind are represented by several colors, according with the number of different ligands. Red boxes represent new defined SRS, based on the

available information about CYP2 ligands interacting with the 3D structure of CYP2. The high rate of binding sites, distributed by well-defined regions,

allowed us to define seven distinct regions that were named SRS0, SRS1, SRS2_SRS3 (resulting from the fusion of the Gotoh’s SRS2 and SRS3), SRS3.1, SRS4,

SRS5, and SRS6 (all in red), in order to keep the nomenclature previously used by the referred author. The heme binding regions are denoted by HEM. (B)

Identification of the amino acid boundaries and length of the referred SRS.
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CYP2H: Model M2a indicated that approximately 12% of

the sites were under positive selection (!2 = 2.503) whereas

model M8 indicated 16% (!= 2.191) (supplementary table

S8, Supplementary Material online). The BEB analysis from

both models identified 21 positively selected sites (supplemen-

tary table S9, Supplementary Material online). Sites 38, 45,

and 71 are located within the newly defined SRS0 (supple-

mentary table S9, Supplementary Material online) and site 102

is within the SRS1 and HEM regions (supplementary table S9,

Supplementary Material online). Sites 212, 227, 228, and 248

were located within the newly determined SRS2_SRS3 region

(supplementary table S9, Supplementary Material online) and

sites 236 and 240 were in SRS2_SRS3 which matches SRS3*

(supplementary table S9, Supplementary Material online and

fig. 4). Site 305 corresponds with the SRS4 and HEM binding

site. Site 365 is located in the HEM binding region and also in

SRS5 (supplementary table S9, Supplementary Material

online). Finally, site 370 is within SRS5. Some of these sites

also had amino acid changing properties that could affect the

polarity, hydropathy, isoelectric point, chemical composition,

volume, secondary structure, and refractivity of the CYP2H

sequences (supplementary table S9, Supplementary Material

online).

CYP2J: For “CYP2J_1,” model M2a indicated approxi-

mately 7% of sites under positive selection (!2 = 3.591)

whereas model M8 indicated 9% (!= 3.162) (supplemen-

tary table S10, Supplementary Material online). Both

models identified positively selected sites located within

SRS0 (22, 43, and 46), SRS1 and HEM (73, 75 and 76)

and SRS2_SRS3 (182, 185, 186, 199, 204, 207, and 208)

FIG. 5.—3D analyses of sites detected to be under positive selection in the avian CYP2C. The CYP2C 3D structure predicted in this study is superimposed

to its CYP2C8 template (2VN0 human). The positively selected sites are shown as pink sticks, indicating the corresponding amino acid. The regions

corresponding to the helices are named with the corresponding capital letter and the b-structures are named with a b followed by a number. HEM

represents the heme group. Two SRS regions are represented: SRS2_SRS3 (top) and SRS5 (bottom).
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(supplementary table S11, Supplementary Material

online). These sites accounted for approximately 76% of

the positively selected sites that were found. Changes at

some of these sites likely changed properties such as

chemical composition (43), hydropathy (182), and

volume (185) (supplementary table S11, Supplementary

Material online). For “CYP2J_2,” model M2a indicated

approximately 2% of sites under positive selection

(!2 = 3.952) whereas model M8 indicated 5%

(!= 2.346) (supplementary table S12, Supplementary

Material online). Both models identified only two sites

(58 and 59) under positive selection located within the

SRS0. For site 59, the PRIME analysis suggests that the

mutation would cause a shift in polarity. For “CYP2J_3,”

only model M8 indicated approximately 10% of sites

under positive selection (!= 1.360—supplementary table

S13, Supplementary Material online). Only one site (21)

was positively selected and no amino acid property was

selected. For “CYP2J_4” model M2a indicated approxi-

mately 2% of sites under positive selection (!2 = 3.033)

whereas model M8 indicated 5% (!= 2.038) (supplemen-

tary table S14, Supplementary Material online). Two (201

and 250) of the five positively selected sites, identified by

both models, were located within SRS2_SRS3 (supplemen-

tary table S15, Supplementary Material online). For this

last site, refractivity was the amino acid changing property

(supplementary table S15, Supplementary Material

online). Finally, for “CYP2J_5” only model M8 indicated

approximately 1% of sites under positive selection

(!= 2.124— supplementary table S16, Supplementary

Material online). Two sites (65 and 196) were selected.

However, only site 196 was located in the SRS2_SRS3,

and selective changes would have affected its isoelectric

point.

CYP2K: For “CYP2K_1,” both models indicated approxi-

mately 3% of sites under positive selection (M2a: !2 = 3.679

and M8: != 3.088—supplementary table S17,

Supplementary Material online) and nine sites were identified

(supplementary table S18, Supplementary Material online).

From these, four sites were within important regions of the

enzyme: 104 (SRS1 and HEM) and 217, 230, and 240

(SRS2_SRS3). For these sites, the following changing proper-

ties were identified: refractivity (104), volume (217), and iso-

electric point (230 and 240) (supplementary table S18,

Supplementary Material online). For “CYP2K_2,” model

M2a indicated approximately 1% of the sites under positive

selection (!2 = 3.341) whereas model M8 indicated 3%

(!= 1.515) (supplementary table S19, Supplementary

Material online), especially sites 277 and 321.

CYP2AC: Model M2a indicated approximately 12% of sites

under positive selection (!2 = 1.628) whereas model M8 indi-

cated 17% (!= 1.517) (supplementary table S20,

Supplementary Material online). Only one site (92) was iden-

tified with PP> 95% (model M8). This site was located in the

SRS1 and HEM regions and the property volume was pointed

as acting in this site.

The remaining subfamilies CYP2R (supplementary table

S21, Supplementary Material online), CYP2U (supplementary

table S22, Supplementary Material online), CYP2W (data sets

“CYP2W_1”—supplementary table S23, Supplementary

Material online and “CYP2W_2”—supplementary table

S24, Supplementary Material online), CYP2AF (supplementary

table S25, Supplementary Material online), and CYP2J (only

data set named as “CYP2J”—supplementary table S26,

FIG. 6.—3D analyses of sites detected to be under positive selection in the avian CYP2D. The CYP2D 3D structure from PDB (3TDA human) was used to

map the positively selected sites found. The sites are shown as pink sticks. The regions corresponding to the helices are named with the corresponding capital

letter and the b-structures are named with a b followed by a number. HEM represents the heme group. One SRS region is represented, the SRS1 (on the left).

Evolution of the Cytochrome P450 Family 2 Subfamilies in Birds GBE

Genome Biol. Evol. 8(4):1115–1131. doi:10.1093/gbe/evw041 Advance Access publication March 14, 2016 1125

 at D
anm

arks N
aturO

G
 on June 1, 2016

http://gbe.oxfordjournals.org/
D

ow
nloaded from

 

http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
Deleted Text: `
Deleted Text: '
Deleted Text: while 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
Deleted Text: `
Deleted Text: '
Deleted Text:  - 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
Deleted Text: `
Deleted Text: '
Deleted Text: while 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
Deleted Text: `
Deleted Text: '
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
Deleted Text: `
Deleted Text: '
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
Deleted Text: `
Deleted Text: '
Deleted Text: while 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
Deleted Text: while 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
Deleted Text: `
Deleted Text: ' - 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
Deleted Text: `
Deleted Text: ' - 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
Deleted Text: `
Deleted Text: ' - 
Deleted Text:  
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw041/-/DC1
http://gbe.oxfordjournals.org/


Supplementary Material online) showed no significant evi-

dence of positive selection.

Selection of CYP2 Has Been Branch-Specific in Species
with Shared Traits

The branch-specific analyses, applied to CYP2 subfamilies with

evidence of positive selection (from site-models), revealed that

“CYP2H” (!carnivorous=0.570, !omnivorous=0.490, and

!herbivorous=0.555) and “CYP2J_2” (!carnivorous=0.265,

!omnivorous=0.356, and !herbivorous=0.393) are evolving

differently in birds with distinct carnivorous, omnivorous, and

herbivorous feeding habits (fig. 7). The strength of selection is

also variable among birds occupying distinct habitats (moist,

semi-moist and/or dry) in six of the CYP2 subfamily data sets

(“CYP2D,” “CYP2H,” “CYP2J_2,” “CYP2J_3,” “CYP2J_5,”

and “CYP2K_1”) (fig. 7). “CYP2D,” “CYP2H,” and

“CYP2J_3” are evolving differently in migratory and non-

migratory birds (supplementary figs. S1–S11, Supplementary

Material online). Only the “CYP2AC”(!=0.353), “CYP2C”

(!=0.362), “CYP2J_1” (!=0.450), “CYP2J_4” (!=0.252),

and “CYP2K_2” (!=0.178) subfamily data sets are evolving

at the same rate in all bird groups regardless of their distinct

feeding habits, habitats and migratory behaviors (fig. 7).

CYP2 Gene Subfamily Numbers Vary According to
Migration and Feeding Habits

The LDA constructed a single discriminant function (fig. 8).

The success of classification, estimated by cross-validation,

was low (58% global, 67% migratory, and 48% nonmigra-

tory). This was due to the large degree of similarity among the

number of CYP2 genes present in the two classes (migratory

and non-migratory), as is apparent from the average variable

scores per group (fig. 8A). The minor differences found be-

tween the two classes were due to CYP2 genes scoring in the

extremes of the discriminant function, with migratory bird

scores tending slightly towards negative values whereas

non-migratory are closer to the positive end of the function

(fig. 8B). However, a Kolmogorov–Smirnoff test applied to the

frequencies of scores from the linear discriminant function

(fig. 8B) showed a significant difference between the distribu-

tion of each class (P value<0.01). Supplementary table S27,

Supplementary Material online shows that among all these

genes, CYP2D, CYP2U, CYP2H, and CYP2AF are the main

ones responsible for negative scores (migratory) whereas

CYP2K is responsible for positive scores (non-migratory).

Furthermore, differences in the number of CYP2 genes

were also observed when analysing feeding habits in associa-

tion with the migratory behavior of birds (fig. 9). Migratory

carnivores and herbivores have less CYP2 genes than migra-

tory omnivores, but these differences were only significant

between migratory carnivores and migratory omnivores

(Mann–Whitney test, P value< 0.05). Non-migratory carni-

vores have less CYP2 genes than non-migratory omnivores

and herbivores, but none of these differences resulted to be

significant. Globally, omnivores have a higher number of

CYP2 genes than specialist birds (carnivorous and herbivorous

birds), except for non-migratory herbivores, which have a

FIG. 7.—!-ratio variations according to distinct avian feeding habits, habitats and migratory behaviors. The ! values represented arise from the

hypothesis that best fits each CYP2 subfamily data set according to the branch-specific LRT analyses (P value< 0.05) (see supplementary figs. S1–S11,

Supplementary Material online for more methodological details). CYP2 subfamily code abbreviations indicate each one of the data sets used: AC–

“CYP2AC,” C–“CYP2C,” D–“CYP2D,” H–“CYP2H,” J1–“CYP2J_1,” J2–“CYP2J_2,” J3–“CYP2J_3,” J4–“CYP2J_4,” J5–“CYP2J_5,” K1–“CYP2K_1,”

and K2–“CYP2K_2.”
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number of CYP2 genes similar to non-migratory omnivores

(fig. 9). The only significant differences were detected be-

tween migratory omnivores and both types of carnivores

(Mann–Whitney test, P value<0.05) (fig. 9).

Discussion

The avian CYP2 subfamilies corresponded well with previous

classifications (Watanabe et al. 2013), including the finding

that all avian species have only a single gene member in the

CYP2D, CYP2R, and CYP2U subfamilies (fig. 1). CYP2J,

CYP2W, and CYP2K were the largest subfamilies in the 48

avian genomes analyzed, with two to seven duplicated genes

(fig. 1). Although it had previously been suggested that the

CYP2W1 and CYP2W2 genes had duplicated only in the

Galloanserae lineage (Watanabe et al. 2013), our results cov-

ering all the three main avian groups (Palaeognathae,

Galloanserae, and Neoaves) clarified that there have been sev-

eral CYP2W duplication events (fig. 1). Our identification of

avian CYP2F, CYP2G, and CYP2AF subfamilies indicates that

the CYP2F and CYP2G subfamilies are not mammalian-spe-

cific as was previously suggested (Kirischian et al. 2011) and

that the CYP2AF has not been lost in the avian lineage,

contrarily to what has been previously hypothesized

(Watanabe et al. 2013).

Some of our most striking results are the presence or ab-

sence of one or many CYP families in closely related species.

The Adelie penguin and the closely related emperor penguin

have similar habitats (both live exclusively in the Antarctic

region), feeding habits (carnivores), and lifestyles (colonial,

social, specialized for swimming) (Williams 1995) but the

number of CYP2 subfamilies between them was striking

(nine and only three, respectively—fig. 3). This is an intriguing

scenario because it was expected that these species facing

similar selective pressures would present a similar number of

CYP2 subfamilies. However, according to our approach the

emperor penguin appears to have lost many subfamilies that

the Adelie penguin still has and shares with other more dis-

tantly related bird species. In order to exclude possible false-

negatives due to the strict criteria of our identification ap-

proach, we performed exploratory tBLASTn searches against

the emperor penguin genome with less stringent criteria and

using the Adelie penguin CYP2 sequences as query. We re-

trieved some partial sequences (ranging between 177 and

849 bp) possibly representing the CYP2C, CYP2D, CYP2H,

CYP2J, CYP2K, CYP2W, and CYP2U subfamilies. However,

FIG. 8.—Results of the linear discriminant function. (A) Average scores per class. (B) Individual species scores per class. The black line represents a

nonparametric fit of frequency distributions.
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due to their short lengths (as opposed to complete CYP2

genes that encompass approximately 1,500 bp), the accurate

assignment to a CYP subfamily becomes compromised. Thus,

such short sequences were not considered for further detailed

evolutionary analyses. Conversely, CYP2F is only present in

grey-crowned crane and CYP2G in chimney swift. This

would be consistent with other studies. For example, a

study of 200 humans found that a functional CYP2G allele

was also uncommon in humans (detected in only 11.6% of

the individuals) (Sheng et al. 2000). We cannot exclude the

possibility that these genes are present in the gaps of avian

genome assemblies, or even that evidence of their presence in

other birds can be missed, as demonstrated above, by our

threshold of requiring at least 1,125 bp when searching for

avian CYP2 nucleotide sequences.

Our selection analyses results are consistent with some

findings in avian and nonavian species. The residue at position

369 of the avian “CYP2C” data set was within SRS5 and

corresponds to site 364 in Oryctolagus cuniculus (rabbit)

CYP2C3v, where the mutation T364S has been linked with

changes in progesterone region selectivity (Richardson and

Johnson 1994). The chicken CYP2C gene is activated by the

Chicken Xenobiotic Receptor, supporting its role in xenobiotic

metabolism (Baader et al. 2002). Thus, it is plausible that the

positively selected sites (239, 281, 369, and 453) leading to

changes in amino acid properties might have provided an im-

portant adaptation by facilitating the efficient inactivation and

removal of several xenobiotic compounds in birds.

CYP2D is present in several mammalian species (e.g., ro-

dents, primates, rabbit, and horse), and has been linked with

feeding habits and with metabolizing plant toxins such as al-

kaloids (Yasukochi and Satta 2011). Therefore, the positively

selected sites 54 and 74 found in the avian CYP2D subfamily,

located within the SRS1 and HEM functional regions, could be

particularly advantageous for an efficient dietary detoxifica-

tion (Yasukochi and Satta 2015). Our lineage-specific analyses

of CYP2D suggest similar impacts among birds with distinct

feeding habits. The effect of changing amino acid properties

for some of the positively selected sites (123, 236, 359) lo-

cated outside of the active site areas of the avian CYP2D

subfamily could possibly be related with global protein folding

or substrate recognition (da Fonseca et al. 2007).

CYP2H enzymes are involved in reactions of epoxygenation

(Kanetoshi et al. 1992) and they are the major phenobarbital-

inducible enzymes in the chicken liver (Hu 2013). Agonist for

the CYP2H are the drugs dexamethasone and metyrapone

and also the compounds okadaic acid, pregnenolone16

alpha-carbonitrile, and squalestatin1 (Ourlin et al. 2000). The

substrate of these enzymes is arachidonic acid (Kanetoshi et al.

1992), which implies that positively selected sites located

within the SRS1 and HEM regions of the avian CYP2H sub-

family (site 102), within the SRS4 and HEM binding site (305),

and in the HEM binding region and in the SRS5 (site 365)

might have an impact on the activity of this enzyme in birds.

Since CYP2H has evolved differently among different avian

groups, it is most likely that the changes have distinct adaptive

relevance possibly involving feeding habits, habitats, and mi-

gratory behaviors.

The greater number of gene duplications and large variabil-

ity in the amino acid patterns among the different copies of

CYP2J genes among birds could also be related to different

habitats and feeding adaptations. Similar duplications events

have been detected in bactrian camels, which are hypothe-

sized to be linked with the importance of CYP2J in the con-

version of arachidonic acid into 19(S)-HETE—a potential

vasodilator of renal preglomerular vessels—that stimulates

water reabsorption (Jirimutu et al. 2012). CYP2J also has epox-

ygenase activity and can convert arachidonic acid into epox-

yeicosatrienoic acids (EETS) that have antihypertensive

vasodilatory properties (Yu et al. 2000). Thus, it has been hy-

pothesized that an increased number of CYP2J copies would

increase water absorption and could influence survival in dry

conditions (Jirimutu et al. 2012). The large number of avian

CYP2J copies and the extraordinary high degree of positive

selection detected in the SRS suggest that this subfamily might

be important to adaptation to distinct habitats by using water

more efficiently. The genes from the “CYP2J_2,” “CYP2J_3,”

and “CYP2J_5” subfamily data sets could have a particular

role in this process as we found: 1) distinct ! for “CYP2J_2”

among carnivorous, omnivorous, herbivorous, land (semi-

moist), and water (moist) birds; 2) distinct ! for “CYP2J_3”

among land (dry and semi-moist), water (moist), migratory,

FIG. 9.—Comparison of the number of CYP2 genes in birds with

different migratory behaviors and feeding habits. Ploted are the

mean ±95% confidence interval. Asterisks indicate significant differences

in pairwise comparisons performed by Mann–Whitney tests. Species trait

classifications are in supplementary table S2, Supplementary Material

online.
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and non-migratory birds, and 3) distinct ! for “CYP2J_5”

among land (dry and semi-moist) and water (moist) birds.

Although we have identified sites under positive selection

in the avian CYP2K and CYP2AC subfamilies, further studies

are necessary to infer the impact of these substitutions, since

their function remains little known.

The absence of positive selection in CYP2R and CYP2U

subfamilies could be explained by their essential role in the

metabolism of vitamin D and arachidonic acid. These genes

have conserved synteny between birds and humans

(Watanabe et al. 2013). Similarly, the remaining subfamilies

without positive selection (CYP2W and CYP2AF) also can have

essential functions in the metabolism of endogenous com-

pounds, being strongly adapted to their substrates.

For the LDA analyses of CYP2 genes, despite the low suc-

cess of classification of genes, this analysis provides an oppor-

tunity for the future, when a greater number of avian

genomes will become available, because it suggests that

some CYP2 subfamilies, including CYP2D, CYP2U, CYP2H,

and CYP2AF, are more related to migratory species. Our anal-

ysis also revealed that the variation in the number of CYP2

genes is related to different feeding habits and migratory be-

haviors of birds. This suggests that the higher number of CYP2

genes found in avian migratory omnivores might be related

with their need to adapt to a wider variety of environments

and food resources, and thus the higher exposure to several

toxins, would require a more efficient detoxification capacity

(Rainio et al. 2012).

While our study provides significant advances to our un-

derstanding of avian CYP2 evolution, the currently available

genome scaffold lengths limit the number of CYP2 sequences

that can be confidently classified. Ongoing efforts to increase

the scaffold lengths of bird genomes will enhance our under-

standing of avian CYP2 identification and adaptation.

Conclusions

To our knowledge, this is the first study of avian CYP2 sub-

families that includes representatives of the three avian evo-

lutionary groups: Palaeognathae, Galloanserae, and Neoaves

(Zhang et al. 2014a). We identified 12 CYP2 subfamilies in 48

avian genomes and showed that some of the CYP2 genes that

were previously described as being lineage-specific, such as

CYP2K and CYP2W, are present in representatives of all the

avian groups. Additionally, we demonstrated the presence of

the CYP2F and CYP2G subfamilies in some avian genomes.

From our comparative analyses we updated our knowledge of

the SRS of CYPs, and identified several new regions (SRS0,

SRS2_SRS3, and SRS3.1). We identified several significant sig-

natures of positive selection in the six avian CYP2 subfamilies

(CYP2C, CYP2D, CYP2H, CYP2J, CYP2K, and CYP2AC), some

of which are located in relevant SRS- and heme-binding areas

(HEM) that influence CYP2 structure and function. The six

CYP2 subfamilies that showed positive selection had sites

under positive selection in HEM and in one or both SRS1

and SRS3. Of the six, only the CYP2C and CYP2H subfamilies

had sites under positive selection in SRS5, suggesting that

these two subfamilies may be under similar evolutionary pres-

sures in this enzyme region, that allow them to phenotypically

adapt and acquire similar substrate affinities. The positive se-

lected sites in these avian CYP2 subfamilies likely have helped

them adapt to distinct chemical compounds in new habitats

with distinct food resources, and facilitate the dispersion and

evolutionary success of birds.

Supplementary Material

Supplementary figures S1–S12 and supplementary tables

S1–S27 are available at Genome Biology and Evolution

online (http://www.gbe.oxfordjournals.org/).
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