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TECHNICAL NOTE

AdapterRemoval v2: rapid adapter 
trimming, identification, and read merging
Mikkel Schubert1*  , Stinus Lindgreen2,3 and Ludovic Orlando1,4

Abstract 

Background:  As high-throughput sequencing platforms produce longer and longer reads, sequences generated 
from short inserts, such as those obtained from fossil and degraded material, are increasingly expected to contain 
adapter sequences. Efficient adapter trimming algorithms are also needed to process the growing amount of data 
generated per sequencing run.

Findings:  We introduce AdapterRemoval v2, a major revision of AdapterRemoval v1, which introduces (i) striking 
improvements in throughput, through the use of single instruction, multiple data (SIMD; SSE1 and SSE2) instructions 
and multi-threading support, (ii) the ability to handle datasets containing reads or read-pairs with different adapt-
ers or adapter pairs, (iii) simultaneous demultiplexing and adapter trimming, (iv) the ability to reconstruct adapter 
sequences from paired-end reads for poorly documented data sets, and (v) native gzip and bzip2 support.

Conclusions:  We show that AdapterRemoval v2 compares favorably with existing tools, while offering superior 
throughput to most alternatives examined here, both for single and multi-threaded operations.

Keywords:  Adapter identification, Adapter trimming, Data pre-processing, High-throughput sequencing, Sequence 
alignment
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Findings
Background
High-throughput sequencing of short DNA fragments, 
such as those produced from fossil material [1], may 
result in the sequencing of the adapter sequences that 
have been ligated to inserts during library preparation. 
Such contamination is a well-known problem and may 
negatively impact downstream analyses [2–5]. The first 
part of the workflow therefore typically includes a step 
to filter or remove (trim) adapter contamination [3]. 
Improved fidelity may furthermore be obtained from 
paired-end sequencing of short inserts by detecting 
overlapping reads and collapsing (merging) these in a 
quality-aware fashion to reconstruct the entire template 
molecule [6]. This is of particular interest to ancient DNA 
sequencing, where short inserts are expected, and where 
decreasing the already high rates of sequencing errors, 

caused by post-mortem DNA modifications towards read 
termini, is of interest [7].

The original release of AdapterRemoval v1 [2] offered 
a user-friendly tool for trimming of adapter sequences 
and low-quality bases, using a modified version of the 
Needleman–Wunsch algorithm, in order to perform pair-
wise alignment between reads (or read pairs) and known 
adapter sequences. In the case of single-end reads, this 
alignment is carried out in a straight-forward manner, by 
finding the best alignment between the 5′ termini of the 
adapter sequence and the 3′ termini of the raw sequenc-
ing reads, and removing the aligned sequence. In the case 
of paired-end reads, an alignment is carried out between 
the mate 1 read and the reverse complement of the mate 
2 read, after prefixing the reverse complemented mate 
2 adapter sequence prefixed to the mate 1 sequence, 
and after appending the mate 1 adapter sequence to the 
reverse complemented mate 2 sequence.

Pairwise alignment of these aggregate sequences 
allow for the identification of the 3′ termini of the insert 
sequence in each read, based on the location of the 5′ 
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termini in the other mate sequence, thereby allowing 
the extraneous (adapter) sequence to be trimmed [2]. 
However, as the modified Needleman–Wunsch algo-
rithm used does not account for indels introduced by 
the sequencing technology employed, AdapterRemoval 
is primarily suited for the processing of reads generated 
using Illumina HTS platforms, which are characterized 
by low rates of spurious indels. AdapterRemoval further-
more uses the overlapping fragments detected as part of 
the adapter alignment procedure, in order to (option-
ally) merge overlapping reads. This is accomplished by 
selecting the highest quality bases, and re-calculating 
base qualities by treating the quality scores at overlap-
ping positions as position specific scoring matrices, from 
which updated qualities can be obtained [2].

However, AdapterRemoval v1 is characterized by rela-
tively slow running times compared to other modern 
tools [8], which poorly accommodates the increasing 
throughput of sequencing platforms. We therefore car-
ried out extensive revisions of AdapterRemoval v1, with 
the goal of improving throughput, without modifying the 
trimming methodology employed. The updated version 
therefore shows an accuracy similar to AdapterRemoval 
v1, and provides a suitable drop-in replacement for use in 
existing analytical pipelines [7].

The resulting AdapterRemoval v2 introduces signifi-
cant improvements in throughput, in part through the 
use of single instruction, multiple data (SIMD) instruc-
tions (namely SSE and SSE2 instructions, commonly 
supported by consumer-grade CPUs) to accelerate the 
alignment algorithm used in AdapterRemoval v1, with 
the added ability to further increase throughput of all 
operations through the use of multiple threads. In addi-
tion, AdapterRemoval v2 allows for the simultane-
ous trimming of multiple different (pairs of ) adapter 
sequences, selecting the best match per read (pair), 
and can furthermore transparently read and write gzip 
and bzip2 compressed FASTQ files. AdapterRemoval 
v2 further allows for simultaneous demultiplexing and 
adapter trimming, using a simple maximum-number-of-
mismatches comparison for the provided barcodes, and 
correctly trims paired-end reads extending past the end 
of the insert. Such reads are terminated by the reverse-
complemented barcode sequence of the other mate fol-
lowed by an adapter sequence, both of which must be 
removed. Finally, AdapterRemoval v2 can reconstruct 
putative adapter sequences from overlapping read pairs, 
which can be used to detect experimental errors and help 
analyze poorly documented data sets.

To evaluate the performance of AdapterRemoval 
v2, we compared it with AdapterRemoval v1, and with 
a selection of contemporary adapter trimming soft-
ware, in terms of the ability to correctly trim adapter 

sequences, and in terms of throughput when using one 
or more threads (where applicable). We further com-
pared the ability of AdapterRemoval to correctly merge 
overlapping sequences, with several other programs. 
For the latter, we restricted our comparison to programs 
which are designed to carry out read merging in the 
presence of adapter contamination, but note the exist-
ence of several alternatives which are well suited for 
datasets containing little or no adapter contamination, 
e.g. COPE [9], fastq-join [10], FLASH [11], and XORRO 
(arXiv:1304.4620).

Methods
We compared AdapterRemoval v2.1.3 with Adapter-
Removal v1.5.4 [2], using parameters equivalent to the 
defaults for AdapterRemoval v2.x (--mm 3 for both sin-
gle-end and paired-end reads); with AlienTrimmer v0.4.0 
[4], using the natively compiled version, see below; with 
CutAdapt v1.8.3 [12]; with leeHom rev. dfca9e6 [13], with 
and without the ’--ancientdna’ option; with PEAR v0.9.6 
[14]; with PEAT rev. 4e9ebf3 [14]; with fastq-mcf v1.1.2 
(https://code.google.com/p/ea-utils/); with FLEXBAR 
v2.5 [15], pre-compiled version; with Scythe v0.991 
(https://github.com/ucdavis-bioinformatics/scythe); with 
Skewer v0.1.127 [16]; and with Trimmomatic v0.33 [5]. 
We furthermore compared AdapterRemoval v2.1.3 with 
Minion from the Kraken suite of tools [17]. Software was 
compiled with GCC v4.8.4 on the target machine, with 
the exception of Minion, Trimmomatic, and flexbar, for 
which pre-compiled versions were used, and AlienTrim-
mer was compiled using GCJ v4.8.4. Trimmomatic was 
executed using the Oracle JRE v1.8.0, update 66.

For the purpose of comparing running times, we disa-
bled compression of output files. For applicable pro-
grams, we disabled trimming of low-quality bases, and 
any minimum length requirements for the trimmed 
sequences, in order to avoid measuring the removal of 
bases not related to the adapter trimming algorithms. We 
caution that the latter may negatively impact the sensi-
tivity of AlienTrimmer, for which recommended usage 
includes trimming of low-quality bases (Phred <20), prior 
to the detection of adapter sequences.

For benchmarking adapter trimming, we defined true 
positives (TP) as reads trimmed to the expected length; 
true negatives (TN) as reads not containing adapters left 
untrimmed; false positives (FP) as reads trimmed for 
more bases than expected; and false negatives (FN) as 
reads which still contained adapter bases post trimming. 
For benchmarking read merging we defined as True Posi-
tives those overlapping reads that were merged to the 
expected length; true negatives as non-overlapping reads 
which were not merged; false positives as non-overlap-
ping reads which were merged and overlapping reads 

http://arxiv.org/abs/1304.4620
https://code.google.com/p/ea-utils/
https://github.com/ucdavis-bioinformatics/scythe


Page 3 of 7Schubert et al. BMC Res Notes  (2016) 9:88 

merged incorrectly; and false negatives as overlapping 
reads that were not merged. Throughput is reported as 
the average number of sequences processed per second, 
in thousands, counting both mates in paired-end read-
pairs as individual reads.

We summarize these results following Lindgreen 
2012 [2]; namely by sensitivity [SEN = TP/(TP + FN)], 
specificity [SPC  =  TN/(FP  +  TN)], positive predictive 
value [PPV =  TP/(TP +  FP)], negative predictive value 
[NPV =  TN/(TN +  FN)], and, as an overall measure of 
the performance, the Matthews correlation coefficient 
{MCC = (TP × TN–FP × FN)/√[(TP + FP) × (TP + FN) 
 × (TN + FP) × (TN + FN)]}.

We simulated 10 replications of 1 million 100  bp 
paired-end reads, with a mean insert size of 150  bp, 
and a standard deviation of 75 bp, using a modified ver-
sion of pIRS v1.1.1 [18]. This version had been modi-
fied such that insert sizes less than the read length were 
allowed, and that adapter sequences were appended to 
such inserts prior to the simulation of read errors. We 
used single indexed Illumina HISeq adapter sequences, 
“AGATC GGAAG AGCAC ACGTC TGAAC TCCAG 
TCACN NNNNN ATCTC GTATG CCGTC TTCTG 
CTTG” and “AGATC GGAAG AGCGT CGTGT 
AGGGA AAGAG TGTAG ATCTC GGTGG TCGCC 
GTATC ATT”, during read simulations. Reads were simu-
lated against the human chromosome 1 sequence, using 
the hg38 reference genome.

All results are reported as the average obtained from 
trimming each of the 10 replicate datasets; the order 
in which programs were run in each replicate was ran-
domized. To benchmark throughput, we furthermore 
simulated 200 bp long reads. In the absence of a biologi-
cal read profile, we duplicated each position in the 100 bp 
default error-profiles for pIRS v1.1.1, and simulated 
200 bp long reads using this profile, with a mean insert-
size of 300  bp, and a standard deviation of 100  bp. As 
these error profiles are not representative, we only used 
these to examine data throughput.

For benchmarking trimming of multiple adapters, we 
generated four additional pairs of adapters by shuffling 
the nucleotides in the adapters listed above, for a total of 
five pairs of adapter sequences. We next generated 1 M 
reads as described previously, and randomly selected an 
adapter pair for each insert. Trimming performance was 
measured as described above.

For benchmarking of adapter sequence identification, 
we shuffled the sequence of the default adapter-pair 
for AdapterRemoval, and generated 1 million reads as 
described above using the shuffled adapter pair, a vari-
able mean insert size with a standard deviation of 75 bp. 
We counted the number of correctly called bases from 
the 5′ end of the resulting adapter sequences (Fig. 3). For 

Minion, we considered the five best sequences for each 
run, and selected the best match.

Benchmarking was carried out on an otherwise idle 
Intel® Core™ i7-4790  K 4  ×  4.00  GHz, with 8  GB of 
DDR3-2133 RAM, on an ext4 partition on a Samsung 
SSD 840 EVO 750  GB drive. The scripts used for the 
performance tests described in this paper, as well as any 
patches applied to programs used in the tests, are stored 
in the AdapterRemoval v2 GitHub repository in the 
‘benchmark’ folder.

Results and discussion
The performance of AdapterRemoval v2 was compared 
to a selection of other adapter trimming software, as 
described above (Fig. 1 and Additional File 1: Table S1), 
for both single-end and paired-end operations, as well as 
for merging of overlapping paired-end reads.

AdapterRemoval v2 was found to offer high sensitiv-
ity (0.979), at the cost of lower specificity (0.814) when 
trimming single-end data sets containing either a sin-
gle adapter sequence, or containing multiple adapter 
sequences. Similar high sensitivity (0.965) low specificity 
(0.731) was observed for data sets containing multiple, 
different adapters. This is a consequence of Adapter-
Removal not requiring a minimum length of the overlap 
with the adapter sequence, resulting in an excess of short 
(1–3 bp) fragments trimmed from the 3′ termini of single-
end reads. This behavior can, however, be changed by use 
of the ’--minadapteroverlap’ command-line option (e.g. 
’--minadapteroverlap 3’), and secondarily by decreasing 
the allowed error-rate (e.g. by using ’--mm 5’ rather than 
’--mm 3’, corresponding to an error rate of 1/5 rather 
than 1/3). When run using these parameters, Adapter-
Removal shows levels of specificity comparable to other 
tools (0.962 and 0.972), at the cost of a marginal decrease 
in sensitivity (0.959 and 0.956), when trimming data sets 
containing a single adapter sequence. For data sets con-
taining multiple adapter sets, these parameters similarly 
led to a marginal decrease in sensitivity (0.960 and 0.965) 
and an increase in specificity (0.817 and 0.858).

However, AdapterRemoval v2 displays both high sen-
sitivity (0.999) and specificity (0.999) when consider-
ing paired-end data, when using default parameters. 
High sensitivity (0.959) and specificity (0.999) was also 
observed for data sets containing multiple adapter pairs. 
For merging of overlapping pair-end reads, AdapterRe-
moval offers comparable similar sensitivity (0.938) and 
specificity (0.955) to the alternatives examined here.

When comparing the throughput of each program 
(Fig. 2 and Additional File 2: Table S2), we observed that 
AdapterRemoval v2 offers the highest throughput next to 
Trimmomatic, for the trimming of 100 bp single-end (434 
vs 414 k reads/sec) and paired-end (336 k vs 418 k reads/
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sec) reads, and scales well with multi-threading. For the 
merging of overlapping reads in the presence of adapter 
sequences, AdapterRemoval greatly outperforms all alter-
natives by an order of magnitude (295 vs 47 k reads/sec for 
leeHom). For trimming of data sets containing multiple 

adapter sequences, AdapterRemoval was out-performed 
by AlienTrimmer and Trimmomatic, for both single-end 
reads (136 vs 225 and 162  k reads/sec) and paired-end 
reads (117 vs 198 and 156 k reads/sec), respectively. Adap-
terRemoval v2 is therefore particularly well suited for 
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the processing of large data sets, enabling the processing 
of large amounts of data on a desktop machine. Further-
more, performance scales well for increasing read lengths, 

ensuring that AdapterRemoval v2 is suitable for use with 
the progressively longer read-lengths generated by high-
throughput sequencing platforms.
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Fig. 2  Adapter-trimming and read-merging throughput. Throughput is reported on the y-axis as thousands of FASTQ reads processed per second. 
Results are grouped on the x-axis firstly per program, secondly by read length (100 or 200 bp), and thirdly by the number of threads used (1–4). For 
programs that do not support multi-threaded operation, only columns corresponding to one thread are shown. Note that multi-threaded trimming 
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idle Intel® Core™ i7-4790 K 4 × 4.00 GHz, with 8 GB of DDR3-2133 RAM, on an ext4 partition on a Samsung SSD 840 EVO 750 GB drive
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The ability of AdapterRemoval v2 to reconstruct 
unknown adapter sequences compared to Minion is 
shown in Fig.  3. Minion is able to perfectly recover 
the randomized adapter sequence for mean insert 
sizes below ~280 bp, but fails entirely for greater mean 
insert sizes. AdapterRemoval v2 recovers the complete 
adapter sequence for insert size means up to ~300 bp, 
and partially recovers the adapter sequence for greater 
mean insert sizes, potentially allowing for the identifi-
cation of the original adapter from published vendor 
sequences.

However, we note that while AdapterRemoval v2 out-
performs Minion when analyzing paired-end reads, 
Minion can be used to identify adapter sequences in 
single-end reads, which is not possible using Adapt-
erRemoval v2. Minion is furthermore able to identify 
multiple, overrepresented sequences, while AdapterRe-
moval v2 makes use of consensus building from putative 
adapter sequences, resulting in poor performance should 
multiple, different adapter sequences be present.

Availability and requirements
• • Project name: AdapterRemoval
• • Project home page: https://github.com/MikkelSchu-

bert/adapterremoval/
• • Operating system(s): POSIX (tested on Linux and 

OSX)
• • Programming language: C++
• • Other requirements: Optional support for gzip com-

pression, bzip2 compression, and multi-threading 
requires zlib, libbzip2, and libpthreads, respectively

• • License: GPL v3.
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Additional File 1: Table S1. Adapter-trimming and read-merging per-
formance. Tabular representation of performance metrics for trimming of 
single adapter-pairs, multiple adapter-pairs, and merging of overlapping 
read pairs (Fig. 1).

Additional File 2: Table S2. Adapter-trimming and read-merging 
throughput. Tabular representation of throughput of adapter trimming 
and read merging reported as thousands of FASTQ reads processed per 
second (Fig. 2).
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