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1 Introduction

Algebraic geometry has been introduced to the multi-loop amplitude computation in recent

years, responding to the demand of Next-to-Leading-Order or Next-Next-to-Leading-order

precision correction for collider experiments. Many attempts have been taken towards the

purpose of implementing a systematic and automatic algorithm for two-loop and three-loop

amplitude computations, in the language of complex algebraic geometry.

The basic idea of this approach is to generalize traditional concepts, such as integral

reduction [1–5] and unitarity cut [6–9], from one-loop to multi-loop amplitudes. It is well-

known that unitarity can be applied to the computation of one-loop amplitudes from tree

amplitudes [10–12], while it is possible now to compute the tree amplitudes very efficiently

via the Britto-Cachazo-Feng-Witten recursion relation [13, 14]. Moreover, one-loop inte-

grals can be algebraically reduced to a linear combination of scalar integrals in the integral

basis. The integral basis is a set of a finite number of integrals. For one-loop amplitudes,

it only contains scalar box, triangle, bubble integrals in four-dimension, additional scalar

pentagon integral in D-dimension, and tadpole integral for massive internal momenta. A

scalar integral is an integral whose numerator of integrand is one. All one-loop integrals
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with a tensor structure in the numerator can be reduced by, e.g., Passarino-Veltman re-

duction [2, 3], to scalar integral basis. Starting from a general integral for a Feynman

diagram, we can perform the reduction procedure and keep track of all kinematic factors

in each step. Then the coefficients of integral basis can be obtained as a consequence of

reduction procedure. However, there is a simpler way of computing the coefficients from

tree amplitudes, by matching the discontinuity of integrals under unitarity cuts [15–17]

or generalized unitarity cuts [18, 19]. Assuming that the integral basis is already known,

which is indeed the case for one-loop amplitudes, we can formally expand an one-loop in-

tegral as a linear combination of integrals in the basis with unknown coefficients. The box,

triangle, bubble integrals under unitarity cuts apparently have different signatures, which

can be used to identify the kinematic factors of signatures as coefficients of integral basis

correspondingly. In the integrand level, the coefficients can also be extracted by reduction

methods algebraically [20], with the help of quadruple, triple and double unitarity cuts.

This has been extensively suited with numerical implementations [21–26].

The difficulty of generalizing the one-loop algorithm to multi-loop amplitudes is ob-

vious. First of all, the integral basis is generally unknown. It is known that the integral

basis contains not only scalar integrals, but also tensor structure of loop momentum in

the numerator. Even for some simple diagrams such as a four-point two-loop double-box

diagram where the integral basis is already known [27], unitarity cut method is not directly

applicable for determining the coefficients of the integral basis. Algebraic geometric tech-

niques are introduced to overcome these difficulties, and they provide a new interpretation

of unitarity cut for multi-loop amplitudes. It is applied both to integrand reduction and

integral reduction.

For multi-loop amplitude computations in the language of algebraic geometry, the con-

cept of maximal unitarity cut is replaced by the simultaneous solution of on-shell equations

of propagators, instead of delta function constraints. The on-shell equations form the ba-

sis of an ideal, and the simultaneous solution set defines the variety of the ideal. In the

integrand level [28, 29], the Gröbner basis of the ideal is used as divisors, and polynomial

division over these divisors provides a finite set of algebraically independent monomials,

which defines the integrand basis of a given diagram, in principle, to any loop orders.

The primary decomposition method is applied to study the irreducible components of the

ideal and the variety, which is useful for determining coefficients of integrand basis through

branch-by-branch polynomial fitting method. These algebraic geometry techniques have

already been applied to the study of integrand basis and structure of varieties of all four-

dimensional two-loop diagrams, and for explicitly computing some two-loop amplitudes

and three-loop amplitudes [30–38].

In the integral level, the Integration-by-Parts(IBP) method [39–42] is a traditional

way of determining the integral basis from the integrand basis. Recently, an attempt of

determining integral basis by unitarity cut method and spinor integration technique has

also been presented [43]. Determining the integral basis of multi-loop amplitudes is a

non-trivial problem, and one of the bottlenecks is that the computation is time-consuming

even with a computer. Thus it deserves more studies at both theoretical [44, 45] and

computational levels. Once the integral basis is determined for a given diagram, algebraic
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geometry can be applied to the computation of their expansion coefficients [46]. Again, this

is realized by considering a simple fact that integration of a delta function
∫
dz δ(z) in R is

equivalent to a contour integration
∮

dz
z
in C by Cauchy’s integral theorem. The latter is in

fact the computation of residues at poles surrounded by chosen contours. In order for it to

be applied to multi-loop amplitude computations, it should be generalized to multivariate

analytic functions, which leads to the computation of multivariate residues at global poles.

The global poles are determined by the simultaneous solution of on-shell equations of

propagators, and it requires the study of ideal and variety of on-shell equations. The

coefficients of integral basis are computed as a linear combination of contour integrations

at some chosen global poles determined by the global structure of variety. This method

has already been applied extensively to four-dimensional two-loop double-box integral and

crossed-box integral, and to the study of three-loop integrals and also integrals with doubled

propagators [47–54].

In both multi-loop integral reduction and integrand reduction through an algebraic

geometric approach, we can see that the equivalent description of maximal unitarity cut,

i.e., the simultaneous solution (variety) of on-shell equations of propagators (ideal), plays

fundamental role. Although, in principle, such an algebraic geometric approach can be

applied to any loops, the explicit application is still limited to a few two-loop and three-

loop diagrams due to the complexity of computation. Thus, before a wider application to

other two-loop and three-loop diagrams, it would be better as an initial step to study the

global structure of varieties for all two-loop and three-loop diagrams.

A four-dimensional L-loop amplitude has 4L degrees of freedom, and it defines an

integral in C
4L complex plane in the algebraic geometry framework. By Hilbert’s Nullstel-

lensatz, the number of propagators can be reduced to n ≤ 4L. The polynomials of n prop-

agators for a given diagram define an ideal I = 〈f1, f2, . . . , fn〉 in the polynomial ring

C[x1, . . . , x4L]. If n = 4L, the ideal is zero-dimensional, and the corresponding variety is

a finite set of points in C
4L. If n = 4L − 1, the ideal is one-dimensional, and the corre-

sponding variety is an algebraic curve. This curve may be reducible, and could consist of

several irreducible curves. However, the algebraic curve can be universally characterized

by its geometric genus, which is a topological invariant. For a specific diagram with 4L−1

propagators, if the algebraic curve defined by the variety has genus k, then the global

structure of variety is described by a k-fold torus or its degenerate pictures. If n < 4L− 1,

the ideal is higher-dimensional and the corresponding higher-dimensional variety is more

complicated to study.

In [55], the arithmetic genus and singular points of an algebraic curve are introduced to

study the geometric genus of curves defined by one-loop, two-loop and some of three-loop

diagrams. In this paper, we generalize the study of global structure to all four-dimensional

three-loop diagrams with eleven propagators. The Riemann-Hurwitz formula is applied

to the study of genus, and an algorithm based on numerical algebraic geometry [56, 57]

is implemented to compute necessary terms in the Riemann-Hurwitz formula. With this

algorithm, it is possible to study the global structure of curves defined by four-loop diagrams

efficiently. For some three-loop diagrams, a recursive formula derived from the Riemann-

Hurwitz formula is presented to study the genus of three-loop diagrams recursively from
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the genus of two-loop diagrams, where a lattice convex polytope method is adopted. As of

theoretical interests, some interesting phenomena regarding the genus of any loop orders

are explored. We hope that these results could be useful for the integral and integrand

reduction of three-loop amplitudes via algebraic geometry in the near future.

The remainder of this paper is organized as follows. In section 2, we introduce the

Riemann-Hurwitz formula for the computation of geometric genus. An algorithm based on

numerical algebraic geometry is also discussed for numerically computing the genus of any

algebraic curve. In section 3, we re-study the global structure of curves of two-loop diagrams

by the Riemann-Hurwitz formula, and in section 4, we generalize the analysis to curves of

certain three-loop diagrams whose sub-two-loop diagram is double-box or crossed-box. A

recursive formula derived from the Riemann-Hurwitz formula is presented for recursively

computing genus of curve defined by three-loop diagrams from genus of curve defined by

two-loop diagrams. A proof of the recursive formula is provided based on convex polytope

techniques. In section 5, the genus of curves defined by the remaining three-loop diagrams

is analyzed by the algorithm. The genus of curves defined by an infinite series of White-

house diagrams to any loop orders is also studied as an example of recursive formula for

higher loop diagrams. In section 6, we summarize the results and discuss generalizations

for future work.

2 Preliminary

2.1 The Riemann-Hurwitz formula and geometric genus

The Riemann-Hurwitz formula describes the relation of the Euler characteristic between

two surfaces when one is a ramified covering of the other. It is often applied to the

theory of Riemann surfaces and algebraic curves for finding the genus of a complicated

Riemann surface that maps to a simpler surface (for more mathematical details, definition

of geometric genus, properties of algebraic curve and other relevant definitions see, e.g.,

the books [58, 59]).

The Euler characteristic χ is a topological invariant. For an orientable surface, it is

given by χ = 2− 2g, where g is the genus. A covering map is a continuous function f from

a topological space S′ to another topological space S

f : S′ 7→ S

such that each point in S has an open neighborhood evenly covered by f . In the case of

an unramified covering map f which is surjective and of degree deg[f ], we have formula

χS′ = deg[f ] · χS . (2.1)

The ramification, roughly speaking, is the case when sheets come together. The covering

map f is said to be ramified at point P in S′ if there exist analytic coordinates near P and

f(P ) such that f takes the form f(z) = zn, n > 1. The number n is the ramification index

eP at point P . The ramification of covering map at some points introduces a correction to
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the above formula as

χS′ = deg[f ] · χS −
∑

P∈S′

(eP − 1) , (2.2)

known as the Riemann-Hurwitz formula. Applying this formula to the case of algebraic

curves, for a curve C′ of genus gC′ and another curve C of genus gC , there is a (ramified)

covering map

f : C′ 7→ C ,

and the genus of two curves are related by

2gC′ − 2 = deg[f ](2gC − 2) +
∑

P∈C′

(eP − 1) . (2.3)

Note that ramification can also happen at infinity. Knowing the degree of covering map,

the genus of curve C and the ramification points, it is possible to compute the genus of

curve C′.

A special version of (2.3) is that the covering map f maps a curve C to a curve of genus

zero. In this case, deg[f ] = deg[C], and the Riemann-Hurwitz formula (2.3) is rewritten as

gC = −deg[C] + 1 +
1

2

(
ρ∞ +

∑

P∈C

ρP

)
, (2.4)

where ρP = eP − 1.

We can either use formula (2.3) or formula (2.4) for the genus analysis. For an algebraic

curve C′ defined by several polynomial equations, simplifications can be made when a subset

of polynomial equations contain fewer variables which also define a curve C. In this case,

we can compute the degree of the covering map f : C′ 7→ C and the ramification points.

The computation is relatively simpler than the case of mapping to a curve of genus zero,

especially for the curves defined by the maximal unitarity cut of multi-loop diagrams,

where analytic study is possible. However, it is always possible to compute the genus of

any algebraic systems of curves by formula (2.4), although the computation would become

very complicated. In the next subsection, we will describe an algorithm for computing the

geometric genus by formula (2.4), based on numerical algebraic geometry.

2.2 An algorithm for computing the geometric genus

The algorithm for numerically computing the geometric genus of a curve presented in [60]

(see also [61, § 2.6] and [56, § 15.1,§ 16.5.2]) follows from the Riemann-Hurwitz formula

using numerical algebraic geometry techniques to compute the necessary items in the for-

mula. The following provides a short description of the techniques needed to describe this

algorithm, namely witness sets, computing a superset of the branchpoints, and monodromy,

with the books [56, 62] providing more details.

The input for the algorithm of [60] to compute the geometric genus of an irreducible

curve C ⊂ C
n is a witness set for C. Let f be a system of polynomials in n variables such
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that C is an irreducible component of the set V(f) = {x | f(x) = 0}. A witness set for C

is the triple {f, ℓ,W} where ℓ is a general linear polynomial and W = C ∩ V(ℓ). The set

W is called a witness point set for C with deg[C] = |W |. The concept of witness sets was

described in particle and string theory frameworks in [57, 63, 64].

By, for example, isosingular deflation [65], we can assume that C has multiplicity 1

with respect to f .

Given a system f , we are interested in computing a witness set for each curve C that

is an irreducible component V(f). To accomplish this, we first select a general linear

polynomial ℓ and compute the set of isolated points W in V(f, ℓ), which is the union of the

witness points sets WC for each such curve. For example, one could use regeneration [66, 67]

and the local dimension test [68] to yield such a set.

The set W is partitioned into the various WC , for example, using many random mon-

odromy loops with the decomposition confirmed using the trace test [69]. Since performing

a monodromy loop is a key aspect of computing the geometric genus, we will summarize

the computation here for curves. Let H define a loop of general hyperplanes in C
n with

H(0) = H(1) = V(ℓ). Thus, V(f) ∩ H(t) defines a collection of smooth paths z(t) with

z(0), z(1) ∈ W. Since the points z(0) and z(1) must lie on the same irreducible component,

this monodromy loop provides information about how to partition W when z(0) 6= z(1).

Suppose that {f, ℓ,W} is a witness set for an irreducible curve C. Let π : Cn → C be

a general linear projection defined by π(x) = α · x for α ∈ C
n. As shown in [60], a finite

superset of the branchpoints of C with respect to π is sufficient since the contribution in the

Riemann-Hurwitz formula from points which are not branchpoints is zero. In particular,

such a superset is the finite set of points BC ⊂ C such that
[
Jf(x)

α

]

is rank deficient, where J is the Jacobian matrix of the system f(x). The set BC can be

computed from a witness set for C using regeneration extension [70] with [71].

For each distinct number in π(BC) = {π(b) | b ∈ BC}, we need to compute the contribu-

tion ρπ(b) for each π(b) in the Riemann-Hurwitz formula. A monodromy loop surrounding

π(b) that does not include any other point in π(BC) \ π(b) yields a decomposition of the

deg[C] points into γπ(b) sets with ρπ(b) = deg[C]− γπ(b). One also needs to perform a mon-

odromy loop which surrounds every point in π(B) to compute the contribution ρ∞ at ∞.

Thus, the geometric genus of C is

gC = − deg[C] + 1 +
1

2

(
ρ∞ +

∑

π(b)∈π(BC)

ρπ(b)

)
.

Remark 1 If one performs the algorithm described above for an input witness set {f, ℓ,W}

of a curve C which is not irreducible, then the output is

gC1 + · · ·+ gCk − k + 1

where C1, . . . , Ck are the irreducible components of C. This value could be negative.1

1We thank Andrew Sommese for communicating this remark to us.
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2.3 Curves of three-loop diagrams

In this subsection, we classify all the three-loop diagrams whose maximal unitarity cuts

yield an algebraic system that defines a non-trivial curve. Naively, there are a large num-

ber of three-loop diagrams in four-dimension, with the total number of propagators up

to twelve. Diagrams with more than twelve propagators are over-determined, i.e., the

number of propagators nℓ1ℓ2ℓ3 is larger than the independent parametrization variables of

loop momenta. Thus, they can be reduced to diagrams with twelve propagators or lower.

Similarly, the number of propagators containing only two of the loop momenta nℓ1ℓ2 , nℓ2ℓ3

or nℓ1ℓ3 should be smaller than eight, and the number of propagators containing only one

loop momentum nℓ1 , nℓ2 or nℓ3 should be smaller than four. If there are no shared propa-

gators between any two loops, i.e., different loops only be connected at vertices, then the

integral of three-loop diagrams can be rewritten as product of an one-loop integral and a

two-loop integral, or product of three one-loop integrals. So, the topology defined by these

diagrams is the same as the one defined by two-loop diagrams or one-loop diagrams. We

are only interested in the non-trivial three-loop diagrams with loops being connected by

shared propagators.

Basically, there are two types of non-trivial three-loop diagrams as shown in figure 1.

Type I diagram is the ladder type diagram, where loops (ℓ1, ℓ2), (ℓ2, ℓ3) have shared propa-

gators, while (ℓ1, ℓ3) do not have shared propagators. Type II diagram is the Mercedes-logo

type diagram, where any two loops have shared propagators. These diagrams could be

planar or non-planar diagrams, according to the value of ni, where ni is the number of

propagators along the dashed lines in figure 1. In the current paper, we are interested in

the topologies whose maximal unitarity cuts define a curve. So we require the number of

propagators to be
∑6

i=1 ni = 11.

For type I diagram, we take the convention that the left loop is ℓ1, the middle loop

is ℓ2 and the right loop is ℓ3. Then we have the following inequalities for ni,

nℓ1ℓ2 = n1 + n2 + n5 + n6 ≤ 8 , nℓ2ℓ3 = n3 + n4 + n5 + n6 ≤ 8 .

Of course we have assumed every 1 ≤ ni ≤ 4 except 0 ≤ n5 ≤ 4, in order to generate all

ladder type diagrams. However, due to the symmetries of diagrams, there will be over-

counting from the solution of above inequalities. In order to remove the over-counting, we

further require that

n1 ≥ n2 , n4 ≥ n3 , n6 ≥ n5 . (2.5)

These inequalities remove the over-counting from symmetries inside each left loop, middle

loop and right loop. However, there is still symmetry between the left and right loops. The

over-counting of this symmetry can be removed by following two sets of inequalities

(1) n1 = n4 , n2 ≥ n3 , (2) n1 > n4 . (2.6)
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n1 n2 n3 n4

n5

n6

n1 n2

n3

n4

n5

n6

Type I Type II

Figure 1. Basic topologies of three-loop ladder type diagrams and Mercedes-logo type diagrams.

ni is the number of propagators along the dashed line. All external momenta are massive, and all

vertices are attached by external legs, which are not explicitly drawn in the figure.

The above inequalities generate 36 diagrams, denoted by (n1, n2, n3, n4, n5, n6) as

(2, 2, 1, 2, 0, 4) , (2, 2, 1, 2, 1, 3) , (2, 2, 1, 2, 2, 2) , (2, 2, 2, 2, 0, 3) , (2, 2, 2, 2, 1, 2) ,

(3, 1, 1, 2, 0, 4) , (3, 1, 1, 2, 1, 3) , (3, 1, 1, 2, 2, 2) , (3, 1, 1, 3, 0, 3) , (3, 1, 1, 3, 1, 2) ,

(3, 1, 2, 2, 0, 3) , (3, 1, 2, 2, 1, 2) , (3, 2, 1, 2, 0, 3) , (3, 2, 1, 2, 1, 2) , (3, 2, 1, 3, 0, 2) ,

(3, 2, 1, 3, 1, 1) , (3, 2, 2, 2, 0, 2) , (3, 2, 2, 2, 1, 1) , (3, 2, 2, 3, 0, 1) , (3, 3, 1, 2, 0, 2) ,

(3, 3, 1, 2, 1, 1) , (3, 3, 1, 3, 0, 1) , (3, 3, 2, 2, 0, 1) , (4, 1, 1, 2, 0, 3) , (4, 1, 1, 2, 1, 2) ,

(4, 1, 1, 3, 0, 2) , (4, 1, 1, 3, 1, 1) , (4, 1, 1, 4, 0, 1) , (4, 1, 2, 2, 0, 2) , (4, 1, 2, 2, 1, 1) ,

(4, 1, 2, 3, 0, 1) , (4, 2, 1, 2, 0, 2) , (4, 2, 1, 2, 1, 1) , (4, 2, 1, 3, 0, 1) , (4, 2, 2, 2, 0, 1) ,

(4, 3, 1, 2, 0, 1) .

However, if any nℓi = 4, then the corresponding loop momentum ℓi can be completed

determined by the equations of unitarity cuts. So this loop momentum is effectively the

external momentum for the remaining loops. In this case, the curve associated with three-

loop diagram is reduced to the curve associated with two-loop diagram. Similarly, if any

nℓiℓj = 8, then the corresponding loop momenta ℓi, ℓj can be completely determined. The

curve is reduced to the one associated with one-loop diagram. Among the 36 diagrams,

there are still 13 diagrams whose curves can not be reduced to the ones associated with

one-loop or two-loop diagrams. We shall study the topologies of these diagrams in the

following sections.

For type II diagram, we take the convention that the left-top loop is ℓ1, the right-top

loop is ℓ2 and the bottom loop is ℓ3. Again we have

nℓ1ℓ2 = n1 + n2 + n4 ≤ 8 , nℓ2ℓ3 = n2 + n3 + n5 ≤ 8 , nℓ1ℓ3 = n1 + n3 + n6 ≤ 8 .

Also we have 1 ≤ ni ≤ 4. This type of diagrams has symmetries by exchanging (n1 ↔

n4, n3 ↔ n5), or (n2 ↔ n4, n3 ↔ n6) or (n1 ↔ n6, n2 ↔ n5). By considering these

– 8 –
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symmetries, we can generate 15 diagrams, denoted by (n1, n2, n3, n4, n5, n6) as

(2, 2, 3, 1, 1, 2) , (2, 2, 3, 2, 1, 1) , (2, 1, 3, 2, 1, 2) , (2, 1, 3, 2, 2, 1) , (2, 2, 2, 2, 2, 1) ,

(3, 2, 3, 1, 1, 1) , (3, 1, 3, 2, 1, 1) , (3, 1, 3, 1, 1, 2) , (1, 2, 3, 3, 1, 1) , (3, 1, 4, 1, 1, 1) ,

(1, 1, 4, 3, 1, 1) , (2, 2, 4, 1, 1, 1) , (2, 1, 4, 1, 2, 1) , (2, 1, 4, 1, 1, 2) , (2, 1, 4, 2, 1, 1) .

For diagrams with nℓiℓj = 8 or nℓi = 4, the curves are reduced to the ones associated

with one-loop triangle, two-loop double-box or crossed-box diagrams. Among the 15 dia-

grams, there are eight diagrams which can not be reduced. These are the eight three-loop

Mercedes-logo diagrams which we will study in the following sections.

In summary, there are in total 13 + 8 = 21 three-loop diagrams generating algebraic

systems defining non-trivial curves. Among them, 16 diagrams have a sub-two-loop dia-

gram whose maximal unitarity cuts also define curves. For these diagrams, we will present

a recursive formula based on Riemann-Hurwitz formula, to compute the genus recursively

from two-loop diagrams. The remaining five diagrams can not be computed by the re-

cursive formula, so we will use the algorithm based on numerical algebraic geometry to

study the genus.

3 Counting the ramified points of two-loop diagrams

As a warm-up exercise for three-loop analysis, let us briefly go through the study of two-

loop diagrams in the framework of Riemann-Hurwitz formula (2.3). There are two diagrams

whose equations of maximal unitarity cuts define non-trivial irreducible curves. As it is well

studied in the literature [31, 46, 48, 50], the curve associated with the double-box diagram

has genus one and the curve associated with the crossed-box diagram has genus three,

obtained by directly computing the arithmetic genus and singular points of the curves, or

inferred from the picture of Riemann spheres in the limit of degenerate kinematics.

Notice that these two diagrams can be constructed from a box diagram and a triangle

diagram as shown in figure 2, by opening the vertex in the triangle diagram marked as

red circle and connecting the two legs to the box diagram at the vertices marked as black

dots respectively. If ignoring all equations from the box diagram, the equation system

associated with a triangle diagram itself defines a curve. Referring to the Riemann-Hurwitz

formula, the genus of the curve associated with the double-box diagram or crossed-box

diagram is related to the genus of curve associated with triangle diagram, by considering

the covering map

f : C 7→ C△ or f : C 7→ C△ . (3.1)

The cut equations of triangle diagram are given by

ℓ2 = 0 , (ℓ−K1)
2 − ℓ2 = 0 , (ℓ−K1 −K2)

2 − ℓ2 = 0 .

The latter two equations are linear in ℓ, so there is only one quadratic equation after some

algebraic manipulation of above three equations. By solving two variables with two linear
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Figure 2. Two-loop double-box diagram and crossed-box diagram constructed from one-loop box

and triangle diagrams by connecting them in two different ways.

equations, the remaining quadratic equation becomes equation of conics, and it is topolog-

ical equivalent to genus zero Riemann sphere. So, the only lacking data for computing the

genus of double-box or crossed-box diagram is the ramified points of covering map (3.1).

Since these two-loop diagrams have been separated into two parts C△ and P�, for any

given point Pi in the curve C△, the four equations of P� define points {Pi,1, Pi,2, . . . , Pi,m}

in C or C . This means that the covering map (3.1) maps

{Pi,1, Pi,2, . . . , Pi,m} 7→ Pi

from curves of two-loop diagrams to curve of triangle diagram. If all {Pi,1, Pi,2, . . . , Pi,m}

are the same point, then the map f is ramified at the point Pi, and the ramification

index is m.

We need to compute the ramified points and their ramification indices in the cover-

ing map (3.1). We use the same parametrization of loop momenta as in [31], and define

x = {x1, x2, x3, x4} and y = {y1, y2, y3, y4} as the parametrization variables of ℓ1 and ℓ2
respectively. A function h(am1bm2) with argument am1bm2 denotes a function whose high-

est degree monomials are terms of
∏m1

k=1 aik
∏m2

k=1 bjk , where aik , bik could be any elements

in a,b. So h(x2) is a quadratic function of xi, while h(xy) is also a quadratic function of

xiyj , but a linear function with respect to xi or yi individually. Among the seven equations

of maximal unitarity cuts, there are four linear equations and three quadratic equations.

Using the linear equations, we can always solve two of xi’s and two of yi’s. Define the

remaining variables as xs = {x1, x2},ys = {y1, y2}, then the remaining three quadratic

equations are equations of xs and ys. The covering map (3.1) actually maps

C :





Q1(x
2) = 0

L1(x) = 0

L2(x) = 0

Q2(xy) = 0

Q3(y
2) = 0

L3(y) = 0

L4(y) = 0

or C :





Q1(x
2) = 0

L1(x) = 0

Q2(xy) = 0

L2(x,y) = 0

Q3(y
2) = 0

L3(y) = 0

L4(y) = 0

7→ C△ :





Q3(y
2) = 0

L3(y) = 0

L4(y) = 0

. (3.2)
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Solving the linear equations in double-box or crossed-box diagram, we get

x 7→ xs , y 7→ ys or x 7→ xs,ys , y 7→ ys .

So we can simplify the covering map as

C :





Q1(x
2
s) = 0

Q2(xsys) = 0

Q3(y
2
s) = 0

or C :





Q1(x
2
s,xsys,y

2
s) = 0

Q2(xsys,y
2
s) = 0

Q3(y
2
s) = 0

7→ C△ : Q3(y
2
s) = 0 . (3.3)

Since Q1 is quadratic in xs but Q2 is linear in xs, they define two covering sheets over

Riemann sphere C△, so the covering map is a double cover. For any given point Pi =

{yP1 , y
P
2 } in the curve C△, the joint equations Q1 = Q2 = 0 can be used to solve {x1, x2},

and it has two solutions because of its quadratic property. Generally the two solutions are

distinct, however when the discriminant equals to zero, they coincide in the same point

and produce a ramified point with ramification index eP = 2.

Let us generically consider two equations

a1x
2
1 + a2x1x2 + a3x

2
2 + a4x1 + a5x2 + a0 = 0 , b1x1 + b2x2 + b0 = 0 .

The discriminant ∆ is

∆ = a22b
2
0 − 4a1a3b

2
0 + 4a3a4b0b1 − 2a2a5b0b1 − 4a0a3b

2
1 + a25b

2
1

−2a2a4b0b2 + 4a1a5b0b2 + 4a0a2b1b2 − 2a4a5b1b2 − 4a0a1b
2
2 + a24b

2
2 . (3.4)

A given point Pi in curve C△ : Q3(y
2
s) = 0 should also follow the constraint ∆(y1, y2) = 0, if

it is a ramified point. So these two equations completely determine the location of ramified

points. In the double-box case, all ai’s are independent of ys, while bi’s are linear functions

of ys, so the discriminant is a generic quadratic function of ys. By Bézout’s theorem, the

two equations define 2 × 2 = 4 distinct points, which are the ramified points with index

eP = 2. In the crossed-box case, a1, a2, a3 are independent of ys, a4, a5, b1, b2 are linear in

ys and a0, b0 are quadratic in ys, so ∆(y1, y2) is a generic function of degree four in ys.

These two equations define 2×4 = 8 ramified points with ramification index eP = 2. Using

Riemann-Hurwitz formula, we get

2g − 2 = 2(2g△ − 2) + 4(2− 1) → g = 1 ,

2g − 2 = 2(2g△ − 2) + 8(2− 1) → g = 3 ,

which agree with the known results in the literature [31, 46, 48, 50].

To summarize, in order to compute the genus of curve associated with two-loop dia-

grams from genus of curve associated with one-loop diagram, we separate the equations of

maximal unitarity cuts into P� and C△. For given point in C△, equations of P� always

give two distinct solutions unless the discriminant of P� is zero. This additional constraint

together with curve equations C△ provide all information about the ramified points.
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4 Counting the ramified points of three-loop diagrams

The same discussion can be generalized to compute the genus of curves associated with

three-loop diagrams from genus of curves associated with two-loop diagrams, if the three-

loop diagram has a sub-two-loop which also defines a curve. For these three-loop diagrams,

we can always separate cut equations into P� together with C or C . Since g and

g are known, the only data we need to know is the ramified points. For ladder type

diagrams, among the eleven cut equations, there are five quadratic equations and six linear

equations, while for Mercedes-logo type diagrams, there are six quadratic equations and

five linear equations.

We will discuss how to count the ramified points for these two types of diagrams in

this section. Defining x = {x1, x2, x3, x4}, y = {y1, y2, y3, y4} and z = {z1, z2, z3, z4} as

parametrization variables for ℓ1, ℓ2, ℓ3 respectively, where ℓ1 is the loop momentum in box

diagram, the number of ramified points is given by

N = 8u
(
1−mxz + (mxy +mxz)(1− uv)

)
(1 +m′

y) (4.1)

+8uv(mxy +mxz)(1 +m′
yz) + 8v

(
1−mxy + (mxy +mxz)(1− uv)

)
(1 +m′

z) .

where u = nxy − mxy, v = nnz − mxz, and the ramification indices are eP = 2. nx, ny,

nz, nxy, nxz, nyz are the number of equations containing {x}, {y}, {z}, {x,y}, {x, z},

{y, z} respectively, and mx, my, mz, mxy, mxz, myz are the number of linear equations

containing {x}, {y}, {z}, {x,y}, {x, z}, {y, z} respectively. Also

m′
y =

⌊3−my

2

⌋
, m′

z =
⌊3−mz

2

⌋
, m′

yz =
⌊3−myz

2

⌋
,

where ⌊a⌋ is the floor function giving the integer part of a.

4.1 Ladder type diagrams

The ladder type diagrams can be constructed from inserting box diagram into two-loop

diagrams at the vertices marked as red circles as shown in figure 3. Depending on the way

of opening the vertices, there are in total seven different ways connecting to the two-loop

diagrams, marked as black dots in the seven diagrams in figure 3. For this type diagrams,

we take the convention that ℓ1, ℓ2 have shared propagators, thus u = 1, v = 0. Then the

formula (4.1) is simplified to

N = 8(1 +mxy)(1 +m′
y) . (4.2)

Since mxy,m
′
y can either be one or zero, from (4.2) we see that N could be 8, 16 and 32.

It is also interesting to notice that N picks up no information in the ℓ3 loop. In fact, since

(1 +m) = 0 if m = 0 and (1 +m) = 2 if m = 1, we can artificially write (1 +m) = 2m.

Then (4.2) can be expressed as

N = 8× 2mxy × 2m
′
y . (4.3)

This reformulation provides a diagrammatic meaning for the counting of ramified points

which we will show below.
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ℓ1

ℓ1

(A1) (A2)

(A3)
ℓ2 ℓ3

ℓ2

ℓ2 ℓ3ℓ3

(B1) (B2)

(B3) (B4)

ℓ2

ℓ2

ℓ2

ℓ2

ℓ3

ℓ3

ℓ3

ℓ3

Figure 3. Different ways of connecting one-loop box diagram and two-loop double-box, crossed-

box diagrams to construct three-loop ladder type diagrams. Vertices of two-loop diagrams marked

as red circles are opened, and the corresponding internal lines are connected to the one-loop box

diagram at the vertices marked as black dots.

For the ladder type diagrams, the covering map from curves associated with three-loop

diagrams to curves associated with two-loop diagrams is given by

C
�,♦+ ,

:





Q1(x
2) = 0

Q2(xy) = 0

L′
1 = 0

L′
2 = 0

Q3(y
2) = 0

Q4(yz) = 0

Q5(z
2) = 0

L1 = 0

L2 = 0

L3 = 0

L4 = 0

7→ C
,

:





Q3(y
2) = 0

Q4(yz) = 0

Q5(z
2) = 0

L1 = 0

L2 = 0

L3 = 0

L4 = 0

. (4.4)

Although Q2(xy) = 0 is a quadratic equation, it is linear in x, so there is only one quadratic

equation in x. Anyway, equations Q1(x
2) = Q2(xy) = L′

1 = L′
2 = 0 define two covering

sheets over Riemann surface C or C , just as in the analysis of mapping two-loop

diagrams to one-loop diagrams. So it is a double cover. Points in the curve defined by

Q3 = Q4 = Q5 = 0, Li = 0, i = 1, 2, 3, 4 become ramified points if they follow the additional

constraint ∆(y1, y2, z1, z2) = 0, which is the discriminant (3.4) of Q1 = Q2 = L′
1 = L′

2 = 0.

Equations ∆ = Q3 = Q4 = Q5 = 0, Li = 0, i = 1, 2, 3, 4 define a zero-dimensional

ideal I = 〈∆, Q3, Q4, Q5, L1, L2, L3, L4〉 in polynomial ring C[y1, y2, y3, y4, z1, z2, z3, z4], and

the number of distinct solutions equals to the degree of ideal. The up-bound of distinct
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point solutions is deg[∆]deg[Q3]deg[Q4]deg[Q5]. Numerically, the degree of ideal can be

computed by the Gröbner basis of ideal, which is the degree of leading term in Gröbner

basis, by many algorithms (e.g., using Macaulay2 [72]). However, we want to compute the

ramified points without explicit computations. Notice that among the seven cut equations

of sub-two-loop part, only the four linear equations are different. The linear equations of

seven diagrams in figure 3 are given by





LA1

1 (y) = 0

LA1

2 (y) = 0

LA1

3 (z) = 0

LA1

4 (z) = 0

,





LA2

1 (y, z) = 0

LA2

2 (y, z) = 0

LA2

3 (z) = 0

LA2

4 (z) = 0

,





LA3

1 (y) = 0

LA3

2 (y) = 0

LA3

3 (z) = 0

LA3

4 (z) = 0

,

and




LB1

1 (y) = 0

LB1

2 (y) = 0

LB1

3 (z) = 0

LB1

4 (y, z) = 0

,





LB2

1 (y) = 0

LB2

2 (y, z) = 0

LB2

3 (z) = 0

LB2

4 (z) = 0

,





LB3

1 (y) = 0

LB3

2 (y) = 0

LB3

3 (z) = 0

LB3

4 (y, z) = 0

,





LB4

1 (y) = 0

LB4

2 (y, z) = 0

LB4

3 (z) = 0

LB4

4 (z) = 0

.

It is clear that for A1, A3, B1, B3, m
′
y = 0 and for A2, B2, B4, m

′
y = 1. We can assign a

factor

N⊖ = 1 to A1, A3, B1, B3 , N⊖ = 2 to A2, B2, B4 , (4.5)

in figure 3. For the box diagram part, we have mxy = 0 for P� and mxy = 1 for P♦. So we

can assign a factor

N© = 1 to P� and N© = 2 to P♦ . (4.6)

The genus of curves associated with these three-loop ladder type diagrams can be

computed from genus of curves associated with two-loop double-box or crossed-box diagram

via Riemann-Hurwitz formula as

g
�,♦+ ,

= 2g
,

− 1 + 4(1 +mxy)(1 +m′
y) , (4.7)

or diagrammatically as

g
�,♦+ ,

= 2g
,

− 1 + 4N© ×N⊖ . (4.8)

The computation can be done by just looking at the diagrams.

To finish this subsection, let us present the results for ladder type diagrams. There

are 13 diagrams whose cut equations define non-trivial curves. Twelve of them have a

sub-two-loop double-box or crossed-box diagram, denoted by (n1, n2, n3, n4, n5, n6) as

(2, 2, 2, 2, 2, 1) , (3, 1, 1, 3, 2, 1) , (3, 1, 2, 2, 2, 1) , (3, 2, 1, 3, 1, 1) , (3, 2, 2, 2, 1, 1) ,

(2, 2, 2, 2, 0, 3) , (3, 1, 1, 3, 0, 3) , (3, 1, 2, 2, 0, 3) , (3, 2, 1, 3, 0, 2) , (3, 2, 2, 2, 0, 2) ,

(3, 3, 1, 3, 0, 1) , (3, 3, 2, 2, 0, 1) .
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Figure 4. Three-loop ladder type diagrams constructed from one-loop box diagram and two-loop

double-box, crossed-box diagrams. Every vertex is attached by massive external legs, which are

not explicitly shown in the figure. Diagrams (♦+ A1) and (�+ B1) are the same, while diagrams

(♦+A3) and (�+B3) are also the same. So there are in total twelve distinct diagrams.

Genus of these twelve diagrams can be computed by the recursive formula (4.7) or (4.8).

The construction of these diagrams are shown in figure 4. With the known results g = 1

and g = 3, using formula (4.7), we can compute the genus as

A1 A2 A3 B1 B2 B3 B4

� 5 9 5 9 13 9 13

♦ 9 17 9 13 21 13 21

Note that diagram (♦+A1) and (�+B1) are the same diagram, while diagram (♦+A3)

and (�+B3) are also the same diagram.

4.2 Mercedes-logo type diagrams

The Mercedes-logo type diagrams can be constructed by inserting box-diagram into double-

box diagram or crossed-box diagram at the vertices marked as red circles in figure 5. There

are four different ways of connecting to the two-loop diagrams and three different ways of

connecting to the box diagram, as shown in figure 5. They are connected at the vertices
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(C3) (C4)

ℓ2ℓ2

ℓ3

ℓ3(C1) (C2)

ℓ2 ℓ2
ℓ3

ℓ3

ℓ1
ℓ1 ℓ1

(D2) (D3)(D1)

Figure 5. Different ways of connecting one-loop box diagram and two-loop double-box, crossed-

box diagrams to construct three-loop Mercedes-logo type diagrams. Vertices of two-loop diagrams

marked as red circles are opened, and the internal lines are connected to the one-loop box diagram

at the vertices marked as dots, corresponding to the color of dots.

marked as dots, corresponding to the color of dots. Discussion on the equations of sub-

two-loop diagram has no difference from ladder type diagrams. However, equations in the

P� part become different. There are three quadratic equations Q1(x
2) = 0, Q2(xy) = 0

and Q3(xz) = 0, but only one linear equation. The covering map from Mercedes-logo type

diagram to double-box or crossed-box diagram is then given by

CDi+Cj
:





Q1(x
2) = 0

Q2(xy) = 0

Q3(xz) = 0

L′
1 = 0

Q4(y
2) = 0

Q5(yz) = 0

Q6(z
2) = 0

L1 = 0

L2 = 0

L3 = 0

L4 = 0

7→ C
,

:





Q4(y
2) = 0

Q5(yz) = 0

Q6(z
2) = 0

L1 = 0

L2 = 0

L3 = 0

L4 = 0

. (4.9)

Since equations Q2 = Q3 = L′
1 = 0 are always linear in x, there is in fact only one quadratic

equation in x, and it defines two covering sheets over C
,

. For any given point in the

curve, equations Q1 = Q2 = Q3 = L′
1 = 0 gives two solutions. Only when the discriminant

equals to zero, these two solutions coincide to each other. In this case the point P becomes

ramified point with ramification index eP = 2. In our convention, u = v = 1, then the
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number of ramified points is given by

N = 8
(
2 +m′

y +m′
z +mxy(m

′
yz −m′

z) +mxz(m
′
yz −m′

y)
)
. (4.10)

As noted before, at most one of mxy,mxz could be one. If mxy = mxz = 0, then N = 8(2+

m′
y+m′

z). If mxy = 1,mxz = 0, then N = 8(2+m′
y+m′

yz). Similarly, if mxy = 0,mxz = 1,

thenN = 8(2+m′
z+m′

yz). So for given number of each propagators, N could be 16, 24 or 32.

For the sub-two-loop diagram, the four linear equations of four diagrams in figure 5

are given by





LC1

1 (y) = 0

LC1

2 (y) = 0

LC1

3 (z) = 0

LC1

4 (z) = 0

,





LC2

1 (y) = 0

LC2

2 (y) = 0

LC2

3 (y, z) = 0

LC2

4 (y, z) = 0

,





LC3

1 (y) = 0

LC3

2 (y, z) = 0

LC3

3 (z) = 0

LC3

4 (z) = 0

,





LC4

1 (y) = 0

LC4

2 (z) = 0

LC4

3 (y, z) = 0

LC4

4 (y, z) = 0

.

So we have

C1 : m′
y = 0 , m′

z = 0 , m′
yz = 1 , C2 : m′

y = 0 , m′
z = 1 , m′

yz = 0 ,

C3 : m′
y = 1 , m′

z = 0 , m′
yz = 1 , C4 : m′

y = 1 , m′
z = 1 , m′

yz = 0 .

For the box part, we have

D1 : mxy = 0 , mxz = 0 , D2 : mxy = 0 , mxz = 1 , D3 : mxy = 1 , mxz = 0 .

With above information, we can simply write down the genus of Mercedes-logo type dia-

grams by Riemann-Hurwitz formula. The recursive formula is given by

gCi+Dj
= 2g

,
− 1 + 4

(
2 +m′

y +m′
z +mxy(m

′
yz −m′

z) +mxz(m
′
yz −m′

y)
)
. (4.11)

To finish this subsection, we present the results for Mercedes-logo type diagrams. By

naively combining Ci, Dj , there are in total twelve diagrams, as shown in figure 6. The

genus is given by

C1 C2 C3 C4

D1 9 13 17 21

D2 13 13 17 17

D3 13 9 21 17

However, by loop momenta redefinition, we find that there are in fact only four different

diagrams in figure 6, denoted by (n1, n2, n3, n4, n5, n6) as

(2, 2, 3, 1, 1, 2) , (2, 1, 3, 2, 1, 2) , (3, 2, 3, 1, 1, 1) , (3, 1, 3, 2, 1, 1) .

Diagrams with the same genus in above table are the same diagram after loop momenta

redefinition.
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D1 + C1 D1 + C2 D1 + C3 D1 + C4

D2 + C2 D2 + C3

D3 + C2 D3 + C3

D2 + C1 D2 + C4

D3 + C1 D3 + C4

Figure 6. Three-loop Mercedes-logo type diagrams constructed from one-loop box diagram and

two-loop double-box, crossed-box diagrams. Every vertex is attached by massive external legs,

which are not explicitly shown in the figure. By loop momentum redefinition, there are only four

distinct diagrams among the twelve diagrams.

4.3 The derivation of formula

In order to have a general discussion, let us write the eleven equations of maximal unitarity

cuts in a generic form. We always assume to have already reduced as many equations as

possible to linear equations by algebraic manipulation of performing Di −Dj .

The four equations of box diagram can be expressed as

f1 = 0 = x1x2 + y1y2 , (4.12)

f2 = 0 = x1y
u
2 + x2y

u
1 + x3y

u
4 + x4y

u
3 +

4∑

i=1

ai(xi − yui ) + a0 , (4.13)

f3 = 0 = x1z
v
2 + x2z

v
1 + x3z

v
4 + x4z

v
3 +

4∑

i=1

bi(xi + zvi ) + b0 , (4.14)

f4 = 0 = c1x1 + c2x2 + c3x3 + c4x4 + w(ymxy , zmxz) + c0 , (4.15)

where u = (nxy −mxy), v = (nxz −mxz) are the number of quadratic equations containing

{x,y} and {x, z} respectively. Since the box diagram part contains four propagators, we

have nx + nxy + nxz = 4. The function

w(ymxy , zmxz) =
4∑

i=1

ci(−y
mxy

i + zmxz

i ) (4.16)

is a linear function of either y or z, since mxy,mxz can take the value of one or zero, but

they can not take the value of one simultaneously. Consequently, equation f4 = 0 could
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be a linear function of either {x}, {x,y} or {x, z}. Note that in our convention, there will

always be a quadratic equation of {x,y}, so u ≡ 1. We keep it undefined just for generality.

The cut equations for two-loop diagram part can be expressed as

g1 = 0 = y1y2 + y3y4 , (4.17)

g2 = 0 = z1z2 + z3z4 , (4.18)

g3 = 0 = y1z2 + y2z1 + y3z4 + y4z3 +
4∑

i=1

di(yi + zi) + d0 , (4.19)

together with other four linear equations g4 = g5 = g6 = g7 = 0 of {y, z}.

The ramified points are defined by above seven equations of sub-two-loop part together

with the discriminant of x computed from box diagram part. It is a zero-dimensional

ideal, and always has finite number of point solutions. Let us start from the analysis of

discriminant. By solving three xi’s with equations f2 = f3 = f4 = 0, we can write f1 = 0 as

a quadratic equation of remaining one variable xi. It is simple to compute the discriminant

of this quadratic equation, although the explicit expression is too tedious to write down.

The result takes the schematic form

∆ = h1(y
2uz2v) + wh2(y

2uz2v) + w2h3(y
2uz2v) , (4.20)

where hi’s are generic polynomials of {y, z} with the degree dependence as shown in the

argument. Note that we do not explicitly write down the dependence of lower degree

monomials in hi’s. It is clear that if

v = 0 , mxy = mxz = 0 , ∆ = ∆(y2) of degree 2 ,

v = 0 , mxy or mxz = 1 , ∆ = ∆(y2+2mxyz2mxz) of degree 4 ,

v = 1 , mxy = mxz = 0 , ∆ = ∆(y2z2) of degree 4 ,

v = 1 , mxy or mxz = 1 , ∆ = ∆(y2+2mxyz2+2mxz) of degree 6 .

If other equations gi = 0 are general, then above information of {y, z} dependence in ∆

is sufficient to determine the number of point solutions by convex hull polytope method.

However, given the special form g1, g2, g3 in (4.17), (4.18) and (4.19), there are non-trivial

cancelation in ∆ we need to explore. The cancelation happens when u = v = 1. Naively,

in this case h3(yi1yi2zj1zj2) is a degree four polynomial. All monomials of degree four in

h3 are given by

(y1z2 + y2z1 + y3z4 + y4z3)
2 − 4(y1y2 + y3y4)(z1z2 + z3z4) .

We can rewrite it as

g23 − 2g3

(
4∑

i=1

di(yi + zi) + d0

)
+

(
4∑

i=1

di(yi + zi) + d0

)2

− 4g1g2 .

– 19 –



J
H
E
P
0
2
(
2
0
1
5
)
1
3
6

So if g1 = g2 = g3 = 0, it reduces to a polynomial of degree two. Similarly, all monomials

of degree three in h3 can be rewritten as

4∑

i=1

2ai(zig3 − 2yig2) +

4∑

i=1

2bi(yig3 − 2zig1) + lower degree monomial .

So it can also be reduced to lower degree monomials provided g1 = g2 = g3 = 0. In this

case, h3(y
2,yz, z2) is actually a generic polynomial of degree two. The same cancelation

happens for h2. All monomials of degree four in function h2 can be rewritten as

(
4∑

i=1

aiyi

)
4∑

i=1

2ci(zig3 − 2yig2)

−

(
4∑

i=1

bizi

)
4∑

i=1

2ci(yig3 − 2zig1) + lower degree monomial .

So when considering g1 = g2 = g3 = 0, h2 is a generic polynomial of degree three

h2(y
2z,yz2). The discriminant ∆ can at most be degree four when w is y or z-dependent.

A further observation on fi shows that, the dependence of linear terms in f2, f3, f4 are

in fact not arbitrary. For example, when u = 1, in the quadratic polynomial f2, the eight

linear terms have only four arbitrary pre-factors ai, i = 1, 2, 3, 4, and (xi−yi) always appear

together. It is the same for f3 when v = 1, (xi + zi) will always appear as one single item,

and there are only four arbitrary pre-factors. Also in f4, we always have (xi−y
mxy

i +zmxz

i )

as a single item appearing in the linear equation. This observation leads to non-trivial

reformulation for the discriminant when combined with equations g1 = g2 = g3 = 0, while

w is y or z-dependent. More explicitly, when u = v = 1 and mxy = 1,mxz = 0, the

discriminant (4.20) becomes a polynomial of degree four, while the highest degree of y is

four and the highest degree of z is two. If we redefine zi = z̃i − yi, then the discriminant

can be rewritten as

∆ =
4∑

i,j=1

h̃1,ij(y
2)z̃iz̃j +

4∑

i=1

h̃2,i(y
3)z̃i + h̃3(y

4) .

It can be found that h̃3(y
4) = (y1y2 + y3y4)h

′
3(y

2), so it vanishes in case that g1 = 0. The

h̃2,i does not vanish individually, however the summation
∑4

i=1 h̃2,i(y
3)(yi + zi) vanishes

when combined with the equations g1 = g2 = g3 = 0. So finally the discriminant can be

expressed as

∆ =
4∑

i,j=1

h̃1,ij(y
2)(yi + zi)(yj + zj) = ∆(y2(y + z)2) .

Similarly, when mxy = 0,mxz = 1, the discriminant can be expressed as

∆ =
4∑

i,j=1

h̃1,ij(z
2)(yi + zi)(yj + zj) = ∆(z2(y + z)2) .
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We have explored all the hidden structures in the discriminant ∆ under given equations

g1 = g2 = g3 = 0 in (4.17), (4.18) and (4.19). The degree dependence in ∆ is determined

by u, v and mxy,mxz, and can be summarized as

∆
(
y2u(1−mxz+(mxy+mxz)(1−uv))(y + z)2uv(mxy+mxz)z2v((1−mxy)+(mxy+mxz)(1−uv))

)
. (4.21)

For any given u, v,mxy,mxz from cut equations of box diagram part, it is a degree four

polynomial, and the degree dependence of y, z and (y + z) is explicitly shown. We want

to emphasize that, ∆ is expressed as the above form such that at most two terms in y, z

or (y+ z) could appear at the same time. For all possible values of u, v,mxy,mxz from cut

equations, the discriminant can be

∆(y2) , ∆(y4) , ∆(z2) , ∆(z4) , ∆(y2(y + z)2) , ∆(z2(y + z)2) .

Then it is possible to compute the mixed volume of polytopes defined by polynomials

∆, gi, i = 1, . . . , 7. Naively, these polynomials are associated with 8-dimensional polytope,

and it is not easy to compute the 8-dimensional volume. However, since there are four linear

equations, we can solve four variables, and the remaining four equations are associated with

4-dimensional volume. It is still not easy to compute arbitrary 4-dimensional volume. But

if we always choose to solve {y3, y4, z3, z4} from four liner equations, then the remaining

four variables {ys, zs} = {y1, y2, z1, z2} are symmetric among {y1, y2} or {z1, z2}. Then

we can treat ys or zs as a lattice line whose segment coordinate equals to the area of

triangle in {y1, y2} or {z1, z2}-plane. An example is shown in the first diagram of figure 7.

The length oa1 = ob1 = 12

2 , oa2 = ob2 = 22

2 , oa3 = ob3 = 32

2 , etc. Instead of computing

the 4-dimensional volume directly, we compute the 2-dimensional area but with a scaled

coordinate. The polytope shown in the first diagram of figure 7 then has area

oa2 + b1c1
2

× ob1 +
b1c1 + b2c2

2
× (ob2 − ob1)

=
22/2 + 22/2

2
×

12

2
+

22/2 + 12/2

2
×

(
22

2
−

12

2

)
=

23

8
.

Special attention should be paid to the case when discriminant is given by ∆(y2(y+z)2)

or ∆(z2(y+z)2). Because of the dependence of (y+z), we should treat (y+z) as a variable.

So when ∆ = ∆(y2(y + z)2), we should transform the variables z → z̃ − y such that the

discriminant become ∆(y2z̃2). Similarly, when ∆ = ∆(z2(y + z)2), we should transform

the variables y → ỹ−z such that the discriminant become ∆(ỹ2z2). Then we can compute

the 4-dimensional mixed volume accordingly. Let us take mxy = mxz = 0 for example.

In this case the discriminant is ∆(y2u(1−mxz)z2v(1−mxy)), so we do not need to transform

variables. The solution of linear equations can be formally written as

y 7→ ys , z
m′

y
s , z 7→ zs , ym′

z
s .

In this case, the three quadratic equation Q(y2), Q(yz) and Q(z2) become

Q′
1(y

2
s ,ysz

m′
y

s , z
2m′

y
s ) , Q′

2(y
1+m′

z
s ,yszs, z

1+m′
y

s ) , Q′
3(z

2
s,y

m′
z

s zs,y
2m′

z
s ) .
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New(∆′), u = 1, v = 0

New(Q′
1) New(Q′

2) New(Q′
3)

2 + 2m′
y

2 +m′
y

1 2

2

1

2 +m′
z

2 + 2m′
z

New(∆′), u = 1, v = 1

m′
z 2m′

z

2

1

1 1 +m′
z

1 +m′
y

1

1 2

2m′
y

m′
y

1 2

2m′
y

m′
y

y

z

o a1 a2 a3

c2

b1

b2

b3

c1

Figure 7. Lattice convex polytopes associated with polynomial equations. The coordinate is scaled

by k2/2, where k is the coordinate of lattice segments.

The discriminant can be expressed as

∆′(y2u+2vm′
z

s , z
2v+2um′

y
s ) .

The polytopes associated with these polynomials are plotted in figure 7. New(∆′) is drawn

explicitly with given u, v for computation purpose, and the coordinate of vertices of poly-

topes are marked along the axes. Although these polytopes are plotted universally as

triangles, we should note that they depend on the value of m′
y,m

′
z. For example, if

m′
y = 0, New(Q′

2) is a trapezoid. Given the four polytopes New(∆′), New(Q′
1), New(Q

′
2)

and New(Q′
3) with their coordinates, it is straightforward to draw the Minkowski sum

among them. Then we can compute the mixed volume according to formula (A.6). We

find that the mixed volume for mxy = mxz = 0 is given by

M(∆′, Q′
1, Q

′
2, Q

′
3) = 8(u+ v + um′

y + vm′
z) . (4.22)

Similarly, when mxy = 1,mxz = 0, u = v = 1, we have variables y, z̃. The solution of linear

equations are given by

y 7→ ys , z̃
m′

y
s , z̃ 7→ z̃s , y

m′
yz

s .

In this case, we have

Q′
1(y

2
s ,ysz̃

m′
y

s , z̃
2m′

y
s ) , Q′

2(y
1+m′

yz
s ,ysz̃s, z̃

1+m′
y

s ) , Q′
3(z̃

2
s,y

m′
yz

s z̃s,y
2m′

yz
s ) ,
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and ∆′(y
2+2m′

yz
s , z̃

2+2m′
y

s ). So the same computation shows that the mixed volume of four

polytopes is given by

M(∆′, Q′
1, Q

′
2, Q

′
3) = 8(2 +m′

y +m′
yz) . (4.23)

Finally, if mxz = 1,mxy = 0, u = v = 1, we have variables z, ỹ. The solution of linear

equations is given by

ỹ 7→ ỹs , z
m′

yz
s , z 7→ zs , ỹm′

z
s .

In this case, we have

Q′
1(ỹ

2
s , z

m′
yz

s ỹs, z
2m′

yz
s ) , Q′

2(z
1+m′

yz
s , zsỹs, ỹ

1+m′
z

s ) , Q′
3(z

2
s, zsỹ

m′
z

s , ỹ2m′
z

s ) ,

and ∆′(ỹ
2+2m′

z
s , z

2+2m′
yz

s ). Then we get

M(∆′, Q′
1, Q

′
2, Q

′
3) = 8(2 +m′

z +m′
yz) . (4.24)

Summarizing above discussions, we can express the number of ramified points, which equals

to the mixed volume of four polytopes, as

N = 8u
(
1−mxz + (mxy +mxz)(1− uv)

)
(1 +m′

y)

+8uv(mxy +mxz)(1 +m′
yz) + 8v

(
1−mxy + (mxy +mxz)(1− uv)

)
(1 +m′

z) ,

which has already been shown in the beginning of this section.

5 More diagrams

5.1 The other three-loop diagrams

In previous section, we have presented a recursive formula for the study of genus of three-

loop diagrams whose sub-two-loop diagram also defines a curve. There are still five di-

agrams which can not be included in this category. They are four Mercedes-logo type

diagrams as shown in figure 8(1) to figure 8(4), and one ladder type diagram as shown

in figure 8(5). Since the sub-two-loop diagram or sub-one-loop diagram does not define

curve, there is no covering map from the original curve to the curve of lower-loop diagram.

Because of the highly complexity of algebraic system, it is quite difficult to compute the

genus directly. Thus we introduce an algorithm to systematically study the genus based

on numerical algebraic geometry. Given an algebraic system of maximal unitarity cuts of

three-loop diagrams with arbitrary setup of numeric external momenta, it is possible to

compute the genus within seconds by this algorithm. It also provides an opportunity of

studying the global structure of maximal unitarity cuts of four-loop and even higher loop

diagrams, where analytic study is almost impossible.

Let us apply the algorithm to the computation of five three-loop diagrams considered

in this subsection. For each diagram, the corresponding polynomial system of maximal
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(1) (2) (3)

(4) (5)

Figure 8. Remaining three-loop diagrams whose equations of maximal unitarity cuts define curves

while their sub-two-loop diagrams do not define curves. Every vertex is attached by massive external

legs, which are not explicitly shown in the figure.

unitarity cuts defines an irreducible curve Ci with each contribution ρπ(b) = 1 for every

b ∈ BCi and ρ∞ = 0. Thus, Riemann-Hurwitz formula reduces to

gCi = − deg[Ci] + 1 +
|BCi |

2
.

By computing the degree of the curve and the number of branchpoints using numerical

algebraic geometry via Bertini [73], we can obtain the genus by above formula,

• For diagram (8.1), we have deg[C] = 44, and |BC | = 152, so the genus is g = 33.

• For diagram (8.2), we also have deg[C] = 44, but |BC | = 176, so the genus is g = 45.

• For diagram (8.3), we have deg[C] = 40, and |BC | = 136, so the genus is g = 29.

• Diagram (8.4) has the most complicated global structure among three-loop diagrams.

The curve associated with this diagram has degree deg[C] = 52, and |BC | = 212, so

the genus is g = 55.

• For the last ladder type diagram (8.5), we have deg[C] = 32, and |BC | = 128, so the

genus is g = 33.

5.2 The White-house diagram

An interesting series of diagrams is shown in figure 9 to any loop orders. If n = 1, we

get the one-loop triangle diagram, which has gWH
1 = 0. If n = 2, we get the two-loop

double-box diagram, which has gWH
2 = 1. The three-loop diagram is the first diagram
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ℓ1 ℓ3ℓ2 ℓn−2 ℓn−1 ℓn

Figure 9. Infinite series of white-house diagrams. Every vertex is attached by massive external

legs, which are not explicitly shown in the figure.

resembling the White-house, and it has gWH
3 = 5. Because of its resemblance between

(n− 1)-loop and n-loop diagrams, it is interesting to ask if we can compute the genus of n-

loop diagram from the information of (n−1)-loop diagram. Define xk = {xk1, xk2, xk3, xk4}

as the parametrization variables of the k-th loop. From figure 9 we can see that there are

always two linear equations for each loop, so we can solve two variables in xk using these

linear equations and get xk 7→ x′
k
, where x′

k
= {xk1, xk2}. Then we can compute the genus

of n-loop white-house diagram by Riemann-Hurwitz formula from the covering map

CWH
n :





Q1(x1
2) = 0

Q2(x1x
′
2
) = 0

L1(x1) = 0

L2(x1) = 0

+

CWH
n−1

7→ CWH
n−1 :





Q3(x
′
2

2) = 0

Q4(x
′
2
x′
3
) = 0

. . .

Q2n−3(x
′
n−1

2) = 0

Q2n−2(x
′
n−1

x′
n) = 0

Q2n−1(x
′
n

2) = 0

. (5.1)

As usual, equations Q1 = Q2 = L1 = L2 = 0 of box diagram part define a double

covering map, and the ramified points have ramification index eP = 2, determined by the

discriminant equation ∆ = 0 for given points in curve CWH
n−1 . For the box diagram part, since

mxy = mxz = 0, u = 1, v = 0, the discriminant is given by ∆(x′
2

2). So the ramified points

are determined by (2n−2) equations in (2n−2) variables in C
2n−2. It is easy to compute the

number of ramified points for white-house diagrams. Since ∆(x′
2

2) = Q3(x
′
2

2) = 0 are two

generic quadratic equations in two variables x′
2
= {x21, x22}, by Bézout’s theorem, it has

four distinct solutions. For each solution {xSi

21, x
Si

22}, equations Q4(x
′
2
x′
3
) = Q5(x

′
3

2) = 0 are

two generic equations in x′
3
of degree one and two, so they have two solutions in {x31, x32}.

In total we get 4× 2 = 8 solutions in {x21, x22, x31, x32}. Recursively, we get 4× 2n−2 = 2n

distinct solutions in {x21, x22, . . . , xn1, xn2}. Above argument is based on the facts that

different loops only share common propagators adjacently in a chain and the solution of

linear equations only maps xk 7→ x′
k
itself. So the Riemann-Hurwitz is given by

2gWH
n − 2 = 2(2gWH

n−1 − 2) + 2n . (5.2)

Given the first entry gWH
1 = 0, it is not hard to solve above recursive formula and get

gWH
n = (n− 2)2n−1 + 1 . (5.3)

It indeed produces gWH
1 = 0, gWH

2 = 1, gWH
3 = 5, and also an infinite series of genus

such as gWH
4 = 17, gWH

5 = 49, gWH
6 = 129, etc. The genus grows exponentially to infinity
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with the increasing of loops, which indicates the complexity of computation in higher-loop

amplitudes.

6 Conclusion

To systematically study integrand reduction or integral reduction of multi-loop amplitudes

via algebraic geometry method, the equations derived from propagators on-shell and their

correspoinding variety (solution space) plays a very important role. These on-shell equa-

tions are the generating equations of ideal and Gröbner basis, which are the central objects

in determining the set of independent integrand basis. The solution of each irreducible com-

ponent of reducible ideal determines the parametrization of loop momenta, which greatly

affects the evaluation of coefficients for integrand or integral basis. Thus, the study on the

global structure of on-shell equations is the first step in the process of multi-loop reduction

method, and provides a birds-eye view for further explicit computation.

In order to explicitly apply algebraic geometry method to the computation of three-

loop integrand or integral reduction, it is necessary as an initial step to elaborate the global

structure of the on-shell equations. Since a four-dimensional three-loop integral has twelve

parametrization variables for loop momenta, the first category of non-trivial varieties is

defined by on-shell equations of three-loop diagrams with eleven propagators. The ideal

defined by these diagrams is complex one-dimensional, and it defines an algebraic curve,

which is topological equivalent to a Riemann surface. The global structure is completely

characterized by the geometric genus of the curve. Since these diagrams are the simplest

three-loop diagrams with non-trivial solution space of on-shell equations, they would be

the first candidate for applying algebraic geometric methods to the explicit computation of

three-loop diagrams. Thus, a thorough study on the global structure of three-loop diagrams

with eleven propagators can be served as a seed for the further computation of three-loop

integrand and integral reduction.

In this paper, we provide a systematic study on the genus of curves defined by maximal

unitarity cuts of three-loop diagrams with eleven propagators, generalizing the research

in [55]. The Riemann-Hurwitz formula is used throughout the study. Among the 21 total

diagrams. 16 diagrams have a sub-two-loop diagram whose equations of maximal unitarity

cut also define curves. For these diagrams, the genus can be recursively computed from

the genus of two-loop double-box and crossed-box diagrams together with the knowledge

of ramified points. The recursive formula is given by

g = 2g
,

− 1 +
N

2
, (6.1)

where

N = 8u
(
1−mxz + (mxy +mxz)(1− uv)

)
(1 +m′

y)

+8uv(mxy +mxz)(1 +m′
yz) + 8v

(
1−mxy + (mxy +mxz)(1− uv)

)
(1 +m′

z) .

Note that above formula is general and independent of the convention of loop momenta.

The number N can be obtained by counting the number of corresponding propagators.

Thus, the genus can be evaluated by just looking at the diagrams.
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Besides, there are still five diagrams which can not be analyzed by the recursive formula

from information of two-loop diagrams. For these diagrams, we implement an algorithm for

the Riemann-Hurwitz formula based on numerical algebraic geometry. This algorithm also

provides the possibility of studying more complicated algebraic system of four-loop or even

higher loop diagrams in the future. It can also be applied to the analysis of the previous

16 diagrams, and we find that the results of the recursive formula and the algorithm agree.

The genus of 13 ladder type diagrams is given by

Diagram

Genus 5 5 9 9 9 13 13 13 13 17 21 21 33

The genus of 8 Mercedes-logo type diagrams is given by

Diagram

Genus 9 13 17 21 29 33 45 55

In general terms, the higher the genus is, the more complicated the algebraic system will

be. So, a first direct application of above result would be the judgement of the complexity

of three-loop diagrams we would like to evaluate. Different from two-loop diagrams where

the highest genus is only three, the genus for three-loop diagrams can be as high as 55. This

indicates highly complex nature of three-loop diagrams compared to two-loop diagrams.

Curves of different diagrams with the same genus are topological equivalent to each other,

we expect that this equivalence would also play a role in relating those different diagrams.

We also present an example beyond three-loop diagrams, by generalizing the simplest

g = 5 white-house diagram to any loops. The genus of n-loop white-house diagram is

gWH
n = (n− 2)2n−1 + 1 .

Hence, gWH
3 = 5, gWH

4 = 17, gWH
5 = 49, etc. In particular, it is possible for the genus

to grow without bound. Interestingly, the genus of n-loop white-house diagram equals to

the genus of (n+ 2)-dimensional hypercube. This relates the algebraic system of maximal

unitarity cuts of multi-loop diagrams directly to well-known geometric objects.

An interesting phenomenon is observed in [55] that the genus is always an odd integer.

This is further verified by results presented here. We can claim that the genus of curve

defined by maximal unitarity cuts of any multi-loop diagrams is an odd integer. This

can be shown by looking at the on-shell equations of degenerate limit where one external

momentum is massless. Assuming that after solving linear equations, the algebraic curve

is given by I = 〈Q1, Q2, . . . , Qn〉 with (n + 1) variables. It is always possible to take one

external momentum as massless, and the corresponding quadratic equation factorizes as

Q1 = f1f2 = 0, where f1, f2 are linear. The linear polynomials f1, f2 are two equivalent

branches of quadratic polynomial Q1, and ideal I can be primary decomposed into two
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equivalent irreducible ideals I1 = 〈f1, Q2, . . . , Qn〉 and I2 = 〈f2, Q2, . . . , Qn〉. So, the genus

g1 of curve defined by I1 equals to the genus of the curve defined by I2. If there are N

intersecting points between two curves, then the genus of original curve defined by I is

given by g = 2g1 + N − 1. The number N is in fact the number of distinct solutions of

zero-dimensional ideal I ′ = 〈f1, f2, Q2, . . . , Qn〉. In projective space, according to Bézout’s

theorem, N is given by the products of degree of each polynomial in I ′, which is an even

integer. This guarantees that the genus is an odd integer, and explains the puzzle in [55].

As we have mentioned, information of global structure of on-shell equations is the first

step to the integrand or integral reduction of multi-loop integrals. The genus is a powerful

concept that connects the algebraic system of maximal unitarity cuts to geometric objects,

as hinted in the White-house example. Since so far only a few explicit computation of

three-loop integral reduction is done, we still need to wait for more three-loop examples to

reveal the connection and also the possible equivalence of different diagrams with the same

genus. With the algorithm based on numerical algebraic geometry presented in this paper,

it is possible to work out the global structure of curves defined by maximal unitarity cuts

of four-loop diagrams. However, this information is not urgent, since integrand or integral

reduction of four-loop integral is still far from practice. We hope that in future there will

be more results of three-loop integrand reduction showing up, so that we can clarify the

underlining power of genus. Then it can be similarly generalized to higher loop diagrams.

The global structure of higher-dimensional varieties, defined by the maximal unitarity

cuts of L-loop diagram with n ≤ (4L − 2) propagators, is still unclear even for two-loop

diagrams. This information is important for the computation of two-loop diagrams besides

double-box and crossed-box. We hope that both computational and numerical algebraic

geometry can play a similar role in the analysis of global structure for those diagrams in

the future.
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A Solving polynomial equations using convex polytope

An algebraic system of n polynomial equations in n variables is expected to define a zero-

dimensional ideal. When n = 2, if the algebraic system has finite many zeros in C
2, then

Bézout’s theorem states that the number of zeros is at most deg[f1]deg[f2]. Generaliza-

tion to arbitrary n polynomial equations can be similarly understood. If there are finitely
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many zeros in C
n for fi = 0, i = 1, . . . , n, then the upper bound on the number of solu-

tions is
∏n

i=1 deg[fi], which is sharp for generic polynomials. For sparse polynomials, this

bound is typically not sharp. For illustration, we take a similar example given in [74].

The two polynomials

f1(x, y) = a1 + a2x+ a3xy + a4y , f2(x, y) = b1 + b2x
2y + b3xy

2 + b4x
2 + b5y

2 (A.1)

have four distinct zeros in C
2 for generic coefficients ai, bi’s. However, Bézout’s theorem

provides an upper bound of deg[f1]deg[f2] = 6. In order to predict the actual number 4

instead of 6, we need to go from Bézout’s theorem to Bernstein’s theorem. Bernstein’s

theorem states that for two bivariate polynomials f1 and f2, the number of zeros f1 =

f2 = 0 in (C∗)2 is bounded above by the mixed area of the two corresponding Newton

polytopes M(New(f1),New(f2)). Here, C∗ = C \ {0}. To understand this theorem, one

should first associate a convex polytope to polynomial. A polytope is a subset of R
n

which is the convex hull of a finite size of points. For example, in R
2, the convex hull

conv{(0, 0), (0, 1), (1, 0), (1, 1)} is a square. For a given polynomial

f = c1x
α1yβ1 + c2x

α2yβ2 + · · ·+ cmxαmyβm ,

we can associate a Newton convex polytope

New(f) = conv{(α1, β1), (α2, β2), . . . , (αm, βm)} . (A.2)

Since αi, βi’s are always non-negative integers, it is a lattice convex polytope. Given two

polytopes P1, P2, the Minkowski sum is given by

P1 + P2 = {p1 + p2 : p1 ∈ P1, p2 ∈ P2} . (A.3)

Then the mixed area M(P1, P2) is given by

M(P1, P2) = area(P1 + P2)− area(P1)− area(P2) . (A.4)

We can apply the convex polytope method to the example polynomials (A.1), which is

shown in figure 10. The mixed area is given by

M(New(f1),New(f2)) =
17

2
−

7

2
− 1 = 4 .

Following Bernstein’s theorem, the number of zeros for f1 = f2 = 0 with general coefficients

in (C∗)2 is exactly 4. In case, the bound can be trivially lifted from (C∗)2 to C
2. One

remark is that, in computing the mixed area, the two polynomials should be independent.

For example, two polynomials f ′
1 = f1, f

′
2 = f2 + y3f1 have the same zeros as f1 = f2 = 0.

However, if we include the vanishing term y3f1 in f ′
2 as vertices in polytope New(f ′

2), then

we get the wrong result. Before computing the area, we should remove the redundant

terms such as y3f1 in f ′
2.

Bernstein’s theorem can be generalized to higher dimension. The number of solutions

in (C∗)n of n polynomials in n variables is bounded above by the mixed volume of n Newton

polytopes. The mixed volume of P1, P2, . . . , Pn in R
n is given by formula

M(P1, . . . , Pn) =
∑

J⊆{1,2,...,n}

(−1)n−nJ · volume

(∑

j∈J

Pj

)
, (A.5)
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New(f1) New(f1) New(f1 + f2)

Figure 10. Lattice convex polytopes associated with polynomials, and the computation of mixed

area. Each segment of lattice is length 1.

where J is a non-empty subsets of {1, 2, . . . , n} and nJ = 1, 2, . . . , n is the length of J . The

volume is Euclidean volume in R
n. For example, in R

4, the mixed volume is

M(P1, P2, P3, P4) = volume(P1 + P2 + P3 + P4)−
∑

1≤i<j<k≤4

volume(Pi + Pj + Pk)

+
∑

1≤i<j≤4

volume(Pi + Pj)−
∑

1≤i≤4

volume(Pi) . (A.6)
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