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ABSTRACT: Obesity is a complex problem, associated 

with many diseases. Microarray gene expression data have 

been extensively used to detect differentially expressed 

(DE) genes and expression quantitative trait loci (eQTL), 

however, RNA-Sequencing data have the potential to reveal 

novel genes involved in complex traits. The objective was 

to elucidate biological pathways and potential biomarkers 

for obesity in a porcine model, by systems genetics 

approaches using RNA-Sequencing data. Previously, we 

created an F2 pig population which was deeply phenotyped 

and genotyped. Based on their degree of obesity, 36 

animals were selected for RNA-Sequencing.  Analysis 

included DE, pathway detection and eQTL mapping. We 

identified 198 DE genes, which could be divided in immune 

and developmental related processes. Furthermore, we 

revealed 761 cis-eQTLs of which several could be linked to 

obesity. Concluding, systems genetics analysis of RNA-Seq 

data elucidated biologically relevant pathways and potential 

genetic biomarkers affecting obesity. 

 

Introduction 

 

Obesity is a complex health problem, associated 

with several metabolic diseases. The exponential rise in the 

incidence of obesity worldwide, and its huge welfare, social 

and economic impact has enlarged the urge of gaining 

knowledge on the biologic and genetic background. Here, 

we use a porcine model for human obesity. It has been 

shown that the pig has similar metabolic, digestive and 

cardiovascular features, and it resembles humans more than 

rodents (Spurlock and Gabler (2008)). We previously 

created an F2 pig population, and revealed the potential of 

this population to study human obesity (Kogelman et al. 

(2013)).    

Currently, Next Generation Sequencing (NGS) 

technologies are offering a huge potential for studying 

complex traits and diseases. RNA-Sequencing (RNA-Seq) 

data is replacing microarray expression studies, because of 

their huge potential in e.g., more precise measurements of 

expression levels and the potential to discover novel 

transcripts (Wang et al. (2009)). Sequencing-based 

technologies have been shown to give promising results in 

e.g., kidney disease (Mimura et al. (2013)), and a huge 

potential is expected for other complex, multifactorial 

diseases and traits, such as obesity.   

To elucidate the biological and genetic background 

of complex diseases, several network approaches have been 

used to detect pathways and potential causal genes. 

Furthermore, previous studies have shown that studying 

expression quantitative trait loci (eQTLs) is an appropriate 

way of increasing the knowledge of complex diseases and 

traits (Morley et al. (2004), Kadarmideen et al. (2006)). In 

eQTL mapping each transcript abundance is treated as a 

phenotype and typical QTL mapping or GWAS approaches 

are applied to this expression phenotype or expression-trait 

(see Kadarmideen et al. (2006) for definitions).  

  The objective of this study was to increase the 

systematic understanding of the transcriptional (co-) 

regulations of obesity and related traits by detecting 

differentially expressed genes and eQTLs. This will result 

in the interpretation of the functions of known and novel 

genes associated with obesity, and increase the 

understanding of obesity-related biological pathways. 

 

Materials and Methods 

 

Experimental design. An F2 pig population was 

created using Danish production pig breeds (i.e. Yorkshire 

and Duroc sows) and Gӧttingen minipig boars. The 

production breeds are intensively selected for leanness and 

growth, while the Gӧttingen minipigs are prone to obesity 

and share metabolic impairments seen in obese humans 

(Johansen et al. (2001)). As published earlier, the F2 

population (454 pigs) was intensively phenotyped for, e.g. 

weight, body confirmation, DXA scanning, and slaughter 

characteristics (Kogelman et al. (2013)). All animals were 

genotyped using the Illumina Porcine 60K SNP Chip.   

  

Obesity Index. In animal breeding, multi-trait 

selection indexes are used to select animals based on 

estimated breeding values (EBVs) for several traits of 

interest (Cameron (1997)). Based on this, we created the 

Obesity Index (OI), by calculating selection index weights 

and combining EBVs for nine different obesity-related 

traits (reported in Kogelman et al. (2013)) into one 

aggregate total merit index for all animals. Traits selected 

for the obesity index were: weight and abdominal 

circumference at slaughter age, average daily gain, 

estimated fat mass and percentage of fat at DXA scanning, 

back fat thickness at position 1 and position 2, weight of 

leaf fat and weight of omental fat at slaughtering. This 

resulted in a single genetic OI score, with the potential to 

determine whether an animal was genetically obese or lean.   

 

RNA Sequencing. Based on the OI 36 (12 high, 

12 intermediate and 12 low OI) animals were selected for 

RNA-Seq. RNA-Seq was performed on the Illumina 

HiSeq2500 (AROS, Denmark), using subcutaneous fat 

tissue. Alignment was performed using STAR, resulting in 

(after quality control) approximately 30 million mapped 

reads per sample, mapped to 25,322 unique transcripts. 

After alignment, raw counts were normalized and corrected 

for gender.  



Differential expression. Differentially expressed 

(DE) transcripts for the OI were detected using a linear 

model, fitting the OI as continuous variable and gender as 

covariate using the R-package Limma (Smyth (2005)). 

Estimates were corrected for multiple testing using the 

Benjamini & Hochberg (FDR) correction. Transcripts were 

detected as significantly DE using an FDR < 0.05.  

 

Functional annotation. The associated genes at 

the DE transcripts were detected using BioMart (Durinck et 

al. (2005)). To identify overrepresented Gene Ontology 

(GO) terms and pathways we used the online available 

database GeneNetwork (http://www.genenetwork.nl), 

which is constructed using human, mouse and rate 

expression data. Gene functions were predicted against 

known pathways and gene sets in various biological 

databases. Overrepresentation of GO-terms and pathways 

was tested using the Mann-Whitney U test, and P-values 

were afterwards corrected for multiple testing using the 

Bonferroni correction. 

eQTL studies. eQTL mapping was performed to 

find the downstream effects of the genetic variants 

associated with obesity, by treating each transcript 

abundance as phenotype. RNA-Seq data was corrected for 

the gender effect, normalization was applied, and technical 

variation was checked using a principal component (PC) 

analysis on the RNA-Seq sample correlation matrix (Westra 

et al. (2013)). Cis-eQTLs were defined when the associated 

SNP was within 10 Mb of the transcript. This window was 

chosen based on preliminary results, the large haplotype 

block size of pigs (on average 400 Kb), and the knowledge 

that haplotype block sizes in F2 populations will be even 

larger. Only SNPs with a minor allele frequency of >0.05 

and a Hardy-Weinberg equilibrium P-value of >0.001 were 

included in the analyses. Associations were determined 

using Spearman's rank correlation and to correct for 

multiple testing, the analysis was repeated 10 times, each 

time permuting the sample labels, in order to retain the 

correlation structure within the genotype and gene-

expression data. The resultant p-value distribution was 

applied as a null-distribution to control the false discovery 

rate at 0.05. 

Results and Discussion 

 

Differential expression. We detected a total of 

189 DE genes (FDR<0.05), of which 139 were 

corresponding to unique genes.  

 

Table 1. Top 10 differentially expressed transcripts 

Transcript Expr. P-value  Assoc Gene  

ENSSSCG00000025188 22.01 1.8E-3 LEPR 

ENSSSCG00000028062 20.70 1.8E-3 TCEAL3 

ENSSSCG00000012566 23.63 3.3E-3  

ENSSSCG00000003341 25.65 4.3E-3 TAS1R3 

ENSSSCG00000007005 27.52 4.6E-3 CSGALNACT1 

ENSSSCG00000016093 24.62 7.3E-3  

ENSSSCG00000004177 32.19 7.6E-3 RPS12 

ENSSSCG00000022685 24.57 7.6E-3 ROM1 

ENSSSCG00000009060 24.96 1.9E-2 MAML3 

ENSSSCG00000016957 21.96 1.9E-2 CD180 

The most highly DE gene was the LEPR (Leptin 

Receptor) gene. Leptin is a hormone produced by adipose 

tissue and plays a key role in energy regulation and 

appetite. Dysfunctioning of the LEPR gene results in 

obesity in human and mouse models (Gilbert et al. (2003)). 

The TAS1R3 gene encodes a taste receptor. The perception 

of taste has been linked before to eating behavior (Grimm 

and Steinle (2011)) and therefore also associated with 

obesity. The RPS12 gene is encoding the Ribosomal 

Protein S12, which has been shown to be associated with 

diabetic nephropathy in African Americans (McDonough et 

al. (2001)). The MAML3 gene is encoding the mastermind-

like 3 protein, which has been associated with protein 

intake in a meta-analysis. However, it did not pass the 

significance threshold in the 2
nd

 stage (Tanaka et al. 

(2013)). The last gene in the top 10 DE genes is the CD180 

gene, previously called Ly64. This gene has been shown to 

be differentially expressed in the liver of mice, for a 

subphenotype of diabetes (Mir et al. (2003)). Moreover, it 

was also differentially expressed in mice showing diabetic 

development (Fornari et al. (2011)). Furthermore, we 

detected the RPL13A gene (P-value=0.02), of which 

disruption caused resistance to lipotoxity (Michel et al. 

(2011)) and the TNMD gene (P-value=0.02), previously 

associated with adiposity, glucose metabolism and in men 

also type 2 diabetes development (Tolppanen et al. (2007)).  

 

Functional annotation. A network was 

constructed using the GeneNetwork software on all DE 

genes.  

 
Figure 1. Network construction of DE genes, with the 

clustering of two subnetworks (blue and green). The 

intensity of the colors represents the significance of 

presence of the gene in the particular network structure.  

  

The constructed network of DE genes shows two 

clear clusters of highly interconnected genes. Those two 

clusters, or subnetworks, were separately analyzed using 

GeneNetwork.  

The first subnetwork (blue in Fig. 1) shows a 

strong association with immune related pathways. Highly 

significant GO terms in the Biological Processes are, for 

example, leukocyte migration (Padj=6.62E
-14

), interleukin-12 

http://www.genenetwork.nl/


production (Padj=7.45E
-14

) and cytokine production 

(Padj=7.50E
-14

). The most significant KEGG pathway is the 

chemokine signaling pathway (Padj=3.46E
-15

). This pathway 

has been associated with the inflammation response in 

obesity, and subsequent development of insulin resistance 

(Tsuguhito (2013)). Moreover, in the Mouse Genome 

Informatics (MGI) database an increased circulating tumor 

necrosis factor level (Padj=2.18E
-14

) was highly 

overrepresented, which has repeatedly shown to be 

associated with obesity-linked insulin resistance 

(Hotamisligil et al. (1993)).  

The second subnetwork (green in Fig. 1) showed a 

strong association with developmental associated pathways. 

The most highly overrepresented GO term in the Biological 

Processes was regulation of canonical Wnt receptor 

signaling pathway (Padj=1.05E
-11

), and the Wnt signaling 

pathway is also the most overrepresented KEGG pathway 

(Padj=2.78E
-6

). This pathway has a major role in the 

development of obesity, by generation of new adipocytes 

(adipogenesis) (Laudes (2011)).  

 

 eQTL study. Genome-wide genetic analyses of 

transcriptomic variation measured by RNA-Seq resulted in 

the detection of eQTLs. In total 761 cis-eQTLs were 

detected, considering all SNPs and transcripts (Fig. 2A).  

 
Figure 2. eQTL study results. The dotplot (A) shows the 

detected eQTLs with their SNP and transcript position. The 

boxplot (B) shows one of the highly significant eQTLs: the 

PEX10 gene.  

 

The PEX10 gene was one of the most significant 

eQTLs detected (Fig. 2B). This gene is involved in the 

import of peroxisomal matrix proteins, which has an 

important role in the breakdown of very long chain fatty 

acids (Chen et al. (2010).  

 

Future studies will include further investigation of 

the DE genes, for example, by investigating the up- and 

down-regulated genes. Moreover, as the eQTL approach 

does not take the family structure of the pigs into account, 

the eQTL findings will be validated using a linkage based 

method used in R/QTL. Finally, both DE and eQTL 

findings will be validated in human expression data.  

 

Conclusion 

 

We used systems genetics approaches, i.e. DE, 

functional annotation and eQTL studies, to elucidate the 

systems biological and genetic background of obesity and 

obesity-related diseases. In total 189 DE genes were 

detected and many could be linked to human obesity, 

emphasizing the validity of the pig as a model for human 

obesity. A network analyses on DE genes revealed two 

subnetworks of closely related genes; those subnetworks 

represent different kind of biological processes directly or 

indirectly related to obesity, e.g. immune related processes 

and developmental processes. Furthermore, the detection of 

various eQTLs gives us the opportunity to reveal whole-

genome regulatory mechanisms and potential causal genes 

for human obesity and obesity-related diseases.   

 

Acknowledgements 

The project is supported by a grant from the Ministry of 

Science and Technology to the “UNIK Project for Food 

Fitness and Pharma for Health”, funding from the Danish 

Council for Strategic Research to BioChild Project, and 

from a Ph.D. stipend awarded to Lisette J.A. Kogelman 

from University of Copenhagen. Authors thank EU-FP7 

Marie Curie Actions – Career Integration Grant (CIG-

293511) granted to Haja N. Kadarmideen for funding this 

study.  

 

Literature Cited 
Cameron N.D. (1997). CABI, ISBN-10: 0851991696.  

Chen H., Liu Z. and Huang X. (2012). Hum. Mol. Genet. 19(3): 

494-505 

Durinck S., Moreau Y., Kasprzyk A. et al. (2005). Bioinf. 21(16): 

3439-3440. 

Fornari, T.A., Donate, C, Macedo, E.T, et al. (2011).  

Clin. and Dev. Imm., 2011: 12.  

Gilbert, M., Magnan, S., Turban S., et al. (2003). Diabetes, 52(2): 

277-282 

Grimm E.R. and Steinle N.I. (2011). Nutr Rev. 69(1): 52-60. 

Hotamisligil G.S., Shargill N.S. and Spiegelman B.M. (1993). 

Science 259(5091):87-91 

Johansen, T., Hansen H.S., Richelsen, B., et al (2001). Comp. 

Medicine, 51(2): 150-155. 

Kadarmideen H.N., von Rohr P., Janss L.L.G. (2006). Mamm. 

Gen. 17(6):548-564 

Kogelman L.J.A., Kadarmideen H.N., Mark T., et al (2013). 

Frontiers in Genetics, 4(29). 

Laudes M. (2011). J. Mol. Endocrinol. 46:65-72.  

McDonough, C.W., Palmer, N.D., Hicks, P.J., et al (2011). Kidney 

Int, 79(5): 563-572 

Michel C.I., Holley C.L., Scruggs B.S., et al. (2012). Cell Metab. 

July 6;14(1):33-44 

Mimura I., Kanki Y., Kodama T., et al. (2013). Kidney Int. 85, 31-

38. 

Mir, A.A., Myakishev, M.V., Polesskaya, O.O., et al. (2003). 

Genomics, 81(4): 378-390 

Morley M., Molony C.M., Weber T.M., et al. (2004). Nature, 430: 

743-747 

Smyth G.K. (2005) Springer New York p.397-420. 

Spurlock M.E. and Gabler N.K. (2008). J. Nutr. 138:397-402. 

Tolppanen A.M., Pulkkinen L., Kolehmainen M., et al. (2007). 

Obesity, 15(5): 1082-8 

Tsuguhito O. (2013). Diabetes Metab J. 37(3): 165-172.  

Wang Z., Gerstein M., and Snyder M. (2009). Nat Rev Genet. 

10(1):57-63.  

Westra H-J., Peters M.J., Esko T., et al. (2013). Nat. Gen. 45-

1238-1243 


