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Cooperative stabilization of the SIR complex
provides robust epigenetic memory in a model
of SIR silencing in Saccharomyces cerevisiae
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1Centre for Models of Life; Niels Bohr Institute; University of Copenhagen; Copenhagen, Denmark; 2Department of Molecular and Cellular Biology; University of Adelaide;
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How alternative chromatin-based regulatory states can be made stable and heritable in order to provide robust
epigenetic memory is poorly understood. Here, we develop a stochastic model of the silencing system in
Saccharomyces cerevisiae that incorporates cooperative binding of the repressive SIR complex and antisilencing histone
modifications, in addition to positive feedback in Sir2 recruitment. The model was able to reproduce key features of SIR
regulation of an HM locus, including heritable bistability, dependence on the silencer elements, and sensitivity to SIR
dosage. We found that antisilencing methylation of H3K79 by Dot1 was not needed to generate these features, but
acted to reduce spreading of SIR binding, consistent with its proposed role in containment of silencing. In contrast,
cooperative inter-nucleosome interactions mediated by the SIR complex were critical for concentrating SIR binding
around the silencers in the absence of barriers, and for providing bistability in SIR binding. SIR-SIR interactions magnify
the cooperativity in the Sir2-histone deacetylation positive feedback reaction and complete a double-negative
feedback circuit involving antisilencing modifications. Thus, our modeling underscores the potential importance of
cooperative interactions between nucleosome-bound complexes both in the SIR system and in other chromatin-based
complexes in epigenetic regulation.

Introduction

Epigenetic gene regulation allows transient signals to create
long-lived gene expression states, enabling cells to retain a mem-
ory of past environments and to pass this memory to their
descendants. The best understood mechanism involves positive
feedback circuits among diffusible regulators.1-3 An alternative
class of mechanisms involves modifications to the DNA itself,
such as methylation of CpG,4,5 or of histone proteins intimately
associated with it.6-9 Such chromatin-based epigenetic memory is
less well understood but is believed to underlie a large proportion
of long-lived gene expression states, both in health and dis-
ease.10,11 Due to its cis-acting nature, chromatin-based epigenetic
memory has the unique property of allowing 2 identical DNAs
to remain in different expression states in the same cell, as seen in
X-chromosome inactivation12 or genomic imprinting.13

Epigenetic memory requires mechanisms that can generate
bistability (at least 2 alternative states that are stable over time)
and heritability (each state must be able to persist through DNA

replication and cell division). Alternative states of diffusible regu-
lators are inherited by the distribution of soluble cell components
to both daughter cells, while DNA methylation is inherited by
the distribution of one parental DNA strand to each daughter
cell. Inheritance of nucleosome modification states is possible
because parental nucleosomes are distributed to each daughter
chromosome.14,15 Achieving bistability is not trivial; it requires
positive feedback with cooperativity (more precisely, ultrasensi-
tivity)2 and both states must be stable enough to survive fluctua-
tions due to the noisy environment inside cells. In the case of
nucleosome-based epigenetic memory, positive feedback is
thought to be provided by a mechanism in which a histone post-
translational modification recruits the enzyme that creates the
same modification on nearby nucleosomes.6,7 Indeed, a number
of complexes involved in epigenetic regulation contain ‘reader’
and ‘writer’ modules for the same nucleosome modification.16-18

The Sir silencing system of Saccharomyces cerevisiae19-21 is the
best characterized model system for epigenetic regulation by
nucleosome modification. SIR silencing appears simpler than
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analogous systems in more complex eukaryotes and is most
clearly nucleosome-based, free of DNA methylation and RNAi,
which contribute to heritable bistability in other systems. The Sir
system prevents expression of a few kilobases of DNA at 2 loci,
HML and HMR, which encode alternative mating-type genes.
Repression is dependent on recruitment of the Sir2, Sir3, and
Sir4 proteins by proteins bound to silencer DNA elements
located on each side of these loci19. Most models of Sir silencing
center around a positive feedback loop in which deacetylation of
H4K16 by Sir2 creates high affinity nucleosomal binding sites
for the Sir2-Sir3-Sir4 complex (SIR), allowing it to bind across
the HM loci.20,21

The HM loci are stably silenced in wild-type strains, but
weakening of the silencers can produce bistable behavior in which
the locus alternates between active and inactive states, each of
which can persist for tens of generations, generating variegated
expression patterns.22 Under these conditions, one HM locus can
be active while the other is silenced,23 confirming that the epige-
netic state is encoded on the DNA. The Sir system also silences
genes close to telomeres and can generate variegated expression
of reporter genes near telomeres.24

We and others have developed mathematical models of the
SIR system.25-27 Mathematical approaches provide a rigorous
way to check that the proposed mechanisms produce the
observed behaviors, to identify critical and perhaps general fea-
tures of the system, and to suggest modifications and further tests
of existing models. Mathematical models necessarily make sim-
plifying assumptions but can nevertheless provide general
insights.28 For example, a common feature of these models is the
need for positive feedback that is non-local (that is, works beyond
neighbor nucleosomes) and is cooperative.7

Our most recent SIR model was able to reproduce the bistable
behavior of an idealized HM locus, its dependence on the
silencers, and the ability of simple barriers to inhibit spreading of
silencing modifications.26 However, the behavior of the model
was not robust, being very sensitive to small changes in the
parameters. It also employed a somewhat complicated recruit-
ment of Sir2 activity, and inhibition of spreading required special
properties for the DNA outside the HM locus, specifically, the
presence of multiple antisilencer elements.

Here, we developed a more realistic model of an HM locus by
explicitly including binding of the SIR complex, and by consider-
ing the multiple nucleosome modification states that arise from
the dimeric nature of the nucleosome and from the presence of
ubiquitous antisilencing nucleosome modification by Dot1.29

We find that simple interactions between SIR complexes bound
to separate nucleosomes aid bistability and can provide localiza-
tion of SIR around the silencers in the absence of barriers.

Results and Discussion

Modeling approach and rationale
Two-step deacetylation. Our previous model simplified the sys-

tem by defining only 2 relevant nucleosome modification states,
acetylated (active) and unacetylated (silenced), with a one-step

deacetylation-acetylation interconversion reaction.26 We now
incorporate the fact that the nucleosome has 2 copies of each his-
tone, giving 3 nucleosome types created by the acetylated-unace-
tylated state of H4K16 (Fig. 1). This makes the positive feedback
in the Sir2 deacetylation reaction a multistep process that can
potentially provide the cooperative positive feedback needed for
bistability,7 removing the need for an intrinsically cooperative
Sir2 enzyme.26

Dot1 methylation. In vitro studies indicate competition
between Dot1 methylation of H3K79 and Sir binding to nucleo-
somes. H3K79 methylation inhibits Sir3 binding to isolated
nucleosomes30 and also reduces binding of the Sir2-3-4 complex
on polynucleosomal templates.31 Nucleosome methylation by
Dot1 is also blocked by Sir3.30,32 This seems to be the extent of
the interaction, since there is no evidence that H3K79me inhibits
Sir2 deacetylation of the same nucleosome, and Dot1 itself does
not seem to compete with Sir binding, as overexpression of cata-
lytically inactive Dot1 does not inhibit silencing in vivo.33 Also,
Sir2 deacetylation does not seem to directly inhibit Dot1 action,
which is insensitive to the status of the H4 tail lysines.30 In our
model, H3K79me inhibits Sir binding and Sir binding inhibits
methylation of H3K79 (Fig. 1). No enzyme for demethylation
of H3K79 has been identified; therefore, loss of methylation
seems to occur through nucleosome or histone replacement dur-
ing DNA replication34 or exchange reactions.

Cooperative binding of the Sir complex. The Sir2, Sir3, and Sir4
proteins form a complex in solution35 that interacts with isolated
nucleosomes and polynucleosomes.16,36 However, since the pro-
tein-protein and protein-DNA contacts involved in assembling
the SIR-nucleosome complex are only partially understood, we
do not attempt to model SIR complex assembly in detail, but
make 2 assumptions about SIR binding: (1) A SIR complex binds
to a single nucleosome only if the nucleosome is fully deacety-
lated and demethylated (UU/uu; Fig. 1), a property that could
be achieved biochemically if SIR complex binding to each half-
nucleosome were highly cooperative and these modifications
strongly inhibit binding; (2) A SIR complex bound to one nucle-
osome can be stabilized by cooperative contacts with other SIR-
bound nucleosomes.

Such intra- and inter-nucleosomal contacts are similar to those
proposed for the HP1/SWI6 protein.37 Sir3 and Sir4 both have
nucleosome binding activity as well as interaction interfaces that
could potentially mediate such cooperative intra- and inter-
nucleosome contacts. Sir3 appears to be the primary histone
modification-dependent nucleosome binding component.16,38

Crystal structures of the Sir3 N-terminal BAH domain bound to
the nucleosome show interactions with the H4 N-terminal tail
(including H4K16) and the region including H3K79.39,40 Sir3
dimerizes via its C-terminal winged-helix (wH) domain, and loss
of the wH domain reduces Sir3 binding to nucleosome arrays in
vitro.36 This Sir3-Sir3 interaction is critical, since removal of the
wH domain abolishes silencing, and this defect can be restored
by a heterologous dimerization domain.36 Sir4 also interacts with
nucleosomes, though in a modification-independent manner in
vitro,16 and dimerizes via its C-terminal coiled-coil dimerization
domain.41 The Sir4 C-terminal domain also interacts with Sir3,
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most likely within the Sir3
AAA-like domain,42 poten-
tially bridging between Sir3
molecules.16 The Sir4-Sir3
interaction is critical for
silencing,35,42 but since this
interaction is needed to
recruit Sir2 to the nucleo-
some-bound complex, it is
not clear whether it also
forms important contacts
that stabilize Sir3 or Sir4
binding to nucleosomes. The
existence of SIR-mediated
intra-nucleosome contacts is
supported by electron micro-
scopic observations of fila-
mentation or clumping of
multi-nucleosome arrays by
SIR in vitro.16,38

In the model, inter-nucle-
osome contacts have the
effect of reducing the rate of
SIR unbinding from the
nucleosome, a feature we
term cooperative stabiliza-
tion. There are a number of
different ways to model this
feature, depending on the
higher order structures
allowed, which are currently
unknown. We thus model
cooperative stabilization sim-
ply, by allowing each SIR-
bound nucleosome a chance
to interact either with the
nearest SIR-bound nucleosome or silencer to its left (along the
DNA) as well as with the nearest SIR-bound nucleosome or
silencer to its right, essentially assuming 2 interaction interfaces
per SIR-bound nucleosome (Fig. 1). The probability of interac-
tion is assumed to be inversely proportional to the distance to
these nucleosomes. Thus, SIR will more often dissociate from a
nucleosome with no other SIR-bound nearby than it will if the
nucleosome is in a cluster of SIR-bound nucleosomes.

SIR binding to the silencers. In our previous model, the
silencers were positions that recruited Sir2.26 Here, we allow the
silencers to also serve as nucleation points for SIR complex for-
mation, consistent with their known mode of action.43,44 Effec-
tively, silencers act in the same way as nucleosomes, except that
they can bind SIR more strongly than nucleosomes (by a reduced
SIR off-rate) and, since silencer proteins are not histones, we
assume they are not subject to inhibitory histone modifications.
SIR dissociation from a silencer, as from nucleosomes, is inhib-
ited by SIR-mediated interactions with other SIR-bound nucleo-
somes or the other SIR-bound silencer. A SIR-bound silencer has
the same Sir2 activity as a SIR-bound nucleosome.

SIR dosage and spreading. The current model does not invoke
any differences between the DNA inside or outside the HM
locus. The only distinct DNA elements available for containing
SIR spreading are the silencers themselves. The model also takes
some account of the limiting abundance of Sir3 protein for
silencing.19,45 With 1,400 Sir3 proteins per haploid cell,46 there
is only enough for »20 Sir3 dimers for each of the 34 Sir3
silenced regions (32 telomeres C 2 HM loci). In our standard
model, we make a larger pool of 50 SIR complexes available for
binding to the HM locus, reflecting some ability for the locus to
compete SIR away from telomeres.

Simulations
The system comprises a string of L D 300 nucleosomes,

equivalent to a genomic region of »60 kb. Each nucleosome can
be in one of 10 different states (Fig. 1). Nine states are generated
by alternative acetylation states at the 2 H4K16 residues of each
nucleosome (AA, AU, UU), combined with alternative methyla-
tion states at the 2 H3K79 residues of each nucleosome (mm,
mu, uu). All these 9 states are assumed to be associated with

Figure 1. Model for nucleosome states and their interconversion in Sir silencing. (A) Nine modification states are
produced by acetylation of both, one or neither of the 2 H4K16 positions per nucleosome, combined with methyla-
tion of neither, one or both H3K79 positions. The rate of the methylation reaction is determined by the parameter
dot1; demethylation is assumed to be absent. The rate of acetylation is determined by the parameter sas2. Some
deacetylation occurs constitutively (parameter hdac). None of these reactions are affected by modification state.
Only unmodified nucleosomes may bind the SIR complex (Sir2-Sir3-Sir4), giving the tenth nucleosome state (S),
with the rate of binding dependent on the free SIR concentration. A SIR-bound nucleosome recruits Sir2 that can
deacetylate any other nucleosome in the system with a probability that is inversely proportional to the linear dis-
tance (number of nucleosome steps) between them. SIR-bound nucleosomes are resistant to methylation or acety-
lation. A SIR complex bound to one nucleosome may interact with 0, 1, or 2 other S nucleosomes in a distance-
dependent manner, with the probability of dissociation reducing with increasing number of contacts (see text).
Thus, S nucleosomes tend to inhibit the dissociation of SIR complexes from other S nucleosomes (red barred
arrow). Non-S nucleosomes are subject to an exchange reaction (parameter exch), where they are replaced with a
‘new’ AA/uu nucleosome. During DNA replication each nucleosome in the system is, with a 50% probability,
replaced with an AA/uu nucleosome. Any S nucleosome that is not replaced is converted to a UU/uu (unmodified)
nucleosome, i.e., SIR complexes are removed by replication. (B) The HM genomic region in the model consists of
300 positions: 298 nucleosomes, and 2 silencers located 20 nucleosomes apart. Silencers are effectively perma-
nently unmodified nucleosomes and can thus always bind SIR complexes. However, the probability of SIR dissocia-
tion from silencers (determined by the siloff parameter) can be lower than from nucleosomes. SIR-bound silencers
act like S nucleosomes in their SIR-SIR interactions. SIR is removed from the silencers during replication but
silencers are not subject to nucleosome exchange.
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transcriptional activity. The tenth nucleosome type (S) is a UU/
uu nucleosome with the SIR complex bound; this is assumed to
be associated with transcriptional silencing.

Two ‘nucleosome’ positions are used to represent the silencers
and are treated specially. These are located at positions 139 and
160 (i.e., with 20 nucleosomes between), reflecting the spacing
of the E and I silencers at HML.47 Silencers have only 2 states,
SIR bound (S) or unbound (U).

Between DNA replications, nucleosomes and silencers are
interconverted between the different states by 7 processes
depending, in some cases, on the states of other nucleosomes in
the system. The simulation uses a Gillespie algorithm, with each
process selected randomly with a rate defined by a specific
parameter:

� sas2 - Histone acetylation. A random nucleosome is chosen. If
it is in the UU or UA state, the nucleosome is moved one step
toward the fully acetylated state, AA (i.e., UU!AU or
AU!AA). The methylation status is not changed. We assume
that SIR-bound nucleosomes are not subject to acetylation, as
the close contact between Sir3 and the H4 tail in the Sir3-
BAH-nucleosome complex39,40 seems likely to make the tail
inaccessible.

� dot – Histone methylation. A random nucleosome is chosen.
If it is in the uu or um state, the nucleosome is moved one step
toward the fully methylated state, mm (i.e., uu!mu or
mu!mm). The acetylation status is not changed.

� hdac – Histone deacetylation. A random nucleosome is cho-
sen. If it is in the AA or AU state, it is moved one step toward
the fully deacetylated state, UU (i.e., AA!AU or AU!UU).
The methylation status is not changed.

� sir2 – Sir2-mediated histone deacetylation. A random posi-
tion is chosen. If it is in the S state (whether a nucleosome or
the silencer), a second position is chosen a random distance
away from the first. To reflect the effect of DNA separation on
contact efficiency,48 this distance step x is chosen with a proba-
bility 1/x normalized by the sum 1/1 C 1/2 C . . . C 1/300.
The second position is selected to be x steps to the left or right
(with equal probability) of the first position. If the second
position is within the system (1,300) and is in the AA or AU
state, it is moved one step toward the fully deacetylated state,
UU (i.e., AA!AU or AU!UU). The methylation status is
not changed.

� exch – Nucleosome exchange. A random nucleosome is cho-
sen. If it is not in the S state, it is converted to the AA/uu state.

� SIRon – SIR binding. (totalSIR). A random position is chosen.
If it is in the UU/uu state or is a silencer in the U state, it is
converted to the S state with a probability freeSIR/totalSIR,
where freeSIR is totalSIR minus the number of S nucleosomes
or silencers. That is, there is a pool of totalSIR complexes avail-
able for binding to this genomic region.

� SIRoff – SIR dissociation. (SIRcoop, siloff). A random position
is chosen.

� If the position is a nucleosome in the S state, the disso-
ciation step is attempted. SIR dissociation occurs only
if the nucleosome is not engaged with another S

nucleosome or S silencer, which we determine by an
engagement test, as follows. An S nucleosome is
assumed to have 2 interfaces able to contact other S
nucleosomes. We want to allow long-range (beyond
nearest-neighbor) interactions, but this generates a
very large number of potential ways in which multiple
S nucleosomes could engage with each other in 3
dimensions, and the chromatin folding rules for such
structures are unknown. We thus make a computa-
tionally feasible estimate of the probability of an S
nucleosome being unengaged, by determining the
probability that the nucleosome is both free from
binding to the nearest S nucleosome or S silencer to
its left and free from binding to similar sites to its
right. The relative probability of it being bound on
the left side is l D SIRcoop/x_left, where SIRcoop is a
cooperativity factor and x_left is the distance to the
nearest S nucleosome or S silencer on the left. The rel-
ative probability of it being bound on the right side is
r D SIRcoop/x_right. The probability of being bound
to neither is calculated as (1Ch)/(1ClCrCl.rCh),
where h D SIRcoop/(x_left C x_right) is the relative
probability that the 2 flanking S positions are engaged
to each other but not the central position. (That is, we
compare the 2 states where the S nucleosome is
unbound to all 5 possible engagement states of the 3 S
nucleosomes). This calculation produces a roughly
proportional decrease in the probability of an S nucle-
osome being unengaged as the number of S nucleo-
somes in the system increases. Dissociation results in
the S state nucleosome being converted to the UU/uu
state.

� If the position chosen is a silencer, then the SIR disso-
ciation step is aborted with a probability 1–siloff.
Thus, when siloff < 1, the silencer binds SIR more
strongly than a nucleosome. Dissociation from the
silencer is subject to the engagement test above, and
results in the S state silencer being converted to the U
state

Each of the reaction rates is scaled by the number of nucleo-
somes in the system and the generation time. Thus, hdac D 1
means that on average 1 deacetylation attempt is made per
nucleosome per generation, SIRoff D 3,000 means that on aver-
age 3,000 SIR dissociation attempts are made per nucleosome
per generation. Note that the number of completed reactions is
substantially fewer than the number of attempts because the
chosen nucleosomes are often unsuitable for the chosen
reaction.

Once a generation time is reached, DNA replication is simu-
lated by converting the nucleosome string to that which would
form on one of the daughter DNA strands, according to random
distribution of parental nucleosomes14,15 and filling of gaps with
acetylated, unmethylated nucleosomes, as new histones are rap-
idly acetylated in S. cerevisiae.49,50 Effectively, each nucleosome
has a 1/2 probability to be replaced by an AA/uu nucleosome. In
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the standard model, we remove all SIR
complexes from parental nucleosomes and
silencers.

SIR binding can be contained near the
silencers without
the need for barriers

The model was able to reproduce a sta-
ble, replication-robust high SIR occupancy
of the HM region in the presence of active
silencers, the SIR proteins, H4 acetylation
and H3K79 methylation (Fig. 2A). SIR
binding was dynamic, generally extending
over a »10 kb region that changed position
over time but retained reasonably dense SIR
binding between the silencers.

No specific barriers were needed to
restrict SIR to the HM region. Essentially
the limited availability of SIR proteins and
the strong SIR-SIR interactions, both direct
and via histone modifications, combine to
create a patch of SIR binding that prefers to
overlap the silencers.

Specific barrier elements, which are
not included in our model, are likely to
constrain spreading of silencing-associated
features at real HM loci.51 However, con-
siderable spreading of these features is
evident in ChIP-chip data deposited
in the SGD database,52 showing a
»7–10 kb region of elevated Sir2 occu-
pancy at HMR and HML,53 a »7 kb
region of low H4ac at HMR,54 and a
»6 kb region of low H3K79me at
HMR.55 ChIP-seq mapping of H4K16ac
also showed low acetylation extending
1–3 kb beyond the silencers.56

The model also suggests that the regions
flanking HM loci could experience substan-
tial fluctuations in SIR occupation, with
high and low SIR states stable for a few generations. This is
consistent with observations that reporter genes inserted adja-
cent to HM silencers can show the variegated expression result-
ing from heritable bistability.57 Spreading of silencing-
associated features and variegated reporter expression is also
seen for SIR silencing at telomeres.24

By weakening the activity of the silencers in the model it was
possible to make the system bistable, with stable silenced and
active states persisting for »20 generations (Fig. 2B). This is con-
sistent with experimental observations for sir1 and other mutants
that decrease SIR complex recruitment to the silencers.22,23,58,59

The model predicts that genes lying adjacent to the HM region
would also be silenced or active in a bistable fashion when the
silencers are weakened.

The model also reproduces the experimental observation that
association of SIR with the silencers is more efficient under

conditions when the surrounding chromatin is silenced43

(Fig. 2B), supporting the idea that recruitment of the SIR com-
plex to silencers is stabilized by interactions with deacetylated
nucleosomes.20

Importantly, high level SIR binding and the H4K16 hypoace-
tylation and H3K79 hypomethylation in the model are
completely dependent on the silencers; silencer inactivation
results in a uniform high level of H4 acetylation and H3K79
methylation across the whole region (Fig 2C).

The effect of SIR dosage
Alterations in the levels of SIR proteins are known to affect

the degree of silencing at the HM loci and telomeres.19,45 Increas-
ing Sir3 levels leads to a greater strength and extent of Sir3 ChIP
signals at telomeres.60,61

Figure 2. Containment of silencing and its control by the silencers. (A) A space-time plot, showing
the evolution of the 300 position nucleosome string (horizontal) over 100 generations (vertical)
with the standard model. The silencer positions are 139 and 160. Nucleosome acetylation and SIR
binding status at the end of each generation (before DNA replication) are displayed: AA/** – blue;
AU/** - cyan; UU/** or U silencer– orange; S nucleosome or silencer – red. * indicates that the
acetylation/methylation status is ignored. Methylated nucleosomes are marked with a black dot.
The standard parameter values are: sas2 D 100, dot D 2, hdac D 1, sir2 D 500 , exch D 1, SIRon D
100, totalSIRD 50, SIRoff D 3,000, SIRcoop D 500, siloff D 0.2. (B) Weakening the silencer produces
bistable behavior. Parameters were as for B, except that the silencers were weakened by making
the strength of SIR binding equal to that of a UU/uu nucleosome by setting siloff D 1 (the
silencers remained immune to acetylation or deacetylation). (C) SIR binding is silencer dependent.
At generation 50, the silencers were turned off by making positions 139 and 160 act as simple
nucleosomes (having normal SIR binding and being subject to histone modifications).
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The model reproduces this sensitivity to SIR dosage (Fig. 3).
Reducing the amount of available SIR complex by 4-fold resulted
in an almost complete loss of SIR occupation of the HM locus,
with remaining SIR binding closely associated with the silencers
(Fig. 3A). Halving the SIR availability produced moderate bist-
ability of SIR occupation and H4 deacetylation within the HM
locus (Fig. 3B). Doubling available SIR levels increased the
extent of the SIR-bound region, while maintaining the mobility
of this region. A strong effect of available SIR concentration on
containment of silencing is also seen in other models.25-27

The role of antisilencing modification by Dot1
Deciphering the in vivo role of Dot1 methylation of H3K79

in SIR silencing has been complicated by artifactual effects of
Dot1 removal on a widely used telomeric silencing reporter con-
struct.62 However, most experiments not involving this reporter
are consistent with mild effects of Dot1 removal on silencing.

URA3 and GFP reporters placed within
HML or HMR have shown either slightly
increased expression63 or no change in
expression33,64 in dot1D strains. Expression
of ADE2 or GFP reporters placed adjacent
to HMR increased slightly in dot1D
strains.57 The lack of Dot1 did not derepress
endogenous MAT genes,55,64 and expression
of natural telomeric genes was not strongly
affected.55,62

Complete removal of Dot1 activity in the
model caused a moderate increase in spread-
ing of SIR binding, as shown by time-aver-
aged profiles (Fig. 4A, B) and space-time
plots (Fig. 4C, D), in accordance with the
proposal that methylation of H3K79 by
Dot1 helps restrict the spreading of silenced
chromatin.29 There was a consequent
slightly lower overall density of SIR occupa-
tion in and adjacent to the HM locus, and a
slightly higher density of SIR occupation at
sites further from the silencers. The lack of
large changes in SIR density upon removal
of Dot1 methylation is consistent with the
observed mild effects of the dot1D mutation.

We also used the model to simulate
increased Dot1 activity. Overexpression of
Dot1 restored growth on uracil-deficient
media when URA3 genes were inserted at
HML or HMR,63 and inhibited establish-
ment of silencing of a GFP reporter at
HMR.33 We found that very high Dot1
activity could eliminate SIR binding in the
model (not shown). Interestingly, a moder-
ate increase in Dot1 activity produced weak
bistability (Fig. 4E), with stabilities of low-
SIR and high-SIR states possibly sufficient
to be detected by single-cell assays or even
colony variegation assays.

Dot1 methylation sharpens the contrast between SIR-bound
and SIR-unbound regions because it injects additional positive
feedback into the system. As pointed out by Ng et al.,61 Dot1
provides a double-negative feedback loop in which methylation
of H3K79 inhibits SIR binding, and SIR binding inhibits meth-
ylation of H3K79. This results in methylation at one nucleosome
making methylation more likely at other nucleosomes. Coopera-
tive stabilization due to SIR-SIR inter-nucleosomal contacts pro-
vides a more direct way to complete the Dot1 feedback loop,
because reduced SIR binding at one nucleosome due to
H3K79me can directly destabilize SIR binding to other nucleo-
somes, increasing their availability for methylation. The same is
true for any modification that both inhibits SIR binding and is
inhibited by SIR binding.

It has also been proposed that H3K79me is involved in an
additional positive feedback loop, where H3K79me stimulates
transcriptional activity (through its inhibition of SIR binding)

Figure 3. Effect of Sir dosage on silencing. The totalSIR parameter was varied from 12 (A), 25 (B),
50 (C, the standard value), and 100 (D).
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and transcriptional activity in turn stimu-
lates H3K79 methylation via Dot1 associa-
tion with transcription.65 We explored this
Dot1 recruitment feedback mechanism by
making Dot1 action dependent on pre-
existing H3K79me in the simulations.
That is, when the dot action is chosen, 2
adjacent nucleosomes are chosen at ran-
dom and if both of these are non-S (active)
then one of the neighbors (to left or right)
is methylated one step toward the mm
state. The effect of this implementation is
that a patch of non-S nucleosomes, where
transcriptional activity should be higher,
has a chance to maintain itself and even
spread. Addition of this Dot1 feedback
loop sharpened the contrast between the
HM locus and outside regions and signifi-
cantly improved the stability of the SIR-
ON and SIR-OFF states when the silencers
were weakened (Fig. 4F, compare with
Fig. 2B). Thus, in our model, this addi-
tional positive feedback makes the system
more switch-like but is not essential. In
contrast, a Dot1 recruitment mechanism
was necessary for bistability in the SIR
model of Mukhopadhyay and Sengupta.27

The contribution of SIR cooperative
stability to silencing and its containment

Cooperation between SIR complexes
has a strong impact on the behavior of the
HM locus in our model, contributing
strongly to stable SIR binding and localiza-
tion. Removing cooperative stabilization
without compensation abolished SIR bind-
ing. SIR binding could be restored in the
model by increasing the strength of SIR
binding to individual nucleosomes. How-
ever, SIR binding became very dispersed,
with SIR density between the silencers
only slightly higher than in the outside
region (Fig. 5A). In the absence of cooper-
ative stability, we were unable to find any
parameters that gave a high contrast
between SIR binding within and outside
the HM locus.

Cooperative stabilization provides posi-
tive feedback in SIR occupation, which sta-
bilizes both low and high densities of SIR
binding, allowing an increased contrast
between the HM locus and the outside
region. A direct positive feedback loop
results because the presence of a SIR com-
plex bound to one nucleosome makes it
more likely that a SIR complex will remain

Figure 4. Effect of Dot1 methylation on silencing. (A) Histograms of the time-averaged fraction of
the status of each position over 200 generations for the standard model (dot D 2). AA/**- blue
bars; AU/** - cyan dots; UU/** - yellow dots; UU/uu – orange dots; **/m* - black line; S - red bars. *
indicates that the acetylation/methylation status is ignored. (B) As (A) except dot D 0 (dot1D). AA -
blue bars; AU - cyan dots; UU - orange dots; S - red bars. C-E. Space-time plot (as Fig. 2A) with (C)
dot D 0 (dot1D), (D) dot D 2 (standard), and (E) dot D 4. F. A model that includes recruitment of
Dot1 by H3K79me nucleosomes can increase bistability. dot D 10, sas2D 50, siloff D 0.8.
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bound to another nucleosome in the vicinity. Indirect positive
feedback loops also result because cooperative stabilization con-
nects the effects of SIR-favoring or SIR-inhibiting histone modi-
fications on one nucleosome to increased probabilities of those
modifications on nearby nucleosomes.

Our standard scheme for cooperative stability allows long-
range SIR-stabilizing contacts between SIR-bound nucleosomes,
which is consistent with the 3-dimensional clumping of SIR-
complexed nucleosome arrays in vitro.16 In the model, the proba-
bility of contact decreases with increasing separation of the
bound nucleosomes along the DNA, consistent with in vivo
measurements.48 This decreasing cooperativity with distance
allows different regions of the system in the model to behave
somewhat independently, enabling a stable high-SIR state in the
HM locus to coexist with a low-SIR state outside.

We also tested the effect of a more restricted cooperativity
scheme, where a SIR-nucleosome complex is stabilized only if
one or other of its adjacent nucleosomes is also SIR-bound. We
found that dense SIR binding could be reasonably well confined
over the HM locus with such local inter-nucleosomal SIR-SIR
interactions (Fig. 5B), and such a system also displayed bistable

behavior when the silencer was weakened
(Fig. 5C). Thus, cooperative stabilization
can be effective even if inter-nucleosomal
SIR-SIR interactions are restricted to adja-
cent SIR-bound nucleosomes. In this situa-
tion, the long-range positive feedback
requirement for a bistable system7,26 is pro-
vided by recruited Sir2 acting to deacetylate
distant nucleosomes.

Conclusions

Key system behaviors of a SIR-silenced
HM locus can be reproduced by a discrete
stochastic model that incorporates: (1) a
2-step SIR-mediated deacetylation reaction
capable of acting beyond adjacent nucleo-
somes; (2) cooperative binding of the SIR
complex, also with interactions beyond adja-
cent nucleosomes; (3) ubiquitous modifica-
tions that inhibit, and are inhibited by, SIR
binding; (4) limited availability of the SIR
complex; and (5) silencer elements that act
solely by recruiting the SIR complex. The
model displayed localization of SIR binding
around the HM region and a lack of binding
to non-silenced regions, without invoking
barrier elements or different properties of
DNA inside and outside the locus. The sys-
tem was sensitive to SIR dosage and rela-
tively insensitive to loss of Dot1
methylation. Critically, the model repro-
duced the dependence on the silencer ele-
ments, with weakening of the silencers

producing stable and heritable SIR-bound and SIR-free states.
The model predicts that other perturbations, such as reduced
SIR dosage or increased Dot1 activity, can expose the bistability
inherent in the system. This could be tested by experiments in
which the expression of Sir or Dot1 genes were modulated by
controlled induction, for example using the TET system.66

Mukhopadhyay and Sengupta27 incorporated similar processes
in a model of SIR binding at telomeres, and came to similar con-
clusions, although the stability of alternative states through DNA
replication was not examined in their model.

We have made the assumption that SIR binding is completely
inhibited by H4K16 acetylation or H3K79 methylation. How-
ever, it is unlikely that this inhibition is absolute. SIR complexes
retain some ability to bind enzymatically modified nucleosomes
in vitro16,31,67 (though the modifications may have been incom-
plete in these experiments). Any reduction in the SIR binding
differential due to histone modifications that are removed by or
inhibited by SIR, reduces positive feedback in the system and
hinders bistability, especially if the bound SIR is active in deace-
tylation. Further work is needed to explore the binding differen-
tial required for proper system behavior.

Figure 5. Cooperative stabilization helps localize SIR. (A) Loss of localized SIR binding in the
absence of SIR-SIR inter-nucleosome interactions. SIRcoop D 0, SIRon D 100, SIRoff D10, siloffD
0.2. Figure elements as in Figure 2B. (B) Localization of SIR binding when SIR-SIR cooperativity is
local, that is, limited to adjacent nucleosomes. SIRoff D 2,000, SIRcoop D 3,000, Sir2 D 800,
sas2 D 90, siloff D 0.2 (strong silencer). (C) Local SIR-SIR cooperativity can give bistability when
the silencers are weakened. As B, except siloff D 1.
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Simple cooperative interactions between SIR complexes
bound to different nucleosomes are critical in our model for
localization of SIR binding to the HM locus and for bistable SIR
binding. Although other researchers have treated SIR binding in
their models,25,27 an explicit protein-bound state was not
included in our previous models. We found that addition of this
state made it easier to find parameter values capable of generating
heritable bistability, often the most stringent requirement for
such models. SIR-SIR interactions provide positive feedback
interactions that link the state transition probabilities of a nucleo-
some to the state of other nucleosomes in the system. This posi-
tive feedback provides for strong contrast between SIR-bound
and SIR-unbound states. The decay of interaction probability
with distance, coupled with the same distance dependence in
Sir2 deacetylation, promotes the formation of clusters of SIR-
bound and SIR-unbound nucleosomes that can stably coexist in
reasonable proximity.

Cooperative interactions between SIR-bound nucleosomes
have long been invoked in SIR spreading.44 ‘Lateral interactions’
between bound SIR complexes were proposed to explain the
decreased occupation of the silencers by SIR under conditions
where SIR binding to nearby nucleosomes is reduced,20,43 behav-
ior that is also reproduced in the model. However, definitive evi-
dence for cooperativity between SIR-bound nucleosomes has not
been reported. Though we favor a model where these cooperative
interactions can occur beyond nearest neighbors, we show that

reasonable SIR localization, as well as heritable bistability, can be
obtained when SIR-SIR interactions are limited to adjacent
nucleosomes, and Sir2 deacetylation provides the sole long-range
reaction in the system. Nucleosome-interacting protein com-
plexes with the potential for such cooperative interactions are
involved in other histone modification-based epigenetic memory
systems, such as the HP1/SWI6 and CLRC complexes in Schizo-
saccharomyces pombe18,37,68 and the PRC1, PRC2, and TrxG
complexes in Drosophila.17 Better understanding of the intra-
and inter-nucleosome interactions mediated by these complexes
will be critical for understanding how they confer epigenetic
memory.
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