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In the complex action theory whose path runs over not only past but also future, we study a
normalized matrix element of an operator Ô defined in terms of the future state at the latest time
TB and the past state at the earliest time TA with a proper inner product that makes normal a
given Hamiltonian that is non-normal at first. We present a theorem that states that, provided
that the operator Ô is Q-Hermitian, i.e., Hermitian with regard to the proper inner product, the
normalized matrix element becomes real and time-develops under a Q-Hermitian Hamiltonian
for the past and future states selected such that the absolute value of the transition amplitude
from the past state to the future state is maximized. Furthermore, we give a possible procedure
to formulate the Q-Hermitian Hamiltonian in terms of Q-Hermitian coordinate and momentum
operators, and construct a conserved probability current density.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subject Index A60, B30

1. Introduction The complex action theory (CAT) is a trial to extend quantum theories so that
the action is complex at a fundamental level, but effectively looks real. So far, the CAT has been
investigated with the expectation that the imaginary part of the action would give some falsifiable pre-
dictions [1–4], and various interesting suggestions have been made for the Higgs mass [5], quantum
mechanical philosophy [6–8], some fine-tuning problems [9,10], black holes [11], de Broglie–Bohm
particles, and a cut-off in loop diagrams [12]. In the CAT, the Hamiltonian Ĥ is generically non-
normal, so it is not contained in the class of PT-symmetric non-Hermitian Hamiltonians that have
been intensively studied [13–16]. In Ref. [17], introducing what we call the proper inner product
IQ so that the eigenstates of the Hamiltonian become orthogonal to each other with respect to it,
we presented a mechanism to effectively obtain a Hamiltonian that is Q-Hermitian, i.e., Hermitian
with respect to the proper inner product, after a long time development. In Ref. [18], we proposed a
complex coordinate and momentum formalism by explicitly constructing non-Hermitian operators
of complex coordinate q and momentum p and their eigenstates, so that we can deal with complex
q and p properly. In general, the CAT could be classified into two theories: one is the future-not-
included theory, i.e., the theory including only a past time as an integration interval of time, and
the other one is the future-included theory [1], which includes not only a past time but also a future
time. Using the complex coordinate and momentum formalism [18] in the Feynman path integral, we
found that the momentum relation is given by the usual expression p = mq̇, where m is a complex
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mass, in the future-included theory [19], and another expression p =
(

m R + m2
I

m R

)
q̇, where m R and

m I are the real and imaginary parts of m, respectively, in the future-not-included theory [20]. The
future-included theory is described by using the future state |B(TB)〉 at the final time TB and the
past state |A(TA)〉 at the initial time TA. In Refs. [21,22] we studied the normalized matrix element1〈Ô〉B A ≡ 〈B(t)|Ô|A(t)〉

〈B(t)|A(t)〉 , where t is an arbitrary time (TA ≤ t ≤ TB), in the future-included theory, and

found that, if we regard
〈Ô〉B A

as an expectation value in the future-included theory, then we obtain the
Heisenberg equation, Ehrenfest’s theorem, and a conserved probability current density. This suggests
that

〈Ô〉B A
is a strong candidate for an expectation value in the future-included theory.

In this letter we study in the future-included CAT a slightly modified quantity 〈Ô〉B A
Q ≡

〈B(t)|QÔ|A(t)〉
〈B(t)|Q A(t)〉 , where 〈B(t)|Q ≡ 〈B(t)|Q, and Q is a Hermitian operator2 that is used to define the

proper inner product IQ . The choice of
〈Ô〉B A

Q or
〈Ô〉B A

is only a matter of notation as to what the
state symbol 〈B(t)| shall precisely mean. On the other hand, the choice of the inner product used in
the normalization of the initial and final states |A(TA)〉 and 〈B(TB)| is not just a matter of notation,
once we have chosen

〈Ô〉B A
Q as the expression of the candidate for our expectation value. That is to

say, according to the choice of the inner product used in the normalization of the initial and final
states, two slightly different versions could be defined. The normalization defined with the usual
inner product I has the true meaning of normalization, of course, but includes unphysical transitions
between different eigenstates with different eigenvalues of the Hamiltonian Ĥ . The normalization
defined with the proper inner product IQ , which we call Q-normalization, excludes such unphysical
transitions, but does not have the original meaning of normalization. Thus, each choice seems to have
both advantages and disadvantages, so we are interested in the study of both versions. However, let us
admit that, in the version with the usually normalized initial and final states, it is not easy to evaluate〈Ô〉B A

Q clearly, because we cannot exhaustively make use of the orthogonality of the eigenstates of

the Hamiltonian Ĥ . Therefore, we postpone the study of this version to the future, and concentrate
in this letter on the analysis of the version with the Q-normalized initial and final states, which is
much easier to study than the other version.

Assuming that a given Hamiltonian Ĥ is non-normal but diagonalizable, and that the imaginary
parts of the eigenvalues of Ĥ are bounded from above, we present a theorem that claims that

〈Ô〉B A
Q

becomes real and time-develops under a Q-Hermitian Hamiltonian for any Q-Hermitian operator Ô,
provided that |B(t)〉 and |A(t)〉 are the time-developed states maximizing the absolute value of the
transition amplitude |〈B(t)|Q A(t)〉|. Such states would represent an approximation to |〈B(t)|Q A(t)〉|
in the situation that |B(TB)〉 and |A(TA)〉 were randomly given. In fact, in the large T ≡ TB − TA

case, only terms associated with the largest imaginary parts of the eigenvalues of the Hamiltonian
would dominate, and even with random initial and final states the dominant term would give the
biggest value. We call this thinking the maximization principle. We shall prove this theorem by
finding that

〈Ô〉B A
Q for the states maximizing |〈B(t)|Q A(t)〉| becomes an expression similar to an

expectation value defined with IQ in the future-not-included theory. Indeed, it is very important to
obtain a real expectation value and a Hermitian Hamiltonian in the CAT so that it can survive as

1 In the real action theory (RAT), the normalized matrix element
〈Ô〉B A

is called the weak value [23], and
has been intensively studied. For details, see Ref. [24] and references therein.

2 In the special case of the Hamiltonian Ĥ being Hermitian, Q is just a unit operator, so
〈Ô〉B A

Q corresponds

to
〈Ô〉B A

.

2/9

 at D
anm

arks N
aturO

G
 on January 26, 2016

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 

http://ptep.oxfordjournals.org/


PTEP 2015, 051B01 K. Nagao and H. B. Nielsen

a possible true fundamental quantum theory. The maximization principle is regarded as a method
of obtaining not only a real expectation value but also a Q-Hermitian Hamiltonian. Furthermore,
assuming that the non-normal Hamiltonian given at first is written in terms of the Hermitian coordi-
nate and momentum operators q̂ and p̂, we give a possible procedure to formulate the Q-Hermitian
Hamiltonian in terms of Q-Hermitian coordinate and momentum operators q̂Q and p̂Q . We also
provide a Q-Hermitian probability density operator and construct a conserved probability current
density.

2. Proper inner product and future-included complex action theory We consider a general
non-normal diagonalizable Hamiltonian Ĥ , i.e.,

[
Ĥ , Ĥ†

] �= 0, for a general quantum mechanical
system that could be the whole world, and review a proper inner product for Ĥ that makes Ĥ normal
with respect to it by following Refs. [17,18]. We define the eigenstates |λi 〉(i = 1, 2, . . .) of Ĥ such
that

Ĥ |λi 〉 = λi |λi 〉, (1)

where λi (i = 1, 2, . . .) are the eigenvalues of Ĥ , and introduce the diagonalizing operator
P = (|λ1〉, |λ2〉, . . .), so that Ĥ is diagonalized as Ĥ = P D P−1, where D is given by
diag(λ1, λ2, . . .). Let us consider a transition from an eigenstate |λi 〉 to another |λ j 〉 (i �= j) fast
in time �t . Since |λi 〉 are not orthogonal to each other in the usual inner product I , I (|λi 〉, |λ j 〉) ≡
〈λi |λ j 〉 �= δi j , the transition can be measured, i.e., |I (|λ j 〉, exp

(
− i

�
Ĥ�t

)
|λi 〉)|2 �= 0, though Ĥ

cannot bring the system from |λi 〉 to |λ j 〉 (i �= j). Such an unphysical transition from one eigenstate
to another with a different eigenvalue should be prohibited in a reasonable theory. In order to have
reasonable probabilistic results, we introduce a proper inner product [17,18]3 for arbitrary kets |u〉
and |v〉 as

IQ(|u〉, |v〉) ≡ 〈u|Qv〉 ≡ 〈u|Q|v〉, (2)

where Q is a Hermitian operator chosen as Q = (P†)−1 P−1, so that |λi 〉 become orthogonal to each
other with regard to IQ :

〈λi |Qλ j 〉 = δi j . (3)

This implies the orthogonality relation
∑

i |λi 〉〈λi |Q = 1. In the special case of the Hamiltonian Ĥ
being Hermitian, Q would be the unit operator. We introduce the “Q-Hermitian” conjugate †Q of an
operator A by 〈ψ2|Q A|ψ1〉∗ ≡ 〈ψ1|Q A†Q |ψ2〉, so

A†Q ≡ Q−1 A† Q. (4)

If A obeys A†Q = A, A is Q-Hermitian. We also define †Q for kets and bras as |λ〉†Q ≡ 〈λ|Q and(〈λ|Q
)†Q ≡ |λ〉. In addition, P−1 =

( 〈λ1|Q
〈λ2|Q

...

)
satisfies P−1 Ĥ P = D and P−1 Ĥ†Q

P = D†, so Ĥ is

“Q-normal”,
[
Ĥ , Ĥ†Q ] = P[D, D†]P−1 = 0. Thus the inner product IQ makes Ĥ Q-normal. We

note that Ĥ can be decomposed as Ĥ = ĤQh + ĤQa , where ĤQh = Ĥ+Ĥ†Q

2 and ĤQa = Ĥ−Ĥ†Q

2
are Q-Hermitian and anti-Q-Hermitian parts of Ĥ , respectively.

3 Similar inner products are also studied in Refs. [15,16,25].
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In Refs. [1,21,22] the future-included theory is described by using the future state |B(TB)〉 at the
final time TB and the past state |A(TA)〉 at the initial time TA, where |A(TA)〉 and |B(TB)〉 time-
develop as follows:

i�
d

dt
|A(t)〉 = Ĥ |A(t)〉, (5)

−i�
d

dt
〈B(t)| = 〈B(t)|Ĥ , (6)

and the “normalized” matrix element
〈Ô〉B A ≡ 〈B(t)|Ô|A(t)〉

〈B(t)|A(t)〉 is studied. The quantity
〈Ô〉B A

is called

the weak value [23,24] in the real action theory (RAT). In Refs. [21,22] we investigated
〈Ô〉B A

, and

found that, if we regard
〈Ô〉B A

as an expectation value in the future-included theory, then we obtain
the Heisenberg equation, Ehrenfest’s theorem, and a conserved probability current density. Thus〈Ô〉B A

seems to play the role of an expectation value in the future-included theory.
In this letter, we adopt the proper inner product IQ for all quantities, and hence slightly modify

the final state 〈B(TB)| as 〈B(TB)| → 〈B(TB)|Q so that the Hermitian operator Q pops out and the
usual inner product I is replaced with IQ . Our new final state 〈B(TB)| time-develops according not
to Eq. (6) but to

− i�
d

dt
〈B(t)|Q = 〈B(t)|Q Ĥ ⇐⇒ i�

d

dt
|B(t)〉 = Ĥ†Q |B(t)〉. (7)

Thus the normalized matrix element
〈Ô〉B A

is modified into the following expression:

〈Ô〉B A
Q ≡

〈
B(t)

∣∣
QÔ

∣∣A(t)〉〈
B(t)

∣∣
Q A(t)

〉 , (8)

where IQ is used for both the denominator and numerator. As far as the construction of
〈Ô〉B A

Q is
concerned, the shift between 〈B(t)| and 〈B(t)|Q is just a change of notation, but, when it comes to
our maximization principle, we need to normalize the initial and final states |A(TA)〉 and 〈B(TB)|.
There are two choices: the normalization defined with the usual inner product I or the normalization
defined with the proper inner product IQ , which we call Q-normalization. The choice of the inner
product used in the normalization is not just a matter of notation, once we have chosen

〈Ô〉B A
Q as the

expression of the candidate for our expectation value. That is to say, according to the choice of the
inner product used in the normalization of the initial and final states, two slightly different versions
could be defined. As we have explained in the introduction, each choice seems to have both advan-
tages and disadvantages, and it is not easy to evaluate

〈Ô〉B A
Q clearly in the version with the usually

normalized initial and final states, because we cannot exhaustively make use of the orthogonality of
the eigenstates of the Hamiltonian Ĥ . Therefore, we postpone the study of this version to the future,
and in the following we investigate the quantity

〈Ô〉B A
Q with the Q-normalized initial and final states

|A(TA)〉 and 〈B(TB)|, which is much easier to study than the other version.

3. Theorem on the normalized matrix element and its proof We present the following
theorem:

Theorem 1. As a prerequisite, assume that a given Hamiltonian Ĥ is non-normal but diagonali-

zable and that the imaginary parts of the eigenvalues of Ĥ are bounded from above, and define

a modified inner product IQ by means of a Hermitian operator Q arranged so that Ĥ becomes

normal with respect to IQ . Let the two states |A(t)〉 and |B(t)〉 time-develop according to the
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Schrödinger equations4 with Ĥ and Ĥ†Q
, respectively: |A(t)〉 = e− i

�
Ĥ(t−TA)|A(TA)〉, |B(t)〉 =

e− i
�

Ĥ†Q
(t−TB)|B(TB)〉, and be normalized with IQ at the initial time TA and the final time TB ,

respectively: 〈A(TA)|Q A(TA)〉 = 1, 〈B(TB)|Q B(TB)〉 = 1. Next determine |A(TA)〉 and |B(TB)〉
so as to maximize the absolute value of the transition amplitude |〈B(t)|Q A(t)〉| = |〈B(TB)|Q

exp
(− i Ĥ(TB − TA)

)|A(TA)〉|. Then, provided that an operator Ô is Q-Hermitian, i.e., Hermitian

with respect to the inner product IQ , Ô†Q = Ô, the normalized matrix element of the opera-

tor Ô defined by
〈Ô〉B A

Q ≡ 〈B(t)|QÔ|A(t)〉
〈B(t)|Q A(t)〉 becomes real and time-develops under a Q-Hermitian

Hamiltonian.

Before proving the theorem, we make a couple of remarks on it. The procedure of maximizing the
absolute value of the transition amplitude |〈B(t)|Q A(t)〉|, which we call the maximization principle,
can be understood as an approximation to what will be with very large likelihood the result of just
taking the initial state |A(TA)〉 and the final state |B(TB)〉 at random. In fact, we would like to show in
a later publication that with the random states |A(TA)〉 and |B(TB)〉 we obtain approximately the same
result for

〈Ô〉B A
Q as if we used the maximization principle as just stated in the theorem. The crucial

point of the theorem is that
〈Ô〉B A

Q , which is taken as an average for an operator Ô obeying Ô†Q = Ô,

turns out to be real almost unavoidably. This is under the restriction that Ĥ be Q-normal, i.e., normal
with regard to the proper inner product IQ , but that Ĥ is not required to be Q-Hermitian, Ĥ �= Ĥ†Q

.
Now let us prove the above theorem by expanding |A(t)〉 and |B(t)〉 in terms of the eigenstates

|λi 〉 as follows: |A(t)〉 = ∑
i ai (t)|λi 〉, |B(t)〉 = ∑

i bi (t)|λi 〉, where ai (t)= ai (TA)e
− i

�
λi (t−TA),

bi (t) = bi (TB)e
− i

�
λ∗

i (t−TB). Since 〈B(t)|Q A(t)〉 is expressed as 〈B(t)|Q A(t)〉 = ∑
i Ri ei�i ,

where we have introduced ai (TA) = |ai (TA)|eiθai , bi (TB) = |bi (TB)|eiθbi , T ≡ TB − TA, Ri ≡
|ai (TA)||bi (TB)|e 1

�
T Imλi , and �i ≡ θai − θbi − 1

�
T Reλi ,

∣∣〈B(t)|Q A(t)
〉∣∣2 is calculated as

∣∣〈B(t)|Q

A(t)
〉∣∣2 = ∑

i R2
i + 2

∑
i< j Ri R j cos(�i −� j ). On the other hand, the normalization conditions

are expressed as
∑

i |ai (TA)|2 = 1 and
∑

i |bi (TB)|2 = 1, respectively.
Here we note that the imaginary parts of the eigenvalues of Ĥ have to be bounded from above

to avoid the Feynman path integral
∫

e
i
�

SDpath being divergently meaningless. So we assume that
some of the Imλi take the maximal value B, and denote the corresponding subset of {i} as A. Then,
since Ri ≥ 0,

∣∣〈B(t)|Q A(t)
〉∣∣ can take a maximal value only under the following conditions:

|ai (TA)| = |bi (TB)| = 0 for ∀i /∈ A, (9)

�i ≡ �c for ∀i ∈ A, (10)∑
i∈A

|ai (TA)|2 =
∑
i∈A

|bi (TB)|2 = 1, (11)

and
∣∣〈B(t)|Q A(t)

〉∣∣2 is estimated as

∣∣〈B(t)|Q A(t)
〉∣∣2 =

(∑
i∈A

Ri

)2

= e
2BT

�

(∑
i∈A

|ai (TA)||bi (TB)|
)2

≤ e
2BT

�

{∑
i∈A

( |ai (TA)| + |bi (TB)|
2

)2
}2

= e
2
�

BT , (12)

4 See Eqs. (5) and (7).
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where the third equality is realized for

|ai (TA)| = |bi (TB)| for ∀i ∈ A. (13)

In the last equality, we have used this relation and Eq. (11). The maximization condition of∣∣〈B(t)|Q A(t)
〉∣∣ is represented by Eqs. (9)–(11) and (13). That is to say, the states to maximize∣∣〈B(t)|Q A(t)
〉∣∣, |A(t)〉max and |B(t)〉max, are expressed as

|A(t)〉max =
∑
i∈A

ai (t)|λi 〉, (14)

|B(t)〉max =
∑
i∈A

bi (t)|λi 〉, (15)

where ai (t) and bi (t) obey Eqs. (10), (11), and (13). Intuitively, it might be rather obvious that, to get
the biggest transition amplitude

∣∣〈B(t)|Q A(t)
〉∣∣ for states |A(t)〉 and |B(t)〉 normalized at the initial

time TA and the final time TB , respectively, we should seek the eigenstates leading to the biggest
increase with time development under the Schrödinger equations, i.e., with the biggest imaginary
parts of the eigenvalues of Ĥ .

We evaluate
〈Ô〉B A

Q for |A(t)〉max and |B(t)〉max. Using Eqs. (9)–(11) and (13), we obtain

max〈B(t)|Q A(t)〉max = ei�c
∑

i∈A Ri = ei�c e
BT
� , and

max
〈
B(t)|QÔ|A(t)〉max = ei�c e

BT
�

∑
i, j∈A

a j (TA)
∗ai (TA)e

i
�
(t−TA)(Reλ j −Reλi )

〈
λ j |QÔ|λi

〉

= ei�c e
BT
�

〈
Ã(t)

∣∣
QÔ

∣∣ Ã(t)〉, (16)

where we have introduced | Ã(t)〉 ≡ e− i
�
(t−TA)ĤQh |A(TA)〉max, which is normalized as〈

Ã(t)|Q Ã(t)
〉 = 1 and obeys the Schrödinger equation

i�
d

dt

∣∣ Ã(t)〉 = ĤQh
∣∣ Ã(t)〉. (17)

Thus the normalized matrix element
〈Ô〉B A

Q for |A(t)〉max and |B(t)〉max is evaluated as

〈Ô〉B A
Q = 〈

Ã(t)
∣∣
QÔ

∣∣ Ã(t)〉 ≡ 〈Ô〉 Ã Ã
Q . (18)

Now we see that
〈Ô〉B A

Q for |A(t)〉max and |B(t)〉max has become the form of an average defined with

the proper inner product IQ . Since the complex conjugate of
〈Ô〉 Ã Ã

Q is expressed as
{〈Ô〉 Ã Ã

Q

}∗ =〈
Ô†Q

〉 Ã Ã

Q
,
〈Ô〉B A

Q for |A(t)〉max and |B(t)〉max is shown to be real for Q-Hermitian Ô.

Next we study the time development of
〈Ô〉 Ã Ã

Q . We express
〈Ô〉 Ã Ã

Q as
〈Ô〉 Ã Ã

Q =〈
Ã(TA)

∣∣
QÔH (t, TA)

∣∣ Ã(TA)
〉
, where we have introduced the Heisenberg operator ÔH (t, TA) ≡

e
i
�

ĤQh(t−TA)Ôe− i
�

ĤQh(t−TA). This operator ÔH (t, TA) obeys the Heisenberg equation

i�
d

dt
ÔH (t, TA) =

[
ÔH (t, TA), ĤQh

]
, (19)

so we find that
〈Ô〉 Ã Ã

Q time-develops under the Q-Hermitian Hamiltonian ĤQh as

d

dt

〈Ô〉 Ã Ã
Q = i

�

〈[
ĤQh, Ô

]〉 Ã Ã

Q
. (20)
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Now, for pedagogical reasons, let us suppose that
〈Ô〉 Ã Ã

Q time-develops under some Hamiltonian

Ĥ1 as d
dt

〈Ô〉 Ã Ã
Q = i

�

〈[
Ĥ1, Ô

]〉 Ã Ã
Q . The complex conjugate of this relation is given by

{
d
dt

〈Ô〉 Ã Ã
Q

}∗ =
i
�

〈[
Ĥ†Q

1 , Ô†Q
]〉 Ã Ã

Q
. Since

〈Ô〉 Ã Ã
Q is real for Q-Hermitian Ô, these relations claim that Ĥ1 has to

be Q-Hermitian. Therefore, the reality of
〈Ô〉 Ã Ã

Q implies that it has to time-develop under some

Q-Hermitian Hamiltonian. As shown in Eq. (20),
〈Ô〉 Ã Ã

Q time-develops under ĤQh , which is consis-
tent with the implication. We emphasize that the maximization principle provides not only the reality
of
〈Ô〉B A

Q for Q-Hermitian Ô but also the Q-Hermitian Hamiltonian.

4. Discussion In this letter, we first reviewed the proper inner product IQ defined with a Her-
mitian operator Q, which is constructed from a diagonalizing operator of a given non-normal
diagonalizable Hamiltonian Ĥ , so that the eigenstates of Ĥ become orthogonal to each other
with regard to the proper inner product IQ , and the Q-Hermitian conjugate †Q , i.e., Hermitian
conjugate with regard to IQ . We also explained the property of the normalized matrix element〈Ô〉B A = 〈B(t)|Ô|A(t)〉

〈B(t)|A(t)〉 in the future-included complex action theory (CAT). Next we introduced a

slightly modified normalized matrix element
〈Ô〉B A

Q = 〈B(t)|QÔ|A(t)〉
〈B(t)|Q A(t)〉 , which is defined with IQ , and

explained that two versions could be defined according to the choice of the normalization of the ini-
tial and final states |A(TA)〉 and 〈B(TB)|. One is the usual normalization defined with the usual inner
product I , and the other is the Q-normalization defined with the proper inner product IQ . Assum-
ing that a given Hamiltonian Ĥ is non-normal but diagonalizable, and that the imaginary parts of the
eigenvalues of Ĥ are bounded from above, we presented a theorem that states that, provided that Ô is
Q-Hermitian, i.e., Ô†Q = Ô, and that |A(t)〉 and |B(t)〉 time-develop according to the Schrödinger
equations with Ĥ and Ĥ†Q

and are Q-normalized at the initial time TA and at the final time TB ,
respectively,

〈Ô〉B A
Q becomes real and time-develops under a Q-Hermitian Hamiltonian for |A(t)〉

and |B(t)〉 such that the absolute value of the transition amplitude |〈B(t)|Q A(t)〉| is maximized. We
proved the theorem by expanding |A(t)〉 and |B(t)〉 in terms of the eigenstates of Ĥ . It is noteworthy
that, in the future-included CAT with a priori non-normal Hamiltonian Ĥ , we nevertheless have got
a real average for Ô at any time t by means of the simple expression

〈Ô〉B A
Q .

As for an emerging hermiticity, in Ref. [17] we presented a mechanism to obtain a Q-Hermitian
Hamiltonian by considering a long time development. The maximization principle studied in this
letter is another approach to obtaining such a Q-Hermitian Hamiltonian. We have seen that the non-
hermiticity of the fundamental Hamiltonian Ĥ has disappeared from the usually expected results
of the model. It is this remarkable result of our work with non-Hermitian Hamiltonians or complex
actions that allows us to consider such models to be viable. We would not have been able to see any
effects of the anti-Hermitian part as far as the reality of the dynamical variables and the equations
of motion are concerned. However, as earlier discussed in Ref. [1] and also seen in Eqs. (9)–(11),
the anti-Hermitian part has a strong influence on the initial state, which should effectively be seen.
Indeed, the maximization principle has resulted in a periodicity of the history of the universe that
the initial and final states become basically the same. Such an influence would be more recognizable
in a system defined with a time-dependent non-Hermitian Hamiltonian [26]. We expect the future-
included CAT to have the feature that it can provide a unification of an initial condition prediction
and an equation of motion. In this letter, we studied the version defined with the Q-normalized initial
and final states. It would be interesting to see what kind of result we could obtain in the other version
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defined with the usually normalized initial and final states, which is more difficult to study than the
the version studied here, because we cannot fully utilize the orthogonality of the eigenstates of the
Hamiltonian Ĥ . In the future we hope to investigate this version and to see if the reality of

〈Ô〉B A
Q ,

emerging Hermitian Hamiltonian, and such a periodicity are suggested or not.
Finally, assuming that the fundamental non-normal Hamiltonian Ĥ is written in terms of Hermitian

coordinate and momentum operators q̂ and p̂ as Ĥ = H(q̂, p̂), we give a possible procedure5 to
formulate the Q-Hermitian Hamiltonian ĤQh in terms of Q-Hermitian coordinate and momentum
operators q̂Q and p̂Q . We also introduce a Q-Hermitian probability density operator as an example
of Q-Hermitian Ô, and construct a conserved probability current density. Let us begin with defining
q̂Q and p̂Q by

q̂Q ≡ q̂ + q̂†Q

2
, (21)

p̂Q ≡ p̂ + p̂†Q

2
. (22)

Since Q depends on q̂ and p̂ via Ĥ , q̂Q and p̂Q could be written in terms of q̂ and p̂, and vice versa.6

Then Ĥ would be rewritten as Ĥ = Heff
(
q̂Q, p̂Q

)
, where Heff is some analytic function of q̂Q and

p̂Q , and ĤQh is expressed in terms of q̂Q and p̂Q as

ĤQh = 1
2

(
Heff

(
q̂Q, p̂Q

)+ Heff
(
q̂Q, p̂Q

)†Q)
. (23)

Next we define |q〉Q as the eigenstate of q̂Q by q̂Q |q〉Q = q|q〉Q and Q〈q|Qq ′〉Q = δ(q − q ′), which
suggests

∫∞
−∞ dq|q〉Q Q〈q|Q = 1. Similarly, |p〉Q is introduced as the eigenstate of p̂Q by p̂Q |p〉Q =

p|p〉Q and Q〈p|Q p′〉Q = δ(p − p′). Now, utilizing |q〉Q , we define the Q-Hermitian probability
density operator

ρ̂ ≡ |q〉Q Q〈q|Q (24)

as an example of Q-Hermitian Ô, and write a q-representation of the maximizing state | Ã(t)〉 as

ψ Ã(q) ≡ Q 〈q|Q Ã(t)
〉
. (25)

Then the probability density ρ ≡ 〈ρ̂〉B A
Q is given via the maximization principle by ρ = 〈ρ̂〉 Ã Ã

Q =
|ψ Ã(q)|2, which obeys

∫∞
−∞ dqρ = 1, so we could construct a conserved probability current density

j (q, t) = i�

2m

(
∂ψ∗

Ã

∂q
ψ Ã − ψ∗

Ã

∂ψ Ã

∂q

)
, (26)

which satisfies the continuity equation ∂ρ
∂t + ∂

∂q j (q, t) = 0. In realistic cases, not only the maximiz-
ing state but also many other states contribute to the transition amplitude, while the above relations
are obtained by considering only the maximizing state, which is a kind of approximation in the sense
that we are ignoring the effects of the other states. But we expect that their contribution becomes

5 For simplicity, we do not use the complex coordinate and momentum formalism [18] just by supposing the
case where the eigenvalues q and p are essentially real. If we like, we could generalize the argument here by
following Ref. [18] so that we could deal with complex q and p.

6 In the harmonic oscillator model (K. Nagao and H. B. Nielsen, work in progress) defined by the Hamiltonian
Ĥho ≡ p̂2

2m + 1
2 mω2q̂2 with a mass m and an angular frequencyω, we obtain q̂Q = ei θ2 q̂ and p̂Q = e−i θ2 p̂, where

θ = arg(mω). Ĥho is rewritten as Ĥho = p̂2
Q

2meff
+ 1

2 meffω
2q̂2

Q , where meff = me−iθ .
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very small in the large T = TB − TA case, which we are interested in from a phenomenological
point of view. The larger T we consider, the more the states with the largest positive imaginary part
of energy get to dominate. Thus we have briefly given a possible procedure to formulate ĤQh in
terms of Q-Hermitian q̂Q and p̂Q , and also constructed a conserved probability current density for
the maximizing state. However, it is not trivial at all to determine the local expression of ĤQh in
q-space, nor to examine the classical behavior of

〈Ô〉B A
Q explicitly. We postpone these problems to

future studies.
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