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1 Introduction

The simplest probes of external heavy objects in a conformal field theory, such as Wilson

or ’t Hooft lines, surface operators or interfaces, are one-point functions of local operators

in the presence of the defect. By conformal symmetry,

〈O(x)〉 =
C

z∆
, (1.1)

where z is the distance from x to the defect and ∆ is the scaling dimension of the operator

O. The constant C in principle depends on the normalization of the operator at hand, but

if the two-point function of O is unit-normalized, C is defined unambiguously.

Here we focus on a domain wall in N = 4 Super-Yang-Mills (SYM) theory which

separates vacua with SU(N) and SU(N − k) gauge groups [1]. This defect originates from

the D3-D5 brane intersection and is dual to a probe D5 brane in AdS5×S5 with k units of

– 1 –



J
H
E
P
0
8
(
2
0
1
5
)
0
9
8

electric flux on its world-volume [2]. One-point functions of chiral operators in this [3] and

in the closely related D3-D7 defect CFT [4], when continued to strong coupling perfectly

agree with the predictions of the AdS/CFT duality.

We would like to make a connection with integrability and will thus consider expec-

tation values of non-protected operators. It has proven useful in this context to study

operators of large bare dimension, which correspond to long quantum spin chains. Con-

formal operators of this type, due to operator mixing, are linear combinations of a large

number of field monomials. Efficient calculation of the classical expectation values for such

operators becomes a non-trivial problem, which can only be solved by employing the full

machinery of the Bethe ansatz. The one-point correlators are probably the simplest objects

sensitive to the structure of the Bethe wavefunctions, and are thus ideally suited to probe

integrability beyond the spectral data.

2 Domain wall and spin chains

The D3-D5 intersection defect in N = 4 SYM has the following semiclassical description

at weak coupling. On the one side of the domain wall, the gauge symmetry is broken from

SU(N) to SU(N − k) by an infinite scalar vev. On the other side the scalar fields relax to

zero according to their classical equations of motion:

d2Φcl
i

dz2
=
[
Φcl
j ,
[
Φcl
j ,Φ

cl
i

]]
. (2.1)

For a supersymmetric defect, the solution also satisfies the first-order Nahm equations [5]:

dΦcl
i

dz
=
i

2
εijk

[
Φcl
j ,Φ

cl
k

]
, (2.2)

which automatically imply (2.1). The solution describing the D3-D5 intersection is [6–8]:

Φcl
i =

1

z

(
(ti)k×k 0k×(N−k)

0(N−k)×k 0(N−k)×(N−k)

)
, i = 1, 2, 3, Φcl

i = 0, i = 4, 5, 6, (2.3)

where the three k × k matrices ti satisfy

[ti, tj ] = iεijktk, (2.4)

and consequently realize the unitary k-dimensional representation of su(2).

The one-point functions, to the first approximation, are obtained by simply replacing

quantum fields in the operator with their classical expectation values [3, 4]. To get a non-

zero answer the operators must be built from scalar fields, and we will consider the most

general such operators that do not contain derivatives:

O = Ψi1...iL tr Φi1 . . .ΦiL . (2.5)

The SO(6) tensor Ψ is cyclically symmetric because of the trace condition.

These operators form a closed sector at one loop, and their mixing is described by an

integrable SO(6) spin-chain Hamiltonian, wherein the tensor Ψ plays the role of the wave
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function in the spin-chain Hilbert space. The anomalous part of the dilatation generator

(the mixing matrix) at one loop contains only nearest-neighbor interactions [9]:

Γ =
λ

16π2

L∑
l=1

Hl,l+1, Hlm = 2− 2Plm +Klm, (2.6)

where λ = g2N is the ’t Hooft coupling of the SYM theory, and Plm and Klm are permu-

tation and trace operators acting on sites l and m of the spin chain:

P ksij = δkj δ
s
i , Kks

ij = δijδ
ks. (2.7)

This result is not modified by the presence of the defect [10]. Notice, however, that the

latter reference deals with a probe brane set-up without fluxes (corresponding to k = 0)

but the ultraviolet divergencies of the theory should be the same when the classical fields

are turned on.

The Hamiltonian (2.6) is a member of an infinite hierarchy of commuting charges

responsible for the integrability of the model. The third charge1 of the hierarchy acts on

three neighboring spins:

Q3 =

L∑
l=1

Ql, Ql = [Hl−1,l, Hl,l+1]. (2.8)

Unlike the Hamiltonian, the third charge is parity-odd, and changes sign under the inversion

of the spin chain orientation.2 The spectrum of the spin chain therefore contains parity

pairs with degenerate energy and opposite values of Q3, as well as unpaired states with

vanishing Q3.

The defect CFT contains also operators localized on the domain wall. These operators

are described by an integrable open spin chain [10] and are dual to open strings with ends

attached to the D5 brane. By considering one-point functions of the bulk operators we are,

in a sense, dealing with the same string diagram but viewed as an absorption of a closed

string by the D5 brane. In string theory the two descriptions should be related by t − s
channel duality, and it would be interesting to understand how they are related at weak

coupling.

By substituting (2.3) into (2.5) we find that the one-point function is proportional to

Ψi1...iL tr ti1 . . . tiL ≡ 〈MPS
∣∣∣Ψ〉 , (2.9)

the inner product of the spin-chain state Ψ that characterizes the operator and the state

with the wave function

MPSi1...iL = tr ti1 . . . tiL . (2.10)

MPS here stands for the ‘Matrix Product State’, the term that will be explained below. The

defect thus maps to a particular state in the spin-chain Hilbert space. We may interpret

1According to the standard convention the first charge is the momentum along the spin chain and the

second charge is the Hamiltonian itself.
2This symmetry is equivalent to charge conjugation in SYM.
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this state as a weak-coupling counterpart of the boundary state that describes the D5 brane

in closed string theory. Recovering the normalization factor that makes the bulk two-point

function of O unit-normalized, we get for the structure constant:

C =

(
8π2

λ

)L
2

L−
1
2
〈MPS |Ψ〉
〈Ψ|Ψ〉

1
2

. (2.11)

What can be said about the state associated with the defect? It is not an eigenstate

of the spin-chain Hamiltonian. We do not get anything nice when apply (2.6) to (2.10).

However, the third charge of the integrable hierarchy acts in a simple way and actually

annihilates the defect state:

Q3 |MPS〉 = 0. (2.12)

The proof is given in appendix A. This property leads to a selection rule for the one-point

functions, since the overlap with MPS vanishes for all states that carry Q3 6= 0.

To further simplify the problem we consider the SU(2) subsector composed of operators

which are built from two complex scalars

Z = Φ1 + iΦ4 ←→ |↑〉 ,
W = Φ2 + iΦ5 ←→ |↓〉 . (2.13)

The SU(2) sector is closed to all loop orders, and at the leading order is described by the

Heisenberg spin chain.

When restricted to the SU(2) sector, the spin-chain state associated with the defect

becomes

〈MPS | = tra

L∏
l=1

(〈↑l| ⊗ t1 + 〈↓l| ⊗ t2) . (2.14)

The index a is introduced here to distinguish the “auxiliary” space of color indices of ti from

the quantum space spanned by |↑〉, |↓〉 on each site of the spin chain. The defect state (2.14)

can be obtained by applying an operator, which we can call the defect operator, to the

ferromagnetic ground state of the spin chain:

〈MPS | = 〈↑ . . . ↑|K. (2.15)

The defect operator is not uniquely defined, because there are many operators that anni-

hilate the ground state. We can choose it in the form

K = tra

L∏
l=1

{[
s1 + (1− s)σ3

l

]
⊗ t1 + σ+

l ⊗ t2 + σ−l ⊗ t
}
, (2.16)

where σil are the Pauli matrices acting on the l-th site of the spin chain, s is an arbitrary

complex number, and t can be any k × k matrix. For instance, taking s = 0 and t = t2,

we find:

K = tra

L∏
l=1

(
σ3
l ⊗ t1 + σ1

l ⊗ t2
)
, (2.17)
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which takes particularly simple form for k = 2, with t1 = σ3/2 and t2 = σ1/2:

K(k=2) = 2−L tra

L∏
l=1

(
σ3
l ⊗ σ3

a + σ1
l ⊗ σ1

a

)
. (2.18)

States of the form (2.14) are known as the Matrix Product States, and were extensively

studied in the condensed-matter literature [11–21], in particular to model quantum entan-

glement in one-dimensional systems. The operators (2.16), (2.17) and (2.18) are usually

called the Matrix Product Operators.

In analogy to the algebraic Bethe ansatz (ABA) [22] the construction of the MPS uses

the auxiliary space which threads through all sites of the spin chain. Interestingly, here

the auxiliary space has a direct physical meaning of the color SU(N) representation in the

underlying gauge theory.

The conformal operators in the SU(2) sector are labelled by zero-momentum eigen-

states of the Heisenberg Hamiltonian. In the ABA framework, the eigenfunctions are

constructed by applying creation operators B(u) to the ferromagnetic vacuum of the spin

chain:

|{uj}〉 = B(u1) . . . B(uM ) |0〉 . (2.19)

Each B-operator flips one spin, and for the state to be an eigenstate of the Heisenberg

Hamiltonian the rapidities {ui} must fulfil the set of Bethe equations [22]. Our goal is to

calculate the structure constant (2.11) for an arbitrary Bethe state of the form (2.19).

The trace cyclicity of the SYM operators imposes the zero-momentum constraint on

the Bethe eigenstates. A simple way to fulfil this condition is to consider states in which

rapidities come in pairs (the momentum is an odd function of u):

|u〉 =
∣∣∣u1 . . . uM

2

〉
≡ |{uj ,−uj}〉 . (2.20)

Of course this way to impose the zero-momentum constraint is too restrictive and there are

zero-momentum Bethe states in which rapidities are not balanced pairwise. These states

form degenerate parity pairs related by reflection of all rapidities. Such paired states,

however, carry a non-zero Q3 and have zero overlap with the defect state as a consequence

of (2.12). We can thus concentrate on the fully balanced, unpaired states of the form (2.20).

Our goal is to calculate

Cu =

(
8π2

λ

)L
2

L−
1
2
〈MPS |u〉
〈u|u〉

1
2

. (2.21)

There is a considerable literature on overlaps of Bethe states in integrable systems (see [23,

24] for reviews), which in many cases admit compact determinant representation. The

most famous examples are the Gaudin norm of an ABA state [25, 26], which is a part

of the expression we need to evaluate, and the overlap of the on-shell and off-shell Bethe

states [27]. Overlaps of Bethe states with MPS have not been studied so far, to the best of

our knowledge. From known results the one that comes closest to our setup is the overlap of
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an arbitrary Bethe state with the Néel state, which was calculated in [28] and transformed

into a convenient determinant form in [29, 30].

Bethe-state overlaps are playing an important rôle in the gauge/string integrability.

The three-point functions in the N = 4 SYM at weak coupling can be expressed as gen-

eralized overlaps of Bethe states [31–43] and can be rendered into a compact determinant

form [44–48], which is particularly useful in the semiclassical thermodynamic limit [33, 49–

52]. An interesting question is whether the one-point overlap (2.21) also admits a deter-

minant representation.

In this paper we investigate this question in the simplest case when the auxiliary space

has dimension two (k = 2). We have found that the answer is affirmative, and moreover

the result is given by exactly the same determinant formula as the overlap with the Néel

state [29, 30], upon relaxing the half-filling condition M = L/2 necessary to make the Néel

overlap non-zero. The final result is written in terms of the matrices of size M/2×M/2:

K±jk =
2

1 + (uj − uk)2 ±
2

1 + (uj + uk)
2 , (2.22)

and

G±jk =

(
L

u2
j + 1

4

−
∑
n

K+
jn

)
δjk +K±jk. (2.23)

The structure constant (2.21) is given by the ratio of two determinants:

Cu = 2

(2π2

λ

)L
1

L

∏
j

u2
j + 1

4

u2
j

detG+

detG−

 1
2

. (2.24)

When M = L/2, this formula coincides exactly with the expression for overlap between

a half-filled Bethe eigenstate and the Néel state given in [29, 30]. Although the MPS is

different from the Néel state, even if restricted to equal number of up and down spins, this is

not a coincidence. We were able to show that the MPS is cohomologically equivalent to the

Néel state at half filling and consequently has the same overlaps with all half-filled Bethe

eigenstates. The result above then follows from the derivation in [28–30], for M = L/2.

When M < L/2, this formula is a conjecture which we have extensively checked. We have

also identified a natural generalization of the Néel state away from half-filling, which lies

in the same cohomology class as the definite-spin projection of MPS.

In section 3 we introduce the tools necessary for our computation, namely the Bethe

ansatz and an explicit realization of a set of k × k matrices which constitute a unitary k-

dimensional representation of SU(2). Subsequently, in section 4 we sketch our computations

and present the results. In section 5 we discuss the relationship between the MPS and the

Néel state and introduce generalized Néel states with unequal number of up and down

spins. Section 6 contains a discussion of the thermodynamical limit and section 7 some

comments on the string theory observables dual to the one-point functions of the defect

CFT. Finally section 8 contains our conclusion.
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3 Setting up the computation

Although the construction of the defect state has a strong resemblance with certain el-

ements of the algebraic Bethe ansatz we have found it most convenient to evaluate the

overlaps by using the Bethe ansatz in its coordinate space version which we will summarize

below, see for instance [53, 54]. Hereafter we will present the explicit representations of

SU(2) that we will make use of in our computations.

3.1 The coordinate Bethe ansatz

The eigenstates of the dilatation operator restricted to the SU(2) sector are in one-to-one

correspondence with eigenstates of the Heisenberg XXX spin chain. In this section we

introduce this model and discuss its solution via the coordinate Bethe ansatz.

Model. The XXX spin chain is a one-dimensional lattice model consisting of L spin-1
2

particles. Therefore, the Hilbert space is
⊗

LC2, where each C2 is spanned by | ↑〉, | ↓〉.
The Hamiltonian describes a standard nearest neighbor spin-spin interaction

H =
L∑
i=1

Hii+1, Hij =
1

4
− ~Si · ~Sj , (3.1)

with periodic boundary conditions L + 1 ≡ 1. For simplicity let us also introduce the the

usual raising and lowering operators S± such that

S+|↓〉 = |↑〉, S−|↑〉 = |↓〉. (3.2)

Expressing the permutation operator in terms of spin operators one can see that (2.6)

reduces to (3.1) in the SU(2) subsector, up to normalization. The (coordinate) Bethe

ansatz gives us a method to diagonalize this Hamiltonian and to compute its spectrum.

Bethe eigenstates. The first step of the Bethe ansatz is to introduce a vacuum state

|0〉 =

L⊗
i=1

|↑〉. (3.3)

This vacuum state is trivially an eigenstate of the Hamiltonian. The other eigenstates will

also have down-spins on various sites. The Bethe ansatz postulates that these eigenstates

are of a plane wave type. More precisely, each flipped spin behaves like a quasi-particle

referred to as a magnon. These magnons propagate along the spin chain with some definite

momentum p. The Bethe eigenstate for a chain of length L describing M magnons, is of

the form

|~p 〉 := |p1, . . . , pM 〉 = N
∑
σ∈SM

∑
16n1<...<nM6L

e
i
∑
m

(
pσmnm+

∑
j<m

θσjσm

2

)
S−n1

. . . S−nM |0〉,

(3.4)

– 7 –



J
H
E
P
0
8
(
2
0
1
5
)
0
9
8

where N is an overall normalization. The sum over σ runs over all permutations of M

elements. Furthermore, the factors θ parameterize the two-magnon S-matrix via

Sij := eθij−θji = −1 + eipi+ipj − 2eipi

1 + eipi+ipj − 2eipj
. (3.5)

It is worthwhile to note that, up to an overall normalization, the Bethe vector (3.4) only

depends on the S-matrix S rather than the phase θ. In the remainder we will choose the

normalization N such that the term eipini (i.e. the term with σ = 1) in (3.4) appears with

unit coefficient. In other words, we will set N = e−
∑
j<k θjk/2.

Bethe equations. Finally, the state (3.4) should respect the correct boundary condi-

tions, i.e. it should be periodic. Imposing periodicity results in a set of equations on the

momenta of the magnons, called the Bethe equations

eipkL =
∏
i 6=k
Ski. (3.6)

When the momenta satisfy these Bethe ansatz equations, it is easy to check that the

state (3.4) is an eigenstate of the Hamiltonian with eigenvalue

E = 2
M∑
i=1

sin2 pi
2

=
1

2

M∑
i=1

1

u2
i + 1

4

, (3.7)

where u = 1
2 cot(p/2) is the rapidity. In order for a Bethe eigenstate to represent a single

trace gauge theory operator it is furthermore necessary that the momenta of its excitations

add up to an integer multiple of 2π. This is required to account for the cyclicity properties

of the trace, i.e.

P ≡
M∑
i=1

pi = 2πm. (3.8)

Finally, notice that our Bethe states (3.4) (with N = e−
∑
j<k θjk/2) are not normalized to

unity. These coordinate space Bethe eigenstates can be related to the eigenstates of the

algebraic Bethe ansatz approach in the following way (see, for example, [31])

|{ui}〉 = B(u1) . . . B(uM )|0〉

=
∏
j

(
uj −

i

2

)L( i

uj + i
2

)∏
l<m

(
1 +

i

ul − um

)
|p1, . . . , pM 〉. (3.9)

This, in conjunction with the Gaudin formula [25, 26] for the norm of |{ui}〉, fixes the

normalization of coordinate Bethe ansatz eigenstates.

Overlap. Let us now continue by computing the overlap between the Bethe states and

the defect state 〈MPS |~p 〉. Inserting the M -magnon state (3.4) into (2.9) yields

〈MPS |~p 〉 = N
∑
σ∈SM

∑
16n1<...<nM6L

eipσ(i)ni+
∑
j<i

i
2
θσ(j)σ(i) tr[tn1−1

1 t2t
n2−n1−1
1 . . .], (3.10)

– 8 –
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where the ti form the standard k-dimensional irreducible representation of su(2). However,

for practical computations it is more convenient to take

〈MPS |~p 〉 = N
∑
σ∈SM

∑
16n1<...<nM6L

eipσ(i)ni+
∑
j<i

i
2
θσ(j)σ(i) tr[tn1−1

3 t1t
n2−n1−1
3 . . .], (3.11)

which will clearly yield the same results.

3.2 Representations of su(2)

Let us spell out the explicit representation for the su(2) generators ti that we will use and

derive some useful relations.

Definition. Consider the k-dimensional complex vector space generated by the basis

vectors Ei. Define the standard matrix unities Eij that are zero everywhere except for a 1

at position (i, j), such that they satisfy

EijE
k
l = δkjE

i
l. (3.12)

If we introduce the following constants

ck,i =
√
i(k − i), dk,i =

1

2
(k − 2i+ 1), (3.13)

and consider the matrices

t+ :=

k−1∑
i=1

ck,iE
i
i+1, t− :=

k−1∑
i=1

ck,iE
i+1

i, t3 :=

k∑
i=1

dk,iE
i
i, (3.14)

then we obtain the standard k-dimensional su(2) representation by defining

t1 =
t+ + t−

2
, t2 =

t+ − t−
2i

. (3.15)

It is easy to check that these matrices satisfy the su(2) commutation relations (2.4). Note

that all these matrices are traceless.

Automorphisms. Let us introduce two similarity transformations

U = U−1 :=

k∑
i=1

Eik−i+1, V = V −1 :=

k∑
i=1

(−1)iEii. (3.16)

It is easy to show that under these transformations

Ut1U
−1 = t1, Ut2,3U

−1 = −t2,3 V t3V
−1 = t3, V t1,2V

−1 = −t1,2. (3.17)

Hence, they provide a trivial automorphism of the algebra.

4 Results

In this section we present a number of explicit results for the overlap (3.11).

– 9 –
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4.1 L or M odd

If L or M is odd, the overlap vanishes. This follows directly from the automorphisms (3.16).

Indeed, for any state of the form tr[tn1
3 t1t

n2
3 . . .], containing M t1’s and L t’s we have by

cyclicity of the trace

tr[tn1
3 t1t

n2
3 . . .] = tr[(Ut3U

−1)n1Ut1U
−1(Ut3U

−1)n2 . . .] = (−1)L−M tr[tn1
3 . . .] (4.1)

and

tr[tn1
3 t1t

n2
3 . . .] = tr[(V t3V

−1)n1V t1V
−1(V t3V

−1)n2 . . .] = (−1)M tr[tn1
3 . . .]. (4.2)

This implies that the expression tr[tn1
3 t1t

n2
3 . . .], and hence the overlap (3.11), is only non-

vanishing if L and M are both even.

4.2 Vacuum, M = 0

From (3.14) we see that t3 is a diagonal matrix with entries 1
2(k − 2i+ 1) for i = 1, . . . , k.

From this, it immediately follows that for the vacuum state (3.3) the overlap (3.11) re-

duces to

〈MPS |0〉 = tr tL3 =
k∑
i=1

dLk,i. (4.3)

The resulting sum can be evaluated to a combination of ζ-functions

〈MPS |0〉 = ζ−L

(
1− k

2

)
− ζ−L

(
1 + k

2

)
. (4.4)

Taking the k →∞ limit of the explicit expression for 〈MPS |0〉 yields

〈MPS |0〉 =
kL+1

2L(L+ 1)
+O(kL) (k →∞) . (4.5)

This agrees with the large k behavior which was found previously in [3, 4].

4.3 Excited states

4.3.1 General considerations

We first notice that the defect state |MPS〉 is a cyclically invariant state (due to the cyclic

nature of its expansion coefficients). This implies that

(〈MPS |U) | ~p 〉 = 〈MPS | ~p 〉 = 〈MPS
∣∣∣ (U | ~p 〉

)
, (4.6)

where U = eiP̂ is the lattice translation operator and P̂ the momentum operator. From

this we conclude that the overlap vanishes unless |~p 〉 is a zero-momentum state.

Secondly, we notice that for an even number of excitations |MPS〉 is invariant under

an operation traditionally denoted as parity, see for instance [55]. Its action on a spin state

is defined by

P |t1t2 . . . tn 〉 = |tntn−1 . . . t1 〉 , (4.7)

– 10 –



J
H
E
P
0
8
(
2
0
1
5
)
0
9
8

where ti ∈ {↓, ↑}. The invariance of |MPS〉under this transformation follows from the in-

variance of its expansion coefficients under a similar operation performed on the matrices

inside the traces. By an argument similar to the one above it follows that the overlap

vanishes unless the Bethe eigenstate has positive parity. It is well-known that the eigen-

states of the Heisenberg spin chain can be chosen to be eigenstates of a definite parity.

In particular, the so-called un-paired eigenstates for which the Bethe rapidities fulfill that

{ui} = {−ui} are automatically eigenstates with parity equal to (−1)M(L+1). Moreover, as

discussed in section 2, we find that only these unpaired state can have a non-trivial overlap

with the classical function. This follows from the fact that the unpaired states are exactly

the states that are annihilated by the odd charges Q2n+1.

4.3.2 Two excitations, M = 2

By using the cyclicity of the trace, we can rewrite the overlap (3.11) as a sum of terms of

the form

tr[tL−m−1
3 t1t

m−1
3 t1]. (4.8)

We can evaluate this trace by implementing the explicit expressions for ti (3.14)

tr[tL−m−1
3 t1t

m−1
3 t1] =

k∑
a,b=1

k−1∑
i,j=1

1

4
dL−m−1
k,a dm−1

k,b ck,ick,j

· tr
[
Eaa

(
Eii+1 + Ei+1

i

)
Ebb

(
Ejj+1 + Ej+1

j

)]
.

(4.9)

The definition of the matrix unities then allows us to work out the trace

tr[tL−m−1
3 t1t

m−1
3 t1] = 21−L

k−1∑
i=1

i(k − i)
(k − 2i)2 − 1

[
k − 2i+ 1

k − 2i− 1

]m
(k − 2i− 1)L. (4.10)

Thus, for M = 2, the Bethe states are mapped to

〈MPS |p1, p2〉 =
∑
m<n

[ei(p1n+p2m) + S21e
i(p2n+p1m)]tr[tm−1

3 t1t
n−m−1
3 t1t

L−n
3 ]

=
∑
m<n

[ei(p1n+p2m) + S21e
i(p2n+p1m)]tr[tL−n+m−1

3 t1t
n−m−1
3 t1]. (4.11)

The sums over m,n can easily be done and we find the following formula for the overlap

〈MPS |p1, p2〉 =
ei(p1+p2)

1− ei(p1+p2)

k−1∑
i=1

i(k − i)
2L−1(k − 2i− 1)2−L

eip2 eiLp2
[
k−2i+1
k−2i−1

]L
− 1

eip2
[
k−2i+1
k−2i−1

]
− 1

(4.12)

−eiLp2
eiLp1 −

[
k−2i+1
k−2i−1

]L
eip1 −

[
k−2i+1
k−2i−1

] + S21e
ip1
eiLp1

[
k−2i+1
k−2i−1

]L
− 1

eip1
[
k−2i+1
k−2i−1

]
− 1

−S21e
iLp1

eiLp2 −
[
k−2i+1
k−2i−1

]L
eip2 −

[
k−2i+1
k−2i−1

]
 .

– 11 –
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Notice that the above expression has to be evaluated with care in case k is odd due to a

superficial pole at i = 1
2(k − 1). By using that 〈MPS |p1, p2〉 is invariant if we redefine the

summation via i→ k−i it is easy to check that upon substituting the Bethe equations (3.6)

the overlap vanishes unless p1 + p2 = 0 where the above expression has a pole. Then,

imposing the vanishing of the total momentum and setting p1 = −p2 = p from the beginning

gives us the following one-point function

〈MPS |p,−p〉 = Lu

(
u− i

2

) k
2∑

j=− k
2

j2 − k2

4

j2 + u2

(
j − 1

2

)L−1

. (4.13)

For k = 2 this reduces to 21−L Lu−1(u− i
2).

4.3.3 General M

In the following we will derive some results for a general even number of excitations M . In

particular, for the case k = 2, we will give a closed formula of determinant form, valid for

any even M .

k = 2. For k = 2 computing the overlap simplifies due to the identities

t2i =
1

4
, {ti, tj} = 0, i 6= j. (4.14)

The anti-commutator identity means that we can order the generators in the trace (possibly

at the cost of a sign) and the first identity implies that we can take all the powers in the

trace mod 2. In particular, we can simplify (3.11) to

〈MPS |~p 〉k=2 = N
∑
σ∈SM

∑
16n1<...<nM6L

eipσ(i)ni+
∑
j<i

i
2
θσ(j)σ(i) (−1)

∑
i ni+

M
2 tr[tL−M1 tM2 ],

=
(−1)M/2N

2L

∑
σ∈SM

∑
16n1<...<nM6L

ei(pσ(i)+π)ni+
∑
j<i

i
2
θσ(j)σ(i) ,

=
(−1)M/2N

2L

∑
σ∈SM

e
∑
j<i

i
2
θσ(j)σ(i)

∑
16n1<...<nM6L

ei(pσ(i)+π)ni . (4.15)

The above sum can be evaluated as follows∑
16n1<...<nM6L

xn1
1 . . . xnMM = (4.16)

M∏
n=1

xL+1
n +

M∑
a=1

[
1−

a∏
n=1

xL+1
n

][
a∏

m=1

xmm
1−

∏a
n=m xn

][
M∏

m=a+1

xL+1
m∏m

n=a+1 xn − 1

]
.

In agreement with our general discussion, cf. section 2, we find that the only Bethe eigen-

states that give a non-zero overlap function are states with momentum configurations of

the form (
p1,−p1, p2,−p2, . . . , pM

2
,−pM

2

)
. (4.17)
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For these states one can write the overlap function in a compact form as the determinant

of a matrix. Define the following function

Kij :=
1

2

[
1 + 4u2

i

1 + (ui + uj)2
+

1 + 4u2
i

1 + (ui − uj)2

]
, (4.18)

and the following M/2×M/2 matrix

Aij :=

L−M/2∑
n=1

Kin

 δij +Kij , (4.19)

then the overlap function is given by

〈MPS |~p 〉k=2 = 21−L(detA)

M/2∏
i=1

ui − i
2

ui
. (4.20)

We have confirmed this formula by explicit computations up to and including the case of

eight excitations. Upon translating to the algebraic Bethe ansatz framework (cf. (3.9)),

using the Gaudin formula for the norm, and applying elementary determinant identities,

we arrive at the aforementioned result (2.24).

Large k. Let us have a closer look at the leading order large k expansion for any number

of excitations. One can show that for M excitations

tr(tn1−1
3 t1t

n2−n1−1
3 t1 . . .) = −

√
π Γ
(
−L+1

2

)
Γ
(

1−M
2

)
Γ
(

1−L+M
2

)kL+1 +O(kL). (4.21)

This can be seen as follows. First, in the large k limit tr(tL−M3 (t+t−)
M
2 ) can be rewritten

as a Riemann sum and integration then leads to the following identity

tr
(
tL−M3 (t+t−)

M
2

)
= −

√
π Γ
(
−L+1

2

)(
M
M
2

)
Γ
(

1−M
2

)
Γ
(

1−L+M
2

) kL+1(
M
M
2

)
2L+1

+O(kL). (4.22)

Second, from the defining commutation relations of su(2) it can be seen that any distribu-

tion of t3, t± under the trace can be ordered as (4.22) at the cost of terms of lower order

in k. Then (4.21) follows by expressing t1 in terms of t± as in (3.15).

This means that the large k limit of the overlap function reduces to

〈MPS |~p 〉 = −
√
π

N Γ
(
−L+1

2

)
Γ
(

1−M
2

)
Γ
(

1−L+M
2

) kL+1

2L

∑
σ∈SM

∑
16n1<...<nM6L

eipσ(i)ni+
∑
j<i

i
2
θσ(j)σ(i) .

(4.23)

It is easy to check that for M = 0 it reduces to the large k behavior we found for the

vacuum state (4.5). However, for M 6= 0 something unusual happens.

Notice that (4.23) can be expressed as the inner product of the Bethe state (3.4) with

the fully symmetrized state that has M spins down. Such a state can be expressed as

– 13 –



J
H
E
P
0
8
(
2
0
1
5
)
0
9
8

the lowering operator S− acting on vacuum M times, i.e. ∆(L)(S−)M |0〉. Thus, we can

re-express the overlap as

〈MPS |~p 〉 = 〈0|∆(L)(S+)M |~p 〉, (4.24)

where ∆ is the coproduct. However, due to the fact that Bethe states are highest weight

states, the above vanishes. In other words, the inclusion of excitations lowers the order of

the overlap for large k.

In order to gain a better understanding of this phenomenon, let us look at the large k

behavior for M = 0, 2, 4. We study the large k behavior by explicitly evaluating the relevant

overlap function for a large range of values of L, k. The overlap will be a polynomial in k

of degree at most L + 1 with coefficients that are rational functions of L. Letting L run

from 2 to 20 and k from 2 to 30 allowed us to fix the relevant coefficients. In general, we

find that the large k behavior is of the form

〈MPS |~p 〉 =N
∑
σ

∑
ni

∑
m=0

β
(m)
L,M (ni)k

L+1−m eipσ(i)ni+
∑
j<i

i
2
θσ(j)σ(i) . (4.25)

The coefficient β(0) is constant and can be read off from (4.23). For M = 0 the first few

β(m) are constant and from (4.4) the large k behavior is easily found to be

〈MPS |0〉 =
1

2L

(
kL+1

L+ 1
− 1

6
LkL−1 +

7

360
(L− 2)(L− 1)LkL−3 +O(kL−5)

)
. (4.26)

Notice that the even orders vanish.

However, starting from M = 2 the coefficients become non-trivial. Let us list the first

few β
(m)
L,2 and describe their contribution. If we denote nij = ni − nj , then

β
(1)
L,2 =

2−L

L− 1
, (4.27)

β
(2)
L,2 =

21−L

L− 3

[
L

3
+
n12(L+ n12)

L− 1

]
(4.28)

β
(3)
L,2 =

L(L+ 1) + 6n12(L+ n12)

3 · 2L(L− 3)
(4.29)

β
(4)
L,2 =

21−L

L− 5

[
(L− 2)L(L+ 3)

30
+

(L2 − 4L+ 5)n12(L+ n12)

3(L− 3)
+
n2

12(L+ n12)2

3(L− 3)

]
. (4.30)

Since β
(1)
L,2 is constant it vanishes by the same arguments as the leading order. For the

other terms, the factors of ni can be written as derivatives of momenta pi when calculating

the explicit overlap function. This allows us to evaluate the overlap (4.25) to the relevant

order. Again we find that upon using the Bethe equations that it vanishes unless we impose

pairwise momentum conservation. Doing this, we find for the next two terms

〈MPS |p,−p〉 =
u
(
u+ i

2

)
L

L− 3

[
kL−1

2L−2
+ (L− 1)

kL−2

2L−2
+O(kL−3)

]
. (4.31)
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kL+1 kL kL−1 kL−2 kL−3

M = 0 ? 0 ? 0 ?

M = 2 0 0 ? ? ?

M = 4 0 0 0 0 ?

Table 1. Large k behavior of the one-point functions for M = 0, 2, 4 excitations. The order at

which the expansion starts is kL+1−M .

Notice that, in contradistinction to the vacuum, there is a contribution at an even order.

Finally, the next non-trivial contribution is

〈MPS |p,−p〉O(kL−3) =
22−LL(L− 1)

3(L− 3)(L− 5)
u

(
u+

i

2

)
[L(L− 11)− 12u2]. (4.32)

Starting from kL−1 terms appear at both even and odd orders.

Next, we turn to four excitations M = 4. It can be shown that the first order for

M = 4 particles that contributes is kL−3. This seems to indicate that the order at which

the large k expansion begins is kL−M+1. The first non-trivial coefficient for four particles

can be computed along the same lines as for M = 2 and we find

u1

(
u1 + i

2

)
u2

(
u2 + i

2

)
2L−4

L

L− 7

[
L− 4 +

2(1 + u4
2 + u2

1(1− 8u2
2))

(1 + (u1 + u2)2)(1 + (u1 − u2)2)

]
kL−3 . (4.33)

The general structure of the contributions is indicated in table 1.

5 Matrix product and Néel states

In this section we elucidate the relationship between the matrix product and the Néel

states. This will allow us to prove equation (2.24) for M = L/2. The Néel state is the

vacuum of the classical (Ising) anti-ferromagnet:

|Néel〉 = |↑↓↑↓ . . . ↑↓〉+ |↓↑↓↑ . . . ↓↑〉 . (5.1)

The state has equal number of up and down spins (we assume that the length L of the spin

chain is even).

On the other hand, the matrix product state has components with any even number

of up and down spins. Since the total spin in conserved, it is convenient to decompose

this state into components with definite number of up and down spins. Let us denote the

projector onto states with M down spins by PM , and select the definite-spin component of

the MPS (2.14) by

|MPSM 〉 = PM |MPS〉 . (5.2)

To facilitate the bookkeeping, it is convenient to introduce the generalized MPS:

|MPS(z)〉 = tr
a

L∏
l=1

(t1 |↑l〉+ zt2 |↓l〉) (5.3)
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Figure 1. The generalized MPS state (5.7).

where z is a complex number. Then,

|MPSM 〉 =

˛
dz

2πizM+1
|MPS(z)〉 . (5.4)

We can also generalize the Néel state to the case of an arbitrary even number of down

spins:

|NéelM 〉 =
∑

l1<...<lM
|li−lj | − even

∣∣∣∣∣↑ . . . ↑↓l1↑ . . . ↓l2 . . . ↓lM . . . ↑

〉
. (5.5)

This looks like a descendant of the ground state, and would have been such, if not for the

constraint that spin-flips hop by an even number of sites. Obviously,

|Néel〉 =
∣∣∣NéelL

2

〉
. (5.6)

Another state that we shall deal with is a hybrid between the generalized Néel and

MPS:3

|MPSm(z)〉 = tra
∑

l1<...<lm
|li−lj | − even

m∏
s=1

π(−)s+1 |↓ls〉
ls+1−1∏
l=ls+1

(t1 |↑l〉+ (−1)szt2 |↓l〉)

 , (5.7)

where the product is understood in the cyclic sense, such that lm+1 ≡ l1 and l = L+ k is

identified with l = k. Here π± are chiral projectors in the auxiliary space:

π± =
1

2
± t3. (5.8)

For instance, in the representation where ti = σi/2, these are the ordinary spin-up/spin-

down projectors:

π+ = |↑a〉 〈↑a| , π− = |↓a〉 〈↓a| . (5.9)

The generalized MPS can be pictured as a collection of m domains, separated by

domain walls. Each domain wall carries a down spin in the quantum space and π± projector

in the auxiliary space. The sign of z flips across each domain wall (figure 1). Since π±
are projectors, the trace over the auxiliary space decomposes onto the product of matrix

elements for each of the domains. The chirality of projectors enforces the domains to

contain odd number of sites each.

The definite-spin projections of the generalized MPS,

|MPSm,M 〉 = PM |MPSm(1)〉 =

˛
dz

2πizM−m+1
|MPSm(z)〉 , (5.10)

3Here we assume that m is even. The definition however can be extended to odd m, see below.
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interpolate between the definite-spin components of the MPS and the generalized Néel

states (5.5). Indeed,

|MPS0,M 〉 = |MPSM 〉 , |MPSM,M 〉 = 2M−L |NéelM 〉 . (5.11)

All these different states are related to each other, and in fact can be all expressed

through the basic MPS (2.14) by simple projection and spin-lowering operations. In partic-

ular, we will find that definite-spin components of the MPS are cohomologically equivalent

to the generalized Néel states:

|MPSM 〉 =
1

2L
(
i
2

)M |NéelM 〉+ S− |. . .〉 , (5.12)

where Si is the total spin operator, and S− is its lowering component that flips in turn all

the spins in the chain with weight one.

Since Bethe states are highest-weight:

S+ |{uj}〉 = 0, (5.13)

their overlaps with the MPS and the Néel states coincide:

〈MPS |{u1 . . . uM}〉 =
1

2L
(
i
2

)M 〈NéelM|{u1 . . . uM}〉 . (5.14)

The determinant representation (2.24) in the case of M = L/2 then follows from the known

overlap between the Bethe states and the ordinary Néel state [28–30]. For other M , the

overlap is given by the same equation, which we believe is a new result, that would be

interesting to prove, either directly in the MPS representation or using its cohomological

equivalence to the generalized Néel states (5.5).

Now we proceed to prove (5.12). The proof rests on the following identity:(
i
d

dz
+ S−

)m
|MPS(z)〉 = m! |MPSm(z)〉 . (5.15)

Though not entirely obvious, this equation can be derived in a rather straightforward way.

Both S− and d/dz, when acting on |MPS(z)〉, produce l terms, where the l-th spin is

flipped, in the former case with the coefficient t1 and the latter case with the coefficient

t2. Altogether, the action of id/dz + S− creates a defect, a down spin accompanied by t+,

where

t± = t1 ± it2. (5.16)

Now, taking into account that

t±t1 = t1t∓, t±t2 = −t2t∓, t2± = 0, t±t∓ = π±, (5.17)

we find that

t+
li+1∏
l=li

(t1 |↑l〉+ zt2 |↓l〉) t+ =


0 (li+1 − li) − odd

π+

li+1∏
l=li

(t1 |↑l〉 − zt2 |↓l〉)π− (li+1 − li) − even

from which (5.15) immediately follows.

– 17 –



J
H
E
P
0
8
(
2
0
1
5
)
0
9
8

Applying the spin projection (5.10) to both sides of (5.15) we can express the general-

ized MPS through the ordinary one:

|MPSm,M 〉 =
m∑
s=0

im−s
(
M − s
m− s

)
(S−)s

s!
|MPSM−s〉 . (5.18)

The cohomological equivalence of the Néel states and the MPS state (5.12) is just a par-

ticular case of this relationship.

6 Classical limit

If the thermodynamic limit L → ∞ is accompanied by populating the spin chain with a

large number of low-energy magnons, such that M/L and uj/L are kept fixed as L→∞,

the spin-chain states become semiclassical [56–58]. Oftentimes one can directly compare

spin-chain results in this regime to classical string theory in AdS5×S5 [58, 59], even though

the two approximations are supposed to work in the opposite range of the ’t Hooft coupling.

In the scaling limit the Bethe roots concentrate on a number of cuts in the complex

plane and are characterized by the density

ρ(x) =
1

L

M
2∑
j=1

δ
(
x− uj

L

)
. (6.1)

We are interested in symmetric configurations, due to the selection rules for the one-point

function, and define the density by summing only over the right movers which constitute

one half of all Bethe roots. The density satisfies an integral equation

2

 
dy ρ(y)

(
1

x− y
+

1

x+ y

)
=

1

x
+ 2πnl, (6.2)

where nl are (positive) integer mode numbers, one integer for each arc of the Bethe root

distribution. The general solution to these equations can be written in terms of Abelian

integrals on an algebraic curve that characterizes a particular semiclassical state of the spin

chain [60].

We may ask how the overlap (2.21) behaves in this scaling limit. The non-trivial

dependence of the overlap on the Bethe roots enters through the determinants of G±,

which are structurally similar to the Gaudin determinant. The thermodynamic limit of

the latter was analyzed in [33] with the result that the leading contribution comes from

the near-diagonal matrix elements, with |i− j| � L. But in the ratio of determinants that

enters the overlap formula (2.24) this contribution simply cancels, because the difference

between the near-diagonal matrix elements of G+ and G− is of order 1/(uj + uk)
2 ∼ 1/L2

and vanishes in the thermodynamic limit. One may then expect that the ratio approaches

1, with corrections of order 1/L. However, the situation is more subtle, and the ratio in

fact approaches a finite constant value different from one:

Cu ' 2K e
1
2
L ln 2π2

λ
− 1

2
lnL+O( 1

L) (L→∞) . (6.3)
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The coefficient K is given by the ratio of functional determinants:

K =

(
detG+

detG−

) 1
2

, (6.4)

where

G±f(x) = − ∂

∂x

 
dy ρ(y)

(
1

x− y
± 1

x+ y

)
f(y), (6.5)

are operators that act in the space of functions defined on the same set of arcs in the

complex plane as the Bethe root density ρ(y).

The residual dependence on the density of Bethe roots arises because the original

discrete determinants in (2.24) have a set of nearly zero modes, as already noticed in [33].

These modes corresponds to vectors fj that are approximately constant on the scale |j −
k| � L. For such vectors the summation can be simply replaced by integration, and the

matrices K± and G± in (2.22), (2.23) become integral operators:

G±f(x) =
f(x)

x2
−
 
dy ρ(y)

(
K+(x, y)f(x)−K±(x, y)f(y)

)
, (6.6)

where

K±(x, y) =
2

(x− y)2
± 2

(x+ y)2
. (6.7)

Using the classical Bethe equations (6.2), the G± operators can be further simplified to (6.5).

Apart from a trivial kinematic factor, the structure constant Cu does not exponentiate

in the thermodynamic limit. This is perhaps an indication that the limit of large M and

L, at k = 2, is not really classical on the string side. Indeed, the natural classical limit

in string theory would also involve taking k large (natural scaling is k ∼
√
λ at strong

coupling [3]). We postpone a detailed study of this limit for future work, and just make a

few general comments on possible comparison to string theory in the next section.

7 Comparison to string theory

Earlier studies of chiral primary operators have shown that one can expect an agreement

between one-point functions calculated in gauge theory and one-point functions calculated

in string theory to leading order in the parameter λ/k2 in a double scaling limit where

both λ and k are sent to infinity but the ratio λ/k2 is kept fixed and small. Hence, for this

purpose one would mainly be interested in large representations.

The calculation of one-point functions on the string theory side was previously carried

out in the case of chiral primary operators and involves computing the fluctuation of the

probe D5 brane action due to fluctuations in the background supergravity fields when a

source corresponding to the operator in question is inserted on the AdS boundary [3, 4].

The computation involved is completely analogous to the computation of a three-point

function involving a chiral primary operator and two giant gravitons [61], and follows a

general scheme of computing one point functions in the presence of a heavy probe, such as

Wilson loops [62] or the three-point function of two heavy and one light operators [63, 64].

– 19 –
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Performing the calculation of one-point functions involving other types of operators would

require other techniques. One type of operators one could dream of considering could be

BMN operators (i.e. two-excitation operators, considered in subsection 4.3.2). The string

theory dual of these were given in [65]. Another example could be the operator dual to a

folded spinning string with two angular momenta on S5. This operator is characterized by

its M ∼ O(L) Bethe roots being distributed on two arches placed symmetrically around

zero [58, 59] and belongs to the class of operators which have a non-vanishing overlap with

the defect operators, cf. section 2. Both for BMN- and spinning string types of operators,

however, it appears that the string theoretical calculation of the one-point function would

be of a similar complexity as the computation of a three-point function involving three

heavy operators.

8 Conclusion

We have seen a strong indication that the integrable structures underlying the duality

between N = 4 SYM and type IIB string theory on AdS5 × S5 leave an imprint on the

correlation functions of the defect CFT derived from the D3-D5 probe-brane set-up with

internal gauge field flux, k. We have concentrated our efforts on the calculation of one-

point functions of non-protected operators and we have proposed, for k = 2, a closed

expression of determinant form for the one-point function of Bethe eigenstates, based on

explicit computations involving states with up to eight excitations. Furthermore, for half

filling we have proved the formula by relating the matrix product state to the Néel state.

Needless to say that it would be very interesting to construct a proof of the formula in the

general case.

The formulation of the one-point function as an overlap involving a matrix product

state could indicate interesting connections to problems in condensed matter physics. In

addition, there are numerous other directions of investigation which could lead to further

insights on the theme touched upon here. One- and multi-point correlation functions of

defect CFT’s with dual gauge field flux could be studied for higher values of k, to higher

loop orders and for other probe brane set-ups, such as the D3-D7 case. Finally, it would

obviously be very interesting if one could match any of these quantities with quantities

derived in the dual string theory picture.

There are other cases in which heavy probes create a coherent field configuration in the

CFT vacuum, which at weak coupling can be studied by semiclassical methods. This is the

case for the ’t Hooft loops [66], surface operators [67, 68], and domain-wall defects [69, 70].

It would be interesting to investigate the spin-chain representation of one-point functions

in these cases as well.
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Figure 2. (a) The Hamiltonian (2.6). (b) The third charge (2.8).
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A Action of third charge on defect state

In this appendix we prove eq. (2.12). This is most easily done graphically. The Hamiltonian

density Hlm and the third charge Qlmn are shown in figure 2. Applying Ql−1,l,l+1 to the

defect state tr ti1 . . . tiL , we get

(Q ·MPS)ijk = δkjtststi − δijtktsts + 2δiktjtsts − 2δiktststj

+2δijtstkts − 2δjktstits + 4tktitj − 4tjtkti,

where i, j, k are indices on sites l − 1, l, l + 1 and we have suppressed the rest of the

wavefunction unaffected by the operator. Using the commutation relations (2.4) this can

be brought to the form

(Q ·MPS)ijk = δijtststk + 2δijtk + 4iεijststk − δjktitsts − 2δjkti − 4itiεjksts,

depicted in figure 3. The total charge vanishes upon summation over l, which should be

clear from the figure.
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Figure 3. The result of application of the third charge to the defect state. The horizontal bar

denotes the trace over the auxiliary space. The active sites are shown in thick black lines, while the

spectator sites, unaffected by Q, are shown in blue.
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