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Full-length single-cell RNA-seq applied to
a viral human cancer: applications to HPV
expression and splicing analysis in HeLa
S3 cells
Liang Wu1†, Xiaolong Zhang1,2†, Zhikun Zhao1,3,4†, Ling Wang5†, Bo Li1, Guibo Li1,6, Michael Dean7, Qichao Yu1,8,
Yanhui Wang1, Xinxin Lin1, Weijian Rao1, Zhanlong Mei1, Yang Li1, Runze Jiang1, Huan Yang1, Fuqiang Li1,
Guoyun Xie1, Liqin Xu1, Kui Wu1, Jie Zhang1, Jianghao Chen5, Ting Wang5, Karsten Kristiansen6, Xiuqing Zhang9,
Yingrui Li1,10, Huanming Yang1,11, Jian Wang1,11, Yong Hou1,6* and Xun Xu1*

Abstract

Background: Viral infection causes multiple forms of human cancer, and HPV infection is the primary factor in
cervical carcinomas. Recent single-cell RNA-seq studies highlight the tumor heterogeneity present in most cancers,
but virally induced tumors have not been studied. HeLa is a well characterized HPV+ cervical cancer cell line.

Result: We developed a new high throughput platform to prepare single-cell RNA on a nanoliter scale based on a
customized microwell chip. Using this method, we successfully amplified full-length transcripts of 669 single HeLa
S3 cells and 40 of them were randomly selected to perform single-cell RNA sequencing. Based on these data, we
obtained a comprehensive understanding of the heterogeneity of HeLa S3 cells in gene expression, alternative
splicing and fusions. Furthermore, we identified a high diversity of HPV-18 expression and splicing at the single-cell
level. By co-expression analysis we identified 283 E6, E7 co-regulated genes, including CDC25, PCNA, PLK4, BUB1B
and IRF1 known to interact with HPV viral proteins.

Conclusion: Our results reveal the heterogeneity of a virus-infected cell line. It not only provides a transcriptome
characterization of HeLa S3 cells at the single cell level, but is a demonstration of the power of single cell RNA-seq
analysis of virally infected cells and cancers.

Keywords: Single-cell transcriptome, HeLa, HPV, Virus, Tumor heterogeneity, Cancer, RNA splicing

Background
Virus infection causes approximately 12 % of cancers
in the world [1–4]. Human papilloma virus (HPV),
Epstein-Barr virus (EBV), hepatitis B virus (HBV),
Kaposi’s sarcoma-associated herpes virus (KSHV),
Merkel cell polyomavirus (MCPyV), hepatitis C virus
(HCV), Human immunodeficiency virus (HIV) and
human T cell lymphotropic virus type 1 (HTLV-1) are
associated with multiple forms of malignancies [4–11]. In
particular, nearly all cervical cancers are caused by high

risk HPV infections [12]. The underlying mechanisms of
virus-triggered cellular changes are signaling mimicry,
effects on the DNA damage response, virally encoded on-
cogenes and chronic inflammatory responses to persistent
viral infection [4, 13–16]. Tumor heterogeneity creates a
challenge in the development of cancer treatments
[17–20]. Recent single-cell RNA-seq techniques have
been used to investigate the inter/intra-tumor hetero-
geneity in gene expression, alternative splicing vari-
ants and SNVs [21–24]. However, there has not been
any investigation of the heterogeneity of virally in-
fected tumors by single-cell RNA-seq.
The HeLa cell line is the most widely used model in

biology research, and is a virus-infected cell line derived
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from cervical tumor tissue established in 1951 [25].
Recently whole genome and transcriptome sequencing
of different HeLa strains were used to comprehensively
understand the HeLa cell line [26, 27]. These studies in-
dicate that HeLa has a high level of aneuploidy, numer-
ous large structural variants, extensive point mutations
and extensive genomic rearrangement, especially at
chromosome 8q24.21, the hotspot site HPV-18 genome
integration [26, 27]. However, the HPV integrations and
point mutations are relatively stable over multiple HeLa
cell isolates [26, 27]. Therefore HeLa is a good object for
a pilot study to investigate the tumor heterogeneity in
cervical cancer and other virus-infected cancers based
on single-cell transcriptome analysis.
Here, we developed a microwell full-length mRNA amp-

lification and library construction system (MIRALCS),
allowing massively parallel single-cell full-length tran-
scripts amplification for whole transcriptome sequencing.
Using this new pipeline, we sequenced single-cell tran-
scriptomes of 40 HeLa S3 cells, and demonstrated exten-
sive heterogeneity of this virus-infected cell line in gene
expression, alternative splicing, and fusion. Furthermore,
we also found a set of genes which are potential
interactors with or regulated by E6, E7 based on co-
expression analyses. Most interestingly, we reported a
high diversity of HPV-host expression and splicing at
the single-cell level.

Date description
We collected the HeLa S3 cells by using standard cul-
tured cell collection procedures. We carried out full-
length mRNA amplification of single cells and total
RNA from cell populations using both MIRALCS and
traditional tube-based methods (Methods). We identified
669/4464 target wells of HeLa S3 cells prepared by
MIRALCS, and randomly selected 40/669 amplified
cDNA products of single cells and 5/144 replicates of
10 pg total RNA to do subsequent library preparation.
Of all 45 libraries, 37 single-cell and 5 replicated 10 pg
total RNA libraries were sequenced on Hiseq 2000 for
single-end 49 bp length (SE50, mean 6 million reads
per library), while 8 single-cell libraries (5 cells over-
lapped with the front cells) were sequenced on the
same platform but with paired-end 150 bp length
reads and much deeper sequencing (PE151, mean 27 mil-
lion reads per library) for additional analysis beyond ex-
pression profiling (Additional file 1: Figure S1). External
RNA Controls Consortium (ERCC) spike-in mRNAs were
added in the cell lysis buffer of 19 of the 37 single cells as
well as all 5 replicates of 10 pg RNAs (Additional file 1:
Figure S1), and were used for the assessment of MIRALCS
and absolutely quantification of the mRNA molecular
counts of each library. For the tube-based method, the
amplified cDNA of 5 single HeLa cells picked by mouth

pipette, 3 repeats of diluted 10 pg total RNA were pre-
pared following SMART-Seq2 protocol [28], and were se-
quenced into SE50 reads (mean 7 million reads per
library). In addition, one 5 ng bulk RNA as a control was
amplified by a tube-based approach and sequenced into
both SE50 (8 million reads) and PE91 (46 million reads).
All of these data were mapped to human reference se-
quence and with a mean mapping rate of ~75 %. Detailed
sample information and sequencing data information were
summarized in Additional file 1: Table S1, S2.

Analyses
A new full-length RNA sequencing method (MIRALCS)
To improve the throughput and reduce the reagent con-
sumption of single-cell RNA preparation, we established
a new pipeline called MIRALCS. In MIRALCS, we car-
ried out the entire process from single-cell separation to
cDNA amplification in a customized 200 nl 5184-well
microwell chip. The cDNA products can be transported
by an automatic extractor, constructed into libraries and
sequenced. The main steps of MIRALCS include cell
loading, single-cell cDNA preparation, target well identi-
fication, amplified cDNA product extraction and library
construction (Fig. 1a).
We dispensed the lysis buffer with RNase inhibitor

into the microwells to stabilize RNA during the cell
loading, and cell separation can be carried out in 15 min
to reduce RNA degradation. The cell distribution follows
a Poisson distribution [29]. To decrease cell sedimenta-
tion velocity, we used Percoll solution and found ~90 %
of cells remaining in suspension after 30 min when cell
concentration was <5 cells/μl in 20 % Percoll (Methods,
Additional file 1: Table S3). To select a suitable cell con-
centration, we tested the cell distribution at different
concentrations (Methods). We tested several cell con-
centrations (Additional file 1: Figure S2), and chose 2 to
8 cells/μl to balance the percentages of wells with single
cell and those with multiple cells.
We followed the modified SMART-seq2 protocol [28]

to complete RNA reverse transcription and cDNA amp-
lification (Methods), to enrich for full-length transcripts
in single cells. Because there are up to 5184 wells on the
chip, we developed a new semi-automated method to
identify positive wells. We used cycle threshold (Ct) and
melting temperature (Tm) values to discriminate
amplified cDNA products from primer dimers (Fig. 1b,
Additional file 1: Figure S3). The Ct and Tm values
showed a significant difference between negative con-
trols and positive controls (P < 0.001, Fig. 1b). We
used combined cutoff values of Ct median ± 0.5 and
Tm > 85 to identify target wells. To test the false
positive rate, we randomly extracted products (20 pre-
dicted target wells with cDNA, 20 predicted non-
target wells without products, 5 wells of negative
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controls, and 5 wells of positive controls; Fig. 1a, c,
Additional file 1: Table S4), and found no false positives or
negatives (Fig. 1c, Additional file 1: Figure S4). The yields
of the cDNA products from each well were 0.5 ~ 3 ng.
Then we used a customized automatic extractor to trans-
port the products of 45 wells (40 single HeLa cell and 5
replicates of 10 pg RNA wells) from microwell chip
to a 96-well plate for library construction and sequen-
cing (Methods).

Sensitivity, accuracy and reproducibility of MIRALCS
To assess the sensitivity of MIRALCS, we performed
a comparison of tube-based single cells and bulk
RNA vs. MIRALCS single cells on gene detection. To
assess the gene detection sensitivity and efficiency be-
tween MIRALCS single cells and bulk RNA, we com-
pared the detected genes of single cells with that of
bulk RNA. We found ~45.1 and ~62.6 % of the genes
detected in bulk RNA were detected in a random

Fig. 1 The schematic diagram of MIRALCS. a The flowchart of the MIRALCS. b The box plot of Ct (left) and Tm (right) value of the 20 % Percoll
solution (negative control) and 10 pg total RNA (positive control), respectively. c The Ct value and Tm value distribution of 20 % Percoll solution,
10 pg total RNA, non-target well and target well during cDNA amplification process in microwells. The target wells (well with cell) and the non-target
wells (without cells) were validated by Agilent 2100 Bioanlyzer. The line denotes Ct median. Horizontal bars denote ± 0.5
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single cell and 5 pooled cells, respectively (Methods,
Fig. 2a, and Additional file 1: Figure S5). For the bulk
RNA detected genes that were not detected in the
random single cells, 70.3 % were low expression level
genes (FPKM < 10) whereas only 27.6 % of the genes
found in both bulk RNA and single cells have FPKM< 10.
When we combined all 36 single cells together, the single
cells covered 92.9 % of the genes detected in bulk RNA;
5322 genes were uniquely detected in the combined
single-cell set and 1109 in the bulk RNA (Additional file 1:
Figure S6). However 96.8 % of the 1109 bulk RNA unique
genes were low abundance (FPKM< 10). The results re-
veal most of the bulk RNA uniquely detected genes were
low abundance, so they were likely not detected in ran-
domly single cells due to low or absent transcript in single
cells. Notably, on average 9.3 uniquely detected genes per
single-cell library (N = 36) had a strong signal (FPKM>
100), indicating some genes specifically expressed in rare
populations can be detected only by single-cell RNA-seq.
We evaluated gene detection sensitivity between MIR-
ALCS and the tube-based method: 12,163 (N = 37,
FPKM > 0) genes could be detected per cell by the
MIRALCS, which was less than the tube-based
method (14,050, N = 5, FPKM > 0, Fig. 2b), and com-
parable with that in downloaded single HeLa cells
prepared by Fluidigm C1 system (6666, N = 220, FPKM> 0,
Additional file 1: Table S13). To evaluate the gene detection
efficiency for transcripts of different abundance, we exam-
ined the fraction of mRNA as a function of gene expression
rank order and found they were consistent (P = 1, Student’s
t test; Additional file 1: Figure S7).
In addition, we evaluated the influence of sequencing

depth (from 0.1 to 8 million reads) on gene detection ef-
ficiency. The number of genes with FPKM> 15 did not
vary with depth, and the number of genes with FPKM <
15 increased dramatically with increasing depth (Fig. 2c,
Additional file 1: Figure S8). When the sequencing depth
was above 1.5 million reads, the number of genes with
FPKM > 1 remains nearly constant (Additional file 1:
Figures S8, S9). Therefore we need not to consider the
influence caused by sequencing depth in subsequent
analysis since all libraries were sequenced more than 1.5
million reads.
To assess the accuracy of the MIRALCS, we added a

known quantity of ERCC spike-in mRNAs. The estimated
mean expression of these spike-ins was strongly correlated
with input molecular number (r = 0.92, Fig. 2d), and the
correlation coefficient increased to 0.96 when the spike-
ins with an expected molecule number >1 per well were
selected, indicating high accuracy of the MIRALCS. We
modified the reaction conditions of the SMART-seq2
from 1–15 μl to 50 nl. To investigate any additional bias
introduced by these modifications, we compared bias of
strand, transcript coverage by position, transcript length

and GC content for these two methods. To estimate the
strand bias during PCR amplification, we compared the
number of forward and reverse reads mapped onto the
reference genome. The strong correlation between for-
ward and reverse reads (mean r = 0.95, Additional file 1:
Figure S10A) was comparable with bulk RNA (r = 0.97,
Additional file 1: Figure S10B). We respectively estimated
transcript coverage by position and fraction of detected
genes in a range of transcript lengths, and found no differ-
ences from tube-based single cells and bulk RNA (P = 1,
Student’s t test, Fig. 2e; P = 1, Student’s t test, Additional
file 1: Figure S11A). To investigate GC bias, we deter-
mined the gene detection ratio over a range of GC content
and observed no apparent bias (P = 1, Student’s t test,
Additional file 1: Figure S11B). These results indicated
that the MIRALCS was accurate in profiling single-cell
transcriptomes.
To evaluate the reproducibility, we calculated the cor-

relation coefficient of expression from external spike-ins
and 10 pg RNA replicates. Firstly, we calculated the cor-
relation coefficient between pairwise wells using the
spike-ins expression and found the mean correlation co-
efficient was 0.95, revealing a high reproducibility of
the MIRALCS platform (Fig. 2f, g, Additional file 1:
Figure S12). Secondly, we also estimated correlation
coefficients between pairwise 10 pg RNA replicates to
assess the reproducibility, and observed that the gene
expression consistency of the 5 replicated MIRALCS
samples was much higher than that of the 3 repeated
tube-based samples (P = 4.18 × 10−6, Student’s t test,
Fig. 2h, i, Additional file 1: Figure S13). The better
reproducibility of the MIRALCS could be due to
more precise reagent loading.

Single-cell RNA-seq reveals heterogeneity in HeLa S3 cells
The HeLa cell line is a valuable model for biological and
molecular studies and we chose it for a pilot study of
virus-infected tumors and cervical cancer research. Here,
we described the transcriptome characteristics of HeLa
S3 cells and investigated the heterogeneity in gene ex-
pression, alternative splicing, fusion and HPV-host tran-
script expression.

Differential mRNA abundance in HeLa S3 single cells
The normalized value of RPKM/FPKM and TPM are
widely used in RNA-seq data analyses to indicate gene
expression level. However, these values give a relative ex-
pression level rather than true transcript concentration,
and can be affected by total RNA numbers in single cells
[30]. To investigate the absolute mRNA molecular num-
ber of each gene, we used linear regression to calculate
the relationship between FPKM and the actual added
molecules according to the spike-ins [31] (Methods). We
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Fig. 2 A high sensitivity, accuracy and reproducibility of MIRALCS. a Comparison of gene number between single cell (the smaller circle) and the
5 ng bulk sample (the larger circle). The left, a typical cell; the right, 5 randomly selected cells (randomly sampling 0.4 million reads per cell) vs. the
5 ng bulk sample (2 million reads). b Gene detection in MIRALCS single-cells, regular tube-based single cells and 5 ng bulk RNA sample. c The
distribution of gene number on gene expression along sequencing depths. d The correlation of the mean expression (FPKM) and the number of
input molecules of spike-ins of all MIRALCS single-cell libraries. e The reads coverage along the transcript position from 5′ to 3′end. Error bar
stands for the standard deviation. f The correlation of spike-ins expression (FPKM) between two randomly selected MIRALCS single cells. g Heat
map of correlation coefficients of spike-ins expression levels with input molecules >1 for each library (n = 19). h The correlation of gene expression
(FPKM) between technical replicates. Left: two randomly selected MIRALCS 10 pg replicates. Right: two randomly selected tube-based 10 pg replicates.
i The pair-wise correlation in MIRALCS 10 pg RNA replicates and tube-based 10 pg RNA replicates
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observed good agreement between the input number of
spike-in RNA molecules and the corresponding FPKM
values (Fig. 2d, Additional file 1: Figure S14). Using this
normalization, we examined expression level distribu-
tions of all genes, and found the molecular number of
most genes are from 1 to 60 in HeLa S3 cells, consistent
with previous reports from lymphoblastic cells [31]

(Additional file 1: Figure S15). We found striking cell-to-
cell differences in the total transcript numbers of
single cells (67,000–233,000), but relatively uniform
numbers in the 10 pg RNA libraries (79,000–142,000)
(Fig. 3a). We also found variable sizes of HeLa S3
cells (Additional file 1: Figure S16). According to previous
reports [32, 33], variability of cell size contributes to the

a

b

d

c

Fig. 3 Heterogeneity of gene expression in HeLa S3 single cells. a The mRNA molecular number in single cells and 10 pg RNA replicates. b The
heat map of the FPKM values of extremely highly expressed genes (FPKM > 500 in bulk RNA) in single cells and 10 pg replicates. c Single-cell
subpopulations identification based on cell cycle relative genes. The cells with underline are in G2/M phase. d Gene co-expression modules
derived from 19 single cells based on RNA molecular number (modules are distinguished by colors). The detailed of each module stands for were
shown on Additional file 4: Table S7. The weighted gene correlation network was constructed using the WCGNA R package [38]
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diversity of mRNA molecular number in cells. The
average molecular number of mRNA in HeLa S3 cells
was about double of that in a lymphoblastic cell line
(~152,000 vs. ~80,000 [31]). To our knowledge, HeLa
S3 cells are larger than lymphoblastic cells in size;
thus, this phenomenon also supports the conclusion
that cell size makes a contribution to the mRNA con-
tent of an individual cell.

Gene expression heterogeneity and co-expression network
analysis of HeLa S3 single cells
We first selected high expression genes (FPKM > 100,
Methods) to investigate gene expression heterogeneity.
We found these highly abundant genes were enriched in
pathways involved in metabolism of RNA and protein,
and translation pathways in both bulk sample and single
cells by using the Reactome analysis [34]. To investigate
the gene expression heterogeneity in single HeLa S3
cells, we compared the gene expression profile at the
single cell and population levels. We found that even for
extremely high expressed genes of bulk RNA, they
expressed a high range in single cells (FPKM > 500,
Fig. 3b). To further analyze cell-to-cell gene expression
variability, we examined the expression profile of 10 pg
RNA replicates whose variation appears to be technical
noise (Fig. 3b). Genes from 10 pg RNA samples display
more stable expression than in single cells, indicating
high heterogeneity in HeLa S3 cells. We further divided
highly expressed genes into stably expressed (108 genes)
and variably expressed (168 genes), based on the 10 pg
dataset (Methods). However, we did not find any obvious
difference in Reactome analysis result (Additional file 2:
Table S5) and the ratio of housekeeping genes (40/168
vs. 27/108, P = 0.94, Chi-square test).
To further investigate the underlying factors/pathways

triggering the heterogeneity of gene expression in HeLa
S3 cells, we selected a higher variant gene set whose
variance in single cells was > 6 folds of that in 10 pg
RNA replicates. According to Reactome analysis, we
found that the top three enriched pathway were cell
cycle, immune system and cell cycle mitotic. This result
supports the conclusion that cell cycle state makes a
major contribution to heterogeneity of HeLa S3 cells,
which also has been mentioned on recently published
paper [35].
Therefore we next performed cell clustering to deter-

mine cell cycle phases based on single-cell gene expres-
sion. We clustered the single cells into groups based on
the expression of phase-specific marker genes from a
previous study [36]. In the clustering result, a group of 7
cells (19 %) displayed higher expression of G2/M phase
marker genes (Fig. 3c). These 7 cells also showed a con-
sistent pattern with our cluster result using a different
set of cell cycle genes reported from another study [37]

(Additional file 1: Figure S17). Flow cytometry resulted
in a similar ratio of G2/M cells (17 %, Additional file 1:
Figure S18). We performed differential gene expression
analysis of the G2/M and non-G2/M groups, and identi-
fied 62 significant differentially expressed genes, includ-
ing 1 lncRNA (P < 0.001, Additional file 3: Table S6).
To understand the co-expression relationships between

genes at a systems level, we performed weighted gene co-
expression network analysis (WGCNA) [38] using the
molecules per cell estimated from above. We estimated
variances within single cells and 10 pg RNA replicates,
and selected genes whose variance in single cells was > 2-
fold of that in 10 pg replicates. In total 4329 genes were
selected for co-expression analysis by WGCNA, identify-
ing 18 distinct co-expression modules and determined
Reactome pathways for each module (Fig. 3d, FDR < 0.05,
Additional file 4: Table S7). For the largest module (blue
in Fig. 3d), genes were highly enriched in pathways of me-
tabolism of RNA and protein and translation. Genes from
the second largest module (light yellow in Fig. 3d) were
enriched in cell cycle and immune system genes. Another
interesting module including virus genes E6, E7 will be
discussed below.

Heterogeneity of splicing in HeLa S3 cells
Tumor specific alternative splicing isoforms have been re-
ported in previous studies of cancer cells [39, 40]. So we
investigated the alternative splicing of HeLa S3 cells both
at the bulk level and single-cell level. To accurately detect
alternative splicing events, we used paired-end sequencing
data from eight single cells and one 5 ng total RNA. We
divided splicing isoforms into known and novel isoforms
according to the Ensembl database. We found that one
third of genes expressed more than 1 isoform in both bulk
and single cells, demonstrating that the majority of genes
express only one isoform in HeLa S3 cells. We calculated
the frequency of isoforms in single cells, and the number
of isoforms with a frequency < 3 was much larger than
those with a higher frequency (≥ 3) for both annotated
and novel isoforms (Additional file 1: Figure S19A). This
indicates that many splicing isoforms are only expressed
in a small number of HeLa S3 cells. To further study spli-
cing polymorphism in single cells [31, 41], we focused on
highly expressed genes (mean FPKM> 100) to enhance
detection accuracy, and found more than two thirds of
genes expressed at least two isoforms in HeLa S3 cells.
We focused on tyrosine kinase pathway related genes,
which are the common targets for clinical drug treatment,
and selected five genes to investigate in detail the alterna-
tive splicing heterogeneity in HeLa S3 cells. We found
ANXA2, NPM1, YWHAB, and YWHAZ contained at least
2 different isoforms among different cells, while YWHAQ
and the housekeeping gene GAPDH has only one isoform
in all 8 cells (Fig. 4a). The variant forms in YWHAB and
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YWHAZ affect 5′ noncoding exons, while the alterations
in NPM1 and ANXA2 affect coding exons at the C
and N termini, respectively (Fig. 4a, Additional file 1:
Figure S19B). Two isoforms of YWHAB were expressed in
HeLa S3 cells, isoform 2 (NCBI) is expressed in all 8 single
cells, while isoform 1 (NCBI) was only detected in 6/8
cells with a lower abundance. NPM1 expressed 3 known
isoforms with isoform 3 (NCBI) encoding the shortest

protein and being expressed in some of the 8 single cells
with variable abundance; isoform 1, the longest transcript,
was highly expressed in all HeLa S3 cells, and isoform 2
was also expressed in all cells, but with an abundance of
less than one tenth of that of isoform 1 (Fig. 4a).
To further quantify alternative splicing, we focused on

paired donor-accepter splices with supported soft-clipped
reads, and splices with at least one of the donor or acceptor

a

b c

Fig. 4 Heterogeneity of alternative splicing and distributions of splices in in single cells. a The sequencing depth for genes of NPM1, YWHAB,
YWHAQ and GAPDH in single cells. b The frequency distribution of detected annotated and novel spliced junctions. c The distributions of the ψ
scores of annotated and novel spliced junctions in the bulk RNA (upper) and single cells (lower)
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sites annotated in GENCODE v19 (Methods). In addition
to annotated splices, we detected considerably variability in
the number of novel splices among single cells (72 to 780,
Additional file 1: Figure S20). For both the annotated and
novel splices, the majority were shared by a portion of the
single cells (Fig. 4b). We used the intron-centric splice in-
clusion ψ score [42] to quantify the splices. The ψ score
stands for the estimated expression ratio of the calculated
intron-centric splice, in that case, ψ score equal to 1 means
only one splice detected on this site. In bulk RNA, ψ scores
of most novel splices were very low and most annotated
splices were close to 1 (Fig. 4c). In single cells, ψ scores of
annotated splices were similar to that in the bulk RNA.
However, the fractions of ψ scores equal to 1 of novel
splices were higher than those of bulk RNA among genes
with FPKM less than 100. This was similar to that of bulk
RNA with FPKM over 100, but single cells display a higher
variance (Fig. 4c). This indicated that novel alternative spli-
cing events tend to be more unique in single cells.

Heterogeneity of fusion transcript in HeLa S3 cells
RNA chimeric transcripts produced from fusion genes
or two different genes by subsequent trans-splicing, and
translated into chimeric proteins contribute to carcino-
genesis [43]. Here, we used the transcriptome data to de-
tect fusion transcript events in HeLa S3 cells at the bulk
and single-cell levels. We detected 144 fusion transcript
events in 8 single cells with different frequencies and
only 1 event in bulk RNA (Additional file 1: Figure S21
and Additional file 5: Table S8). Of all the fusion candi-
dates, we observed 33 intra- and 111 inter-chromosomal
fusions.
The bulk sample detected fusion transcript RPS6KB1-

VMP1, were also detected in 7/8 single-cell libraries and
we validated this fusion event in bulk as well as in 8/8
additional single-cell cDNA (Additional file 5: Table S8),
but it was negative in DNA. We also did not find any
reads of the 4 × HeLa S3 whole genome sequencing
data supporting this fusion event, suggesting that the
RPS6KB1-VMP1 fusion event was caused by a stable
trans-splicing in HeLa S3 cells. This fusion also has
been reported in breast cancer and several cancer cell
lines including HeLa S3 [44, 45]; RPS6KB1 encodes
the protein p70S6K that plays a key role in control-
ling the cell cycle, growth and survival [46]. Then we
focused on the rest of the 143 fusion events uniquely
found in single cells. CEP89-PEPD fusions were de-
tected in 3/8 single-cell libraries, and validated both
in bulk and 2/8 additional single-cell cDNA products,
indicating a higher sensitivity for single-cell analysis
heterogeneity of fusion transcript in HeLa S3 cells.
Prolidase encoded by PEPD plays an important role in the
recycling of proline for collagen synthesis and cell growth,
the level of its activity in tissue and serum have been

reported to be a marker of pancreatic cancer and associat-
ing with endometrial cancer and epithelial ovarian cancer
[47–49].

Diversity of HPV/human genome fusion in single
HeLa S3 cells
Human papillomavirus (HPV) infection causes nearly all
cervical cancer [12]. Previous studies have identified
HPV-18 integration breakpoints in HeLa cell line using
both DNA-seq and RNA-seq [26, 50, 51], but not at the
single-cell level. We investigated the HPV/human break-
points as “fusion” events using the paired-end data of
eight single HeLa S3 cells and one 5 ng bulk RNA sam-
ple, and identified 16 distinct HPV-18/cellular fusion
breakpoints (13 in single cells and 9 in the bulk RNA,
Fig. 5a-c, Additional file 6: Table S9). The majority of
these fusions were located at 8q24.21 which is a hotspot
of HPV-18 integration [26, 50, 52] (Fig. 5a). A total of 10
and 6 events were located in intergenic regions and gene
regions, respectively. Four sites were located at or close
to the 5′ end of the gene CCAT1, which encodes a
MYC-regulated long noncoding RNA (lncRNA) and ef-
fects cell cycle regulation and tumorigenesis [53, 54].
HPV-human fusion events called from RNA-seq are

derived from HPV integration and splicing. To deter-
mine if these fusions are from integration or splicing, all
16 HPV fusions identified by RNA-seq were selected for
validation on cDNA and DNA by PCR and Sanger se-
quencing, respectively. Eleven fusions were successfully
validated in cDNA, while only 2 of them were also vali-
dated at the DNA level (Methods, Additional file 6:
Table S9). And we identified the splice acceptor-donor
sequences of 9/11 validated fusions and 3/5 of the
remaining fusions (Additional file 1: Figure S22, gt-ag
splicing); therefore, the majority of these fusions result
from transcription initiation within HPV and splicing
into flanking human DNA [55].
We also determined 4 HPV/human genome insertion

sites in the HeLa S3 genome sequencing data consistent
with earlier reports [26, 51] (Methods, Additional file 1:
Table S10). To investigate the HPV integration and ex-
pression of fusion events at the single-cell level, we vali-
dated the 4 genome breakpoints and 5/11 RNA fusions
in single-cell DNA and cDNA, respectively. We found
all genome breakpoints were validated in all 10 add-
itional single-cell DNA, while RNA fusions were vali-
dated in 64 additional single-cell cDNA samples with
different frequencies (Additional file 6: Table S9), show-
ing a diversity of splicing and expression of HPV-host
transcripts in single cells. This data demonstrates that
the integrations in the genome are invariant in all single
cells, whereas the HPV-to-genome splicing events dif-
fered between individual cells.
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By mapping the chromosome 8 HPV-genomic fusion
transcripts onto the DNA sequence, we distinguished
read-through and spliced transcripts resulting from the
two independent HPV-18 genomic fragment copies, and
we also detected multiple alternative splicing events
(Fig. 5d). To further investigate the heterogeneity of
HPV expression and splicing from these two integrated
copies in HeLa S3 cells, we selected 5 “fusion” events
and quantified the relative expression ratio of each tran-
script by using single RNA-seq data and qPCR results, at
single-cell and bulk levels, respectively. In 64 single cells
and one bulk cDNA, only 7/64 single cells and bulk cDNA
expressed all 5 transcripts, the other single cells expressed
1 ~ 4 transcripts (Additional file 1: Figure S23A). We also
found that for the majority of single cells, a read-through
transcript (chr8: 128,241,546 −HPV: 2497) is the most
abundant of the five transcripts (mean ratio 84.0 %). An-
other spliced transcript (chr8: 128,231,211 −HPV: 929) is
expressed with a large range of transcript ratios (1 to
100 % in individual cells, Additional file 1: Figure S23).
We observed the same proportional distribution pattern
of these five transcripts from sequencing data and qPCR
validation results (Additional file 1: Figure S23B), revealing
that quantification from single-cell RNA-seq data is reli-
able. Therefore, we utilized the RNA-seq data to quantify
all 15 fusions which were detected from the two inte-
grated HPV copies (Fig. 5d). A considerable diversity
and heterogeneity of expression of these transcripts
were observed between single cells (Additional file 1:
Figure S23C). We also found a spliced transcript
(chr8: 128,241,375 −HPV: 929) showing much higher
expression than others, and another read-through tran-
script (chr8: 128,241,546− HPV: 2497) expressed more
stably. Therefore, we speculate that these two transcripts
have a primary role in the HPV-18 tumorigenic process.
By mapping reads onto the HPV genome, we found

two main splicing sites at nucleotide (nt) 233 and nt 929
in HPV, consistent with previous reported HPV isoforms
[56]. We observed large differences in the ratio of splices
at sites of nt 233 and nt 929 between cell populations
(bulk RNA) and single cells (Additional file 7: Table S11).
The majority of splices at site nt 233 were to nt 416 of
HPV, while nearly all splices that occurred at site nt 929
were from the HPV-18 genome to the human genome
(Additional file 7: Table S11). Splicing at nt 233 to nt 416

generates a truncated E6 protein (E6*I) which is thought
to inhibit the function of complete E6 protein [57, 58]. It
is interesting that only 1/8 cells predominantly express a
complete E6, while all others express primarily the trun-
cated E6. To our knowledge, this is first description of di-
versity and heterogeneity of HPV splicing and expression
at the single cell level.
The HPV-18 E6 protein inactivates p53 [59] and E7

promotes the degradation of RB1 [60]. The expression of
E6 and E7 is regulated by the E2 protein [61]. E6 and E7
were highly expressed in all cells (Fig. 5b), but we de-
tected L1, L2 gene expression only in the 5 ng bulk RNA
library and 1/40 of the single-cell libraries. Interestingly,
E6 and E7 were clustered into the same module in the
gene co-expression analysis (Fig. 4d). Genes of this mod-
ule were enriched in telomere maintenance and E2F me-
diated regulation of DNA replication, which plays
important roles in HeLa oncogenesis [62, 63]. Genes in
this module including CDC25 [64], PCNA [65], PLK4
[66], BUB1B [67] and IRF1 [68] have been reported to
be regulated by or interact with E6 and E7. We also per-
formed gene classification in this module based on ex-
pression correlation to predict the genes influenced by
E6 or E7, and found the YWHAZ gene, known to
interact with TP53, tightly clustered with E6 and E7
(Additional file 1: Figure S24). So we speculate that
additional genes within this module, including several
lncRNAs (Additional file 8: Table S12), may be related
to the viral infection/tumorigenesis process.

Discussion
In this paper, we present a single-cell RNA preparation
platform to realize high throughput, semi-automatic, full-
length single-cell RNA preparation on a nanoliter-scale.
Using this platform, we performed single-cell RNA-seq of
a virally infected cell line and described a comprehensive
understanding for the heterogeneity of HeLa S3 cells
in gene expression, alternative splicing and fusion
transcripts. We also provided cell classification based
on cell cycle states and analyzed co-expression net-
work modules of HeLa S3 cells. Furthermore, we
characterized the diversity of HPV-18 expression and
splicing in HeLa S3 cells at the single-cell level.
The new pipeline MIRALCS described here enables

the preparation of full-length cDNA from more than

(See figure on previous page.)
Fig. 5 The landscape of the HPV-18/cellular fusion and diversity of HPV-host splicing and expression in HeLa S3 cells. a The overview of the HPV-18 cellular
fusion based on HeLa cell transcriptome. Blue lines denote fusion events. b The read coverage of HPV-18 genome in single cells and the bulk RNA. Colored
vertical lines denote nucleotides of SNPs detected in the transcriptome. Light green, A; red, T; orange, G; blue, C. c The read coverage of the host region on
chromosome 8 in single cells and the bulk RNA. d The schematic diagram of the inferred HPV integration structure (upper) and splicing forms (lower). RPM
stands for reads per million
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500 single cells per run in a microwell chip, which
presents a higher throughput than that of the com-
mercial instrument Fluidigm C1 (Additional file 1:
Table S13). And MIRALCS generates comparable re-
sults with C1 for data quantity and gene detection
number (MIRALCS vs. C1, 75 vs. 60 %, mean 7654
vs. mean 5619, FPKM > 1, Methods, Additional file 1:
Table S13). Besides HeLa S3 cells, we have success-
fully used this platform to prepare single-cell RNA of
biopsy material from a variety of samples such as
bladder cancer tissue, liver cancer tissue and B cells,
with a higher success rate compared with a tube-
based approach (data not shown). To approach abso-
lute quantitation of mRNA copy number we used a
spiked-in RNA. However we note that this method
has limitations due to loading of consistent spike-in
amounts and efficiency of amplification of individual
genes. In addition, the MIRALCS method could be
further improved. The current version of MIRALCS
only automates the amplification of single-cell cDNA,
while the library construction is finished in single
tubes, so we are working on performing library con-
struction in the same well as the cDNA amplification,
to further improve the automation of single-cell RNA
preparation.
In this paper, we investigated virally infected cells

by single-cell RNA-seq. By the analysis of HPV-18
transcripts, we observed the diversity of HPV-18 spli-
cing of sequences integrated in the host genome.
Similar studies could also be carried out to study
clinical cervical cancer as well as other virally induced
cancers. Investigating of viral gene expression could
be used to monitor infection and progression of virus
induced cancers [50, 69].
Single-cell transcriptome analysis can also be used

to identify co-expressed genes [31]. In our data we
identified a cluster of co-expressed genes containing
both the E6 and E7 viral oncogenes, along with 281
cellular genes. In this cluster, apart from some known
genes regulated by or interacted with E6 and E7, the add-
itional cellular genes including lncRNAs are candidate
genes potentially interacting with E6 and E7 and contrib-
uting to viral transformation. Of course, further functional
experiments are needed to validate these genes.
In summary, MIRALCS is an improved method for

single-cell transcriptome analysis. Using this platform,
we realized a transcriptome study in HeLa S3 cell at
the single-cell level, and presented the heterogeneity
of gene expression, alternative splicing, fusion tran-
script and HPV-host splicing in this virus-infected
cell line. Our data provides further understanding of
this widely used biological and molecular model as
well as a pilot study of single-cell RNA-seq in virally
infected cancers.

Methods
Cell culture, single-cell suspension preparation and
RNA extraction
HeLa S3 cell line was purchased from American Type
Culture Collection (ATCC, CCL-2.2) and stored at −80 °C.
After anabiosis, the cells were cultured in DMEM medium
(GIBICO) supplemented with 20 % (v/v) FBS (GIBICO),
1 % L-glucose and 1 % nonessential amino acid, at 37 °C
in a humidified incubator containing 5 % (v/v) CO2. Cells
were collected into a 1.5 ml tube and the concentration of
cells was adjusted to 2 ~ 8 cells/μl in 20 % Percoll solution.
Percoll solution was purchased from Pharmacia, and
mixed with 10 × Phosphate Buffer Solution (PBS) with ra-
tio 9:1 to generate 100 % Percoll solution. And the 20 %
Percoll solution was prepared by 1 × PBS and 100 % Per-
coll solution mixed with ratio 8:2. Total RNAs from HeLa
S3 cell populations were extracted by an RNeasy plus mini
kit (Qiagen) according to the manufacturer’s instructions.

cDNA synthesis and amplification
The cDNA preparation of regular tube-based method
for HeLa S3 single cells, 10 pg total RNA and 5 ng total
RNA completely followed the SMART-seq2 protocol
[28]. The amplified cDNA of HeLa S3 single cells and
total RNA (1, 10, 40 and 160 pg) prepared by MIRALCS
followed a modified SMART-seq2 protocol with the fol-
lowing steps. For some single cells and all 10 pg total
RNA replicates, External RNA Controls Consortium
(ERCC) spike-in mRNAs (Ambion, Life Technologies)
were added into lysis buffer (mean 12,463 or 2493 copies
per well). Samples and all reagents were dispensed into a
customized 200 nl microwell chip (WaferGen Biosys-
tems) by multiple sample nanoliter dispensers (MSND,
WaferGen Biosystems). Firstly, 50 nl lysis buffer (10 %
Triton X-100 0.5 nl, 40 U/μl RNase Inhibitor 1.25 nl,
10 μM Oligo-dT Primer 12.5 nl, 10 mM dNTP Mix
12.5 nl and spike-in RNAs or nuclease-free water
23.25 nl) was dispensed into every microwell on the
chip, then 50 nl samples of HeLa S3 cells with concen-
tration of 8 cells/μl, or negative control (20 % Percoll so-
lution) or total RNA positive controls (1, 10, 40 and
160 pg/50 nl) were added into the wells. After cell lysis
(72 °C for 3 min and 4 °C for 5 min), reverse transcrip-
tion mixed solution (200 U/μl Super Script II Reverse
Transcriptase 6 nl, 5× SuperScript II First-Strand Buffer
16 nl, 5 M Betaine 16 nl, 100 mM MgCl2 7.2 nl, 100 μM
template-switching oligos 0.8 nl, 100 mM DTT 2 nl and
40 U/μl RNase inhibitor 2 nl per well) was dispensed
into wells, then the reverse transcription reactions were
carried out (42 °C for 90 min, 2 cycles of 50 °C for
2 min and 42 °C for 2 min, and then incubated at 70 °C
for 15 min, 12 °C for 5 min) on thermal cycling in-
strument (Prime). At last we added PCR reaction
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buffer (2× KAPA HiFi HotStart ReadyMix 41.67 nl,
10 μM IS PCR Primer 0.83 nl, Nuclease-free water
5 nl and 20× SYBR Green I 2.5 nl per well) into wells
by MSND, and amplified cDNA on SmartChip™ Real-
Time PCR Cycler (WaferGen Biosystems). During cDNA
amplification, SmartChip™ Real-Time PCR Cycler moni-
tored the fluorescence of SYBR Green I and outputted the
curves of fluorescence, the values of cycle threshold (Ct)
and melting temperature (Tm).
In the process of sample and reagent dispensing, the

reagents firstly was added into 36 wells of 384–well plate
following the MSND operation manual, and then the re-
agents in each well of 384-well plate were transported
into 144 wells of 5184-well microwell chip by MSND. In
this article, 5/36 wells were added as negative control
and positive controls, so only 31 wells containing HeLa
S3 cells were dispensed into 4464/5184 wells of micro-
well chip. More detailed operation steps of this platform
can be found in Additional file 1: Note 1.

Cell distribution calculation and target wells confirmation
To observe the cell distribution on microwell chip at dif-
ferent cell concentrations, we dispensed the cell suspen-
sion (cell stained by SYBR Green I) on a diaphanous
plastic film instead of the chip by MSND, which enabled
us to calculate the cell distribution under the micro-
scope (Additional file 1: Figure S25).
Target wells containing cell cDNA products were con-

firmed by Agilent 2100 Bioanalyzer. The 2100 result of a
real target well showed a main fragment from 500 to
3000 bp with a peak at 1 ~ 2 kb, similar to the RNA
positive control; and the 2100 result of a real non-target
well showed no fragments or only fragments shorter
than 200 bp, which were primer dimers, similar to the
negative control (Additional file 1: Figure S3).

Library construction and sequencing
For the tube-based method, amplified cDNA products
were purified by 1 × Agencourt AMPure XP beads
(Beckman Coulter). A total of 2 ng purified cDNA prod-
ucts from each sample were used as the starting amount
for library preparation. For the MIRALCS method, amp-
lified cDNA was extracted by an automatic extractor
from the chip to 96-well plate and diluted from 200 nl
to 5 μl. And 3 μl cDNA products without purification
were directly used for library construction. The libraries
were prepared by TruePrep™ Mini DNA Sample Prep
Kit (Vazyme Biotech) according to the instruction man-
ual and each sample was labelled with a barcode. All of
the samples (40 single cells and five 10 pg total RNA
replicates prepared by MIRALCS; and five single cells,
three replicates 10 pg total RNA and one 5 ng bulk RNA
from populations of HeLa S3 cells prepared by tube-based
SMART-seq2 approach) were sequenced on Illumina

HiSeq 2000 sequencing system. Paired-end and single-end
sequencing strategies were both used for different analysis
purposes (Additional file 1: Figure S1, Tables S3, S4).

Public data set access
Human (Homo sapiens) reference genome sequence
(Hg19, GRCh37, Feb, 2009) was downloaded from
University of California Santa Cruz Genome Bioinfor-
matics [70], and the information of chrY was removed
before the analysis. The transcriptome reference annota-
tion GTF file (Ensembl GRCh37.75) was downloaded from
the Ensembl database [71]. The GENCODE annotation
file (v19) was downloaded from the GENCODE project
[72]. The HPV-18 reference genome sequence (GenBank:
NC_001357.1) was downloaded from the National Center
for Biotechnology Information [73].

Processing the mRNA sequencing data
The reads with the adaptor or poly-A sequences were
filtered out from the raw FASTQ data before alignment
using in-home C++ scripts. Besides, the low quality
reads which the N rate > 0.01 and the low quality base
(quality < 5) rate > 0.5 were also filtered out. Given the
different alignment efficiencies of software, clean reads
were aligned using TopHat2 [74] (v2.0.12) with Bowtie
[75] (v0.12.9.0) for single-end reads (49 bp) and Bowtie2
[76] (v2.1.0.0) for paired-end reads (90 and 150 bp). The
indexes of Bowtie and Bowtie2 were built using the
combination of the human genome, the HPV-18 genome
and ERCC spike-in mRNAs’ sequences. The parameters
for Bowtie were -g 1 -N 1 –solexa1.3-quals –segment-
length 24 –segment-mismatches 1, and the parameters
for Bowtie2 were -g 1 –read-gap-length 3 –read-edit-dist
3 –b2-very-sensitive –solexa1.3-quals –segment-length
30 –segment-mismatches 1. Gene expression levels were
quantified as fragments per kilobase of gene per million
mapped reads (FPKM). Read counts were calculated by
feature-count (Rsubread [77], v1.16.1), and FPKM values
were calculated using edgeR [78] with the reference an-
notation GTF file. The public HeLa single-cell RNA-seq
data generated by Fluidigm C1 platform were down-
loaded from NCBI (Accession: PRJDB3416). The
same pipeline of reads filtering, alignment and FPKM
calculation were performed on these single cells. The
single cells with mapped reads < 1.5 million were fil-
tered out.

Evaluation for the performance of the MIRALCS system
To evaluate the sensitivity and efficiency of the system,
BAM files from high-coverage sequencing data (from 8
single cells with more than 10 million reads and 5 ng
bulk RNA) were downsampled by randomly selected
reads at 17 sequencing depths (0.1 million reads to 0.9
million reads; 1 million reads to 8 million reads) using a
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Perl script, and downsampled results were then re-proc-
essed. The downsampled 2 million reads files of single
cells were randomly selected and processed for gene
detection in single cells and bulk RNA, and one
single-cell library with less than 2 million reads was
discarded from this evaluation analysis. In addition,
the detected genes from the merged datasets from 5
randomly selected single cells (downsampled 0.4 mil-
lion reads per cell) were also compared with those
from bulk RNA (downsampled 2 million reads) and
were repeated for 5 times (Fig. 2a and Additional file 1:
Figure S5). To evaluate the coverage bias, the genes with
only one isoform were selected, and divided into 100 win-
dows from 5′ end to 3′ end to calculate the fraction of the
depth. One-side Student’s t test was used for the compari-
son between the correlation coefficients of tube-based and
MIRALCS 10 pg replicates. Two-side student’s test was
used for other p values calculation on this paper unless
additional mentioning. Pearson correlation coefficient was
calculated for all the correlation analysis.
For each sample with spike-ins, the linear regression

forcing the regression through 0 (to avoid the assign-
ment of positive copies per cell of genes with 0 FPKM
values) was used to calculate the relationship between
log2 transformed FPKM values and log2 transformed ac-
tual added copies of the spike-ins. Only spike-ins with
molecules number more than 5 and FPKM values more
than 0 were used. The FPKM values of all genes were
converted to approximate copies using the linear regres-
sion method on a log2 scale.

Alternative splicing and fusion detection
Considering the accuracy of alternative splicing detec-
tion, only the paired-end sequencing data (8 single cells
and the 5 ng RNA) with PCR replicates removed using
samtools (14) were used. The 5′ and 3′ splicing inclu-
sion ψ scores [42] were calculated using the IPSA pack-
age [79] as followed:

ψ5 D;Að Þ ¼ Nreads D;Að Þ
P

Ai∈ANreads D;Aið Þ

ψ3 D;Að Þ ¼ Nreads D;Að Þ
P

Di∈DNreads Di;Að Þ

Where D and A refer to the donor and acceptor
splice sites respectively. The Nreads refers to the num-
ber of the reads crossing the donor or acceptor sites
after removing the PCR duplication. To remove the
potential artifacts during the experimental and se-
quencing procedure, only the known splice junctions
and novel junctions that contained at least one site
annotated in GENCODE v19 were retained for further
analysis. The paired splice junctions for which neither

the donor nor acceptor exists in GENCODE v19 were
discarded.
To analyze the different isoforms, Cufflinks [74] (v2.1.1)

was used with the parameter –u and Cuffcompare to ob-
tain the known transcripts set and the novel transcripts
set which were not found in the annotation file. The reads
distribution of the genes in ANXA2, NPM1, YWHAB,
YWHAQ, YWHAZ and GAPDH was visualized using the
Integrated Genome Viewer [80].
To ensure the accuracy of fusion detection, the same

data set in splicing calling was used. TopHat-fusion [81]
(v2.0.12) was used with parameters –fusion-search –fu-
sion-min-dist 100,000. TopHat-fusion-post was then
used with the parameters –num-fusion-reads 1 –num-
fusion-pairs 0 –num-fusion-both 5. The breakpoints
within less than 10 bp were merged considering the mis-
matches around the breakpoints.

HPV/cellular fusion detection
For the HPV genome was included in Bowtie/Bowtie2
index, the calculations of HPV genes expression and the
detection of HPV/cellular fusion breakpoints was per-
formed during the processing of the sequencing data.
The fusions were filtered as follows: 1) at least 5 mate
pairs that had one end spanning the fusion; 2) at least 10
spanning reads; 3) at least 1 spanning read that covered
the sequence length of each side of the breakpoint for
more than 65 bp. The fusion breakpoints within 10 bp
were then merged. Previous research [26] has reported
the haplotype of HeLa S3 cell line and the HPV integra-
tion. Considering the differences in the same cell lines
from different labs, the sequencing data of the mixed
gDNA from our HeLa S3 cell line with ~4× sequencing
depth was aligned to the reported haplotype (data not
shown). The haplotype was modified according to our
sequencing data. Therefore, the HPV/cellular fusions
were compared to the modified haplotype, and a fraction
of fusions were consistent. For the fusions that did not
exist in the haplotype, splicing donor-accepter signal
GT-AG was found at the fusion boundaries (Additional
file 1: Figure S23).

Heterogeneity analysis of single cells
Genes with FPKM more than 500 in bulk RNA were se-
lected for the mosaic expression analysis. To investigate
the different functions of genes with high variation and
low variation of expression, the ratio of (variance of
MIRALCS-SC)/(variance of MIRALCS-10 pg) of 442
genes with FPKM more than 200 in bulk were calcu-
lated. Among these genes, 168 genes with the ratio
more than 6 were considered as highly differently
expressed genes, and 108 genes with the ratio less
than 2 were treated as stably expressed genes. The
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Reactome [34] enrichment analysis was performed using
the MSigDB [82].
For the two different cell cycle phase-specific genes

sets [36, 37], genes with the mean FPKM value of single
cells more than 10 were retained to avoid false positives
caused by low mean FPKM values. Using these genes,
single cells were classified into different clusters based
on the hierarchical clustering method.

Co-expression analysis
The genes expressed at more than one estimated copy per
cell in at least one cell were retained. To minimize the in-
fluence of the stochastic differences during the experi-
mental and sequencing procedures, genes with a variance
of copies less than twice of that of the 10 pg replicates
were filtered out. The co-expression networks was con-
structed from the single cells using the WGCNAR pack-
age with β = 8 and a minimum module size of 25 genes.
The Reactome enrichment analysis was performed using
the MsigDB.

Validation of detected fusions
The selected fusion breakpoints (human-human and
HPV-human) were validated by PCR in bulk HeLa S3
cDNA, DNA and single-cell cDNA and DNA. We de-
signed the PCR primers on the basis of the paired-end
assembled fragments, in which one primer was located
in the left gene of fusion and the other in the right gene
of the fusion. Sanger sequencing was then used for the
PCR validated products on an Applied Biosystems 3730
DNA analyzer (Life Technologies, Inc.). For fusion tran-
scripts frequencies validation (RPS6KB1-VMP1 and CEP89-
PEPD), 8 single cell cDNA were used for PCR validation.
For HPV-host fusions, qPCR was used in additional 64
single-cell products to further validate the breakpoints fre-
quency (Additional file 1: Figure S1).

Availability of supporting data
The raw sequencing data in the fastq format is available
in the database of Genotypes and Phenotypes (dbGaP)
as an approved sub study of the HeLa Cell Genome se-
quencing Studies, phs000640, and the gene expression
data from this study hosted in the GigaScience Reposi-
tory, GigaDB [83].
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