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ORIGINAL ARTICLE
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Abstract

Blockade of the complement cascade at the C5a/C5a receptor (C5aR)-axis is believed to be an
attractive treatment avenue in rheumatoid arthritis (RA). However, the effects of such
interventions during the early phases of arthritis remain to be clarified. In this study we use
the murine delayed-type hypersensitivity arthritis (DTHA) model to study the very early effects of
a blocking, non-depleting anti-C5aR mAb on joint inflammation with treatment synchronised
with disease onset, an approach not previously described. The DTHA model is a single-paw
inflammatory arthritis model characterised by synchronised and rapid disease onset driven by T-
cells, immune complexes and neutrophils. We show that a reduction in paw swelling, bone
erosion, cartilage destruction, synovitis and new bone formation is apparent as little as 60 h after
administration of a single dose of a blocking, non-depleting anti-mouse C5aR mAb. Importantly,
infiltration of neutrophils into the joint and synovium is also reduced following a single dose,
demonstrating that C5aR signalling during the early stage of arthritis regulates neutrophil
infiltration and activation. Furthermore, the number of T-cells in circulation and in the draining
popliteal lymph node is also reduced following a single dose of anti-C5aR, suggesting that
modulation of the C5a/C5aR axis results in effects on the T cell compartment in inflammatory
arthritis. In summary, these data demonstrate that blockade of C5aR leads to rapid and significant
effects on arthritic disease development in a DTHA model strengthening the rationale of C5aR-
blockade as a treatment strategy for RA, especially during the early stages of arthritis flare.
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Introduction

The complement system is part of the innate humoral immune

system, which reacts immediately to defend against patho-

gens. However, complement is also implicated in various

auto-inflammatory diseases, including rheumatoid arthritis

(RA), where it contributes to disease pathology [1]. Immune

complexes in the articular space of RA patients activate the

complement system which results in the production of

complement components of which many are highly active

inflammatory proteins [2]. The complement anaphylatoxin

C5a, which is produced upon complement activation when C5

convertase cleaves C5 into C5a and C5b, is thought to be the

main complement component responsible for tissue damage

in RA [3]. Levels of C5a protein have been found to be

increased in the synovial fluid of RA patients [4], and

expression levels of C5a receptor (C5aR) on macrophages and

fibroblasts in the synovium of RA patients have shown to

correlate with the number of swollen joints [5]. C5aR is

expressed on many cell types, including granulocytes, mono-

cytes, macrophages, dendritic cells, mast cells, osteoblasts

and osteoclasts [6–8]. Expression on T cells, and epithelial

end endothelial cells [9,10], has also been reported.

Dependent on the cell type, ligation of C5a to C5aR leads

to endothelial adhesion, transendothelial migration and

chemotaxis of cells [6,11,12] and results in cell activation,

evident by oxidative burst, granule release and release of

inflammatory mediators such as TNFa, IL-6, IL-1b, vaso-

active amines, matrix metalloproteinases [11,13,14] and

decreased apoptosis of neutrophils [15]. C5a can also

induce osteoclast differentiation from peripheral blood

This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/Licenses/by/
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mononuclear cells (PBMCs) [8]. All these events are thought

to contribute to the tissue inflammation and destruction seen

in RA. Data from animal models also implicate the C5a-C5aR

axis in arthritis pathology. A vaccine that induces generation

of anti-C5a antibodies has been shown to be effective in

murine collagen-induced arthritis (CIA) in mice [16], and oral

treatment with a small molecule C5a antagonist reduced joint

damage in the rat antigen-induced arthritis model [17]. In

several mouse models of arthritis C5aR-deficient mice show

reduced disease development [18–21]. In human C5aR knock-

in mice, a mouse anti-human C5aR monoclonal antibody

effectively ameliorated neutrophil-dependent K/B�N serum

transfer-induced arthritis [22], and it has been shown that anti-

mouse C5aR mAb lowers disease activity when administered

in the early stages of murine CIA [23]. C5aR-blockade could

potentially prevent or abrogate an arthritis flare in patients,

and therefore the purpose of the present study was to study the

early effects of a blocking, non-cell-depleting anti-C5aR

mAb. For this purpose we chose the highly synchronised

delayed-type hypersensitivity arthritis (DTHA) model, previ-

ously described by us [24]. It is a single-paw arthritis model in

C57BL/6 mice, induced by modifying a classical methylated

bovine serum albumin (mBSA)-induced DTH foot pad

response by i.v. administration of an 8–10-fold lower dose

of the anti-type II collagen antibodies (anti-CII) than is

required to induce collagen antibody-induced arthritis (CAIA)

in the C57BL/6 strain. The mice display systemic manifest-

ations and severe paw inflammation and bone erosion, but

only in the antigen-challenged paw. The dose of anti-CII

given to induce DTHA does not have any arthritogenic effect

without combining it with the DTH foot pad response [24].

The model is ideally suited for testing compounds thought to

have an effect in the earliest stages of an arthritis flare

development, as treatment onset can be synchronised pre-

cisely with disease onset, which is defined exactly by the

experimenter as the time of foot pad challenge with mBSA. In

addition, disease incidence is 100% and the variation is low.

In contrast, treatment in the CIA model is often initiated at

first sign of disease, a time when early disease processes have

been ongoing for a while before the appearance of joint

swelling. Additionally, disease incidence in the CIA model is

less than 100% and the variation is relatively large.

In contrast to CAIA and the K/BxN models, disease

development in DTHA is dependent on CD4+ T cells, and

thus adds the dimension of the adaptive immune system while

still being significantly immune-complex and neutrophil-

driven [24]. Depletion of CD4+ T cells prior to immunisation

in DTHA completely prevents disease development [24] and

depletion post induction of arthritis reduces disease severity

significantly (our unpublished data). However, depletion of

CD4+ T cells after initiation of CIA does not ameliorate

disease [25], indicating that T cells are important for CIA

primarily in the immunisation phase after which the B cells

drive disease progression through the production of anti-type

II collagen antibodies. Previously, we have shown that

etanercept (a TNFa-inhibitor) could ameliorate disease in

DTHA both when administered at arthritis induction and post

arthritis induction [24], suggesting predictive validity of the

model for efficacy of new anti-arthritic biologics. Not all

preclinical data generated in the CIA model has been directly

transferrable to RA, including data on anti-IL-1, which

showed good efficacy in CIA, but limited therapeutic

potential in human RA [26]. So, although this anti-C5aR

mAb has previously been tested in the CIA model [23], we

also wished to test its efficacy in the DTHA model, as we

believe that efficacy data with this particular anti-C5aR mAb

from different arthritis models increase the probability of

translatable preclinical data.

In the present study we found that twice weekly treatment

with anti-C5aR mAb initiated at arthritis induction reduced

paw swelling, bone erosion, cartilage destruction, synovitis,

new bone formation and extra-articular inflammation. Our

data also demonstrate that these effects were apparent already

60 h after a single dose of anti-C5aR given at arthritis

induction. This shows that blocking C5aR is efficacious in the

earliest stages of arthritis flare development before the

appearance of joint swelling, which to our knowledge has

not been demonstrated previously in a mouse model. In

previous studies in the CIA model, dosing of the antibody

either took place prior to or after the appearance of joint

inflammation (REF). Due to the variable onset of disease in

the CIA model, treatment at the exact onset of inflammation

is not possible. Our data show reduced infiltration of

neutrophils into the joint space and synovium after a single

dose of anti-C5aR, demonstrating that one of the very early

effects of blocking C5aR is reduced neutrophil chemotaxis

into the inflamed joints. Levels of several neutrophil-

associated proinflammatory mediators in the affected paw

were also decreased indicating decrease in neutrophil activa-

tion. In addition, numbers of T cells in circulation and the

draining popliteal lymph node were reduced following a

single dose of anti-C5aR, which has not been shown

previously in a mouse model of arthritis, and indicates

interplay between the complement system and the T-cell

compartment in arthritis. In summary, these data demonstrate

that blockade of C5aR-signalling in DTHA leads to rapid-

onset effects reducing leukocyte activation and joint infiltra-

tion of neutrophils, bone erosion, synovitis and cartilage

destruction. Thus, these results strengthen the potential of

C5aR-blockade as a treatment strategy for RA and demon-

strate that C5aR signalling plays a role in the earliest stages of

arthritis flare.

Materials and methods

Mice

Female C57BL/6J mice (Taconic, Denmark) of 8–10 weeks of

age were used. Animals were housed in a facility with a 12 h

light/dark cycle and with free access to water and standard

rodent chow (Altromin�). All animal experiments were

conducted according to Danish legislation and have been

approved by the Danish Animal Inspectorate and the Novo

Nordisk ethical review board.

Induction and assessment of DTH-arthritis

Mice were anaesthetised by isoflurane/O2/N2O and immu-

nised intradermally (i.d.) with methylated bovine serum

albumin (mBSA) (Sigma, St. Louis, MO) emulsified in

complete Freund’s adjuvant (CFA) (Difco, Detroit, MI) at the

DOI: 10.3109/08916934.2015.1031888 Early-onset effects of C5aR-blockade in murine arthritis 461
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base of the tail. Four days later they received 1000mg (approx.

50 mg/kg) anti-mouse type II collagen antibody (anti-CII)

cocktail (Chondrex, Redmond, WA) containing the clones

A2-10 (IgG2a), F10-21 (IgG2a), D8-6 (IgG2a), D1-2G

(IgG2b), and D2-112 (IgG2b) intravenously (i.v.) in 200 ml

phosphate-buffered saline (PBS). Isotype control cocktail was

mixed using mIgG2a and mIgG2b (BioXcell, West Lebanon,

NH) in the same ratio as the anti-CII cocktail. Seven days

after immunisation the mice were challenged with 200 mg

mBSA subcutaneously in 20 ml PBS in the right foot pad. The

left foot pad was given 20 ml PBS only and served as control.

Baseline paw and ankle measurements were made on the right

paw on day 0 prior to mBSA challenge. Paw and ankle

swelling was measured using a dial thickness gauge

(Mitutoyo, Japan), and was calculated as right paw or ankle

thickness minus baseline measurement.

Test compounds and dosing of mice

Mice received either two weekly doses intraperitoneally (i.p.)

over two weeks or one single dose (i.p.) of the following

compounds: mouse anti-C5aR IgG2a.1, 0.5 mg/mouse cor-

responding to 25 mg/kg, or anti-TNP mouse IgG2a.1, 0.5 mg/

mouse corresponding to 25 mg/kg, endotoxin levels50.1 EU/

mg. Mice were sacrificed after two weeks of treatment or 60 h

(2.5 days) after a single dose.

Design of mIgG2a.1 antibody

The variable region for the heavy-chain (HC) and light-chain

(LC) was derived from the rat anti-mouse anti-C5aR mAb

20/70, a kind gift from Prof. Dr. Jörg Zwirner [27]. The

constant region of LC is mouse kappa and the constant region

of HC is mouse IgG2a designed with six mutations in the FC

region, resulting in mIgG2a.1. The engineered mutations

L234A, L235E, G237A (ADCC inactivation), D327Q, A330S

and P331S (CDC inactivation) were made to reduce ADCC

or CDC effector mechanisms. Lack of binding to mouse

Fc-gamma receptors I–IV was determined by surface plasmon

resonance analysis. The resulting anti-C5aR mIgG2a.1 mAb

was non-depleting (Supplemental Figure S1). The anti-

trinitrophenol (TNP) control mIgG2a.1 contained the same

six mutations as the anti-C5aR antibody.

Histopathology

Paws were processed and stained with hematoxylin and eosin

(H&E), Safranin O and for tartrate resistant acid phosphatase

(TRAP) as previously described [24]. TRAP stains osteoclasts

red, and Safranin O stains cartilage red. The intensity of red in

the Safranin O stain is inversely proportional to the degree of

proteoglycan depletion from cartilage. Pathological changes

in the paws were assessed on HE, TRAP and Safranin O

stained sections. The extra-articular infiltration of inflamma-

tory cells (assessed on a scale of 0–3) and arthritic changes

were assessed separately. Arthritic changes were assessed on

metatarsal and tarsal joints, respectively, where synovitis,

cartilage destruction and bone erosion were scored separately

on a 0–3 scale. For each of the three parameters of

arthritic changes, an average between the two joint

areas was calculated. In addition, new bone formation and

extra-articular infiltration overall in the paw was scored on a

0-3 scale. The histology sum score was calculated by adding

the five scores (extra-articular infiltration, synovitis, cartilage

destruction, bone erosion and bone formation), whereas the

extra-articular infiltration score is left out in the arthritis

score. The person who performed the evaluation was blinded

to the experimental setup.

Immunohistochemistry and digitalised image analysis

For immunohistochemical (IHC) detection of macrophages

and neutrophils in the paws, paraffin sections were pre-treated

with 10 mg/ml proteinase K for 10 min at 37 �C, and incubated

overnight at 4 �C with primary antibodies. Macrophages were

detected with 4 mg/ml rat anti-mouse F4/80 (IgG2b, Abcam,

Cambridge, UK) and neutrophils with 2 mg/ml anti-mouse

anti-Ly6B.2 (IgG2b, Ab Serotec, Nordic Biosite,

Copenhagen, Denmark). Rat IgG2b and IgG2a isotype

controls were applied on adjacent sections at the same

concentrations. The primary antibodies were detected with

rabbit–anti-rat antibodies (Dako, Glostrup, Denmark) fol-

lowed by incubation with HRP labeled EnVision + System

(Dako, Glostrup, Denmark). To visualise the target expres-

sion, sections were incubated with DAB (3-30-diamino-

benzidine-tetrahydrochloride) (Sigma-Aldrich) for 5 min and

counterstained with hematoxylin. The sections were all

digitally scanned and studied by using a NanoZoomer

Digital Pathology Virtual Slide Viewer (Hamamatsu

Photonic, Shizuoka, Japan). Automated digital image analyses

of the infiltrating macrophages (F4/80) and neutrophils

(Ly6B.2) in the paws were performed using the Visiopharm

Integrator System (VIS, version 4.2.2.0, Visiopharm,

Hoersholm, Denmark). On individual digital images of the

arthritic paw, a region-of-interest (ROI) was automatically

defined of the entire paw, and the bone marrow was outlined

manually. Next, an analysis was run inside the ROI to detect

the brown DAB staining of the specific IHC immunostaining,

followed by a calculation step. The results are given as tissue

area stained with F4/80 and Ly6B.2 of the entire paw area

(%). Semi-quantitative visual scoring of neutrophil and

macrophage influx into the synovium and joint space was

performed on the Ly6B.2 and F4/80 stained sections,

respectively, on a scale of 0-3, indicating the degree of

neutrophil or macrophage influx into the synovium and joint

spaces. The tarsal and metatarsal joints were scored as

two separate areas, and the final score calculated as the

average between the two. The evaluation of infiltration was

performed by two individual people who were blinded to the

experimental setup. Only the synovium tissue and joint space

area was included in the semi-quantitative analysis, in contrast

to the digitalised image analysis which analysed the entire

paw section, leaving out the contribution from the bone

marrow.

Enzyme-linked immunosorbent assays (ELISAs)

Levels of serum amyloid P component (SAP) were measured

in serum from mice with DTH-arthritis using sandwich

ELISA kits (Genway, San Diego, CA) according to the

manufacturer’s instructions. Levels of MPO in whole-paw

homogenates were measured using sandwich ELISA kits

462 S. M. Atkinson et al. Autoimmunity, 2015; 48(7): 460–470
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(Hycult Biotech, Uden, The Netherlands) according to the

manufacturer’s instructions. Paw homogenates for analysis of

MPO were prepared in a custom-made buffer containing was

a solution of 200 mM NaCl, 5 mM EDTA, 10 mM Tris, 10%

glycerin, 1 mM PMSF, 1 mg/ml leupeptin and 28 mg/ml

aprotinin with a pH value of 7.4 (Ampliqon, Skovlunde,

Denmark). Levels of C5a in whole-paw homogenate super-

natants were analysed by sandwich ELISA using the follow-

ing reagents (all from BD Biosciences, Franklin Lakes, NJ):

Capture rat anti-mouse C5a mAb, standard recombinant

mouse C5a, detection biotin-conjugated rat anti-mouse C5a

mAb, avidin-horseradish peroxidase (HRP) and reagent set B.

The serine protease inhibitor FUT-175 (Calbiochem,

Billerica, MA) was added to the homogenising buffer in

order to preserve C5a protein. Levels of receptor-activator of

nuclear factor kappa B (RANKL) were measured in serum

from mice with DTH-arthritis using sandwich ELISA kits

(R&D Systems, Minneapolis, MN) according to the manu-

facturer’s instructions.

Multiplex analysis of inflammatory markers in paw
homogenate

Paw homogenate supernatants from arthritic hind paws were

prepared as previously described [24]. The supernatants

were analysed undiluted for levels of inflammatory markers

using bead-based Luminex� xMAP� technology with

Milliplex kits from Millipore (Billerica, MA) according to

the manufacturer’s instructions. For statistical analysis, any

values below the detection limit were set to the detection

limit for the analyte in question and any values above

detection limit was set to the upper detection limit for the

analyte in question. In the case of vascular cell adhesion

molecule 1 (VCAM-1), basic fibroblast growth factor

(bFGF) and lymphotactin the analysis was performed using

a 58-biomarker multi-analyte profile (RodentMAP�, Myriad

RBM, Austin, USA).

Flow cytometry

Single-cell suspensions of whole-paws and lymph nodes were

prepared as previously described [24]. All samples were

subjected to Fc-blocking prior to antibody staining using anti-

CD16/32 (BD Bioscience). Dead cells in paw and lymph node

preparations were excluded using Fixable Near IR Vital dye

(Invitrogen, Carlsbad, CA). When analysing blood samples,

red blood cells were lysed with FACS lysing solution (BD

Bioscience) after antibody staining. The following antibody-

fluorochrome conjugations were used for flow cytometry:

Anti-CD88-PE, clone 20/70 (Biolegend, San Diego, CA),

anti-CD45-PerCP, clone 30-F11 (BD Biosciences), anti-CD4-

Qdot605, clone RM4-5 (Invitrogen, Carlsbad, CA), anti-

TCRb-Qdot 655, clone H57-597 (Invitrogen, Carlsbad, CA),

anti-CD45-efluor450, clone 30-F11 (eBioscience, San Diego,

CA), anti-TCRb-PE-Cy7, clone H57-597 (Biolegend, San

Diego, CA), anti-CD19-PerCP-Cy5.5, clone 1D3 (BD

Biosciences), anti-Ly6G-PE, clone 1A8 (BD Biosciences),

anti-CD11b-AF700, clone M1/70 (eBioscience, San Diego,

CA), anti-CD88-FITC, clone 20/70 (Cedarlane, Ontario,

Canada). For determination of blood cell counts, TruCount

beads (BD Biosciences) were added to the samples prior to

acquisition and the cell counts determined from the ratio of

collected beads to total beads.

Statistics

Statistical analyses were conducted using GraphPad Prism

software version 5.01 (La Jolla, CA). Non-parametric data

or non-normal parametric data were analysed using the

Mann–Whitney U-test, and parametric data were analysed

using a two-sided unpaired Student’s t-test. For statistical

analysis of the histology score data a two-sided unpaired

Student’s t-test with Welch’s correction was used. Differences

between groups were considered significant when p� 0.05

and levels of significance were assigned as *: p� 0.05, **:

p� 0.01 and ***: p� 0.001.

Results

C5aR is expressed in inflamed paw tissue and on
major leukocyte populations

For induction of DTHA, mice were immunised with mBSA in

CFA and 4 days later given an anti-CII cocktail i.v. Mice were

challenged with mBSA in the right hind foot pad 7 days after

immunisation (Figure 1A). The left hind foot pad received

PBS and served as an intra-animal control. In this first part of

experiment an isotype control group was included to illustrate

the effect of the anti-CII cocktail on paw and ankle swelling in

combination with the DTH response. The anti-CII cocktail

does not induce any paw and ankle swelling without the

mBSA challenge [24]. To confirm the production of C5a in

DTHA and the presence of C5aR on immune cell subsets, the

expression levels in arthritic paws and major leukocyte

subsets during disease were evaluated. Up-regulation of C5a

was observed in the arthritic paw in the initial stages of the

disease, by assaying whole-paw homogenates by ELISA

(Figure 1C). Flow cytometry analysis showed C5aR+ neutro-

phils and macrophages in the affected paw. C5aR-expression

on paw-infiltrating neutrophils was lower than the expression

seen on neutrophils in the blood (Figure 1D and E) and this

down-regulation could be an effect of agonist-mediated

receptor internalisation, which is known to occur [28]. In

the macrophage/monocyte compartment two distinct popula-

tions were seen; a C5aR+ and a C5aR�, while the neutrophil

compartment consisted of one population with varying C5aR

expression levels (Figure 1D and E). Marked neutrophilia in

DTHA was observed, which peaked 12–24 h post arthritis

induction, both in blood as measured by flow cytometry

(Figure 1F), and in arthritic paws as measured indirectly as

MPO in whole-paw homogenates (Figure 1G), where the peak

occurred at 60 h post arthritis induction. Taken together, these

data demonstrate that in the DTHA paw C5a levels are up-

regulated, C5aR+ neutrophils and macrophages are present,

and C5a ligation may have taken place with potential effects

on activation and migratory activity in these cells.

Treatment with anti-C5aR mAb ameliorates DTH
arthritis

With confirmed activation of the target pathway, an efficacy

study was performed. Mice with DTHA were dosed twice

weekly with 500 mg anti-C5aR mAb or isotype-matched anti-
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TNP mAb (IgG2a.1) from the time of arthritis induction

(Figure 2A). Treatment with anti-C5aR mAb significantly

reduced both paw and ankle swelling in DTHA compared to

the IgG2a.1 control group (Figure 2B). Histopathological

evaluation at study end revealed a significant reduction in

synovitis, cartilage destruction, bone erosion, new bone

formation and extra-articular inflammation (Figure 2C

and E) and in the overall histopathology score in the anti-

C5aR-treated mice (Figure 2D). C5a levels in paw tissue were

increased in the C5aR-treated groups 24 h post arthritis

induction, probably reflecting the blockade of C5aR, as this

would inhibit the clearance of C5a by internalisation via the

receptor [28] (Figure 2F). On day 2.5 (60 h) post arthritis

induction, levels of C5a were not significantly increased. This

could reflect a lower production of C5a in the anti-C5aR

group due to a generally lowered level of inflammation at this

time (Figure 2F). Serum level of the murine acute-phase

protein serum amyloid P component (SAP) was measured at

2.5 (60 h), 5 and 11 days post-arthritis induction to examine

whether anti-C5aR-treatment had an effect on systemic

inflammation. Anti-C5aR-treatment led to reduced SAP

levels in serum on days 2.5 (60 h) and 5 post arthritis

induction (Figure 2G). Taken together, these data demonstrate

that treatment with anti-C5aR led to a significant reduction in

disease activity in DTHA, both locally and systemically.

Single dose treatment with anti-C5aR results in
reduced disease activity after 60 h

Having shown that treatment with anti-C5aR mAb could

attenuate DTHA disease activity in a multiple dose study, we

Figure 1. C5aR is a therapeutic target in DTHA. (A) DTHA was induced by modification of a classical mBSA-induced DTH response. Mice were
immunised with mBSA in CFA on day -7, and the modification consisted of giving the mice a sub-arthritogenic dose of an anti-type II collagen mAb
cocktail (anti-CII) or isotype control cocktail i.v. on day-3. Challenge with mBSA in the right hind foot pad was done on day 0. (B) Temporal course of
the DTH response. The group given isotype control Ab cocktail developed only an acute DTH response. Paw and ankle swelling was calculated as
the swelling on a given day, minus the swelling on day 0. Mean ± 95% CI shown, n¼ 24 (anti-CII group) and n¼ 6 (isotype control group).
(C) C5a-production is upregulated in the arthritic paw in DTHA compared to naı̈ve controls, measured by ELISA in whole-paw homogenate
supernatants. Mean shown, n¼ 5. ***: p� 0.001, one-way ANOVA. (D) Median fluorescence intensity (MFI) of FITC conjugated to C5aR measured
by flow cytometry on neutrophils (PMN) and macrophages (Mj) in the lymph node draining the arthritic paw (dLN), in paw infiltrate and in blood,
measured 72 h after arthritis induction. Neutrophils were gated as CD45+CD19�CD11b+Ly6G+, macrophages as CD45+CD19�CD11b+Ly6G�F4/80+

and monocytes in blood as CD45+CD19�CD11b+Ly6G�SSClowFSCint. Mean shown, n¼ 5–10. (E) Representative flow cytometry histograms showing
the mean fluorescence intensity (MFI) of FITC conjugated to either anti-C5aR or isotype control antibody. (F) Blood neutrophil count in DTHA
measured by flow cytometry. Dotted line represents blood neutrophil count in naı̈ve mice and grey shading 95% CI (mean: 251,968 cells/ml, 95% CI:
177,173–326,763 cells/ml). Mean ± 95% CI shown, n¼ 10. (G) Myeloperoxidase measured in whole-paw homogenate supernatants by ELISA.
Mean ± 95% CI shown, n¼ 10. Dotted line represents levels in naı̈ve mice and grey shading 95% CI (mean: 9.077 mg/g, 95% CI: 7.440–10.715mg/g,
n¼ 10).
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sought to investigate effects of the compound on the earliest

stages of arthritis development, as this would allow us to

more closely examine the early mechanistic effects of

C5aR-blockade on cell activation and migration. A single

dose of 500mg anti-C5aR given at arthritis induction led to a

reduced paw- and ankle swelling when measured over 60 h

(Figure 3A). Histopathological evaluation revealed that

synovitis, cartilage destruction and bone erosion were

attenuated, but also that extra-articular infiltration of inflam-

matory cells was not affected (Figure 3B–D). The overall

histopathology score was also reduced, as was the arthritis

score, which is defined as the sum of all the individual

evaluation parameters pertaining to an arthritic phenotype

(Figure 3C). Levels of the osteoclast-activating receptor-

activator of nuclear factor kB ligand (RANKL) were also

significantly reduced in the paws of anti-C5aR-treated mice

(Figure 3E), supporting the reduction in bone erosion

observed. In addition, levels of MPO were also reduced in

the paws of anti-C5aR-treated mice (Figure 3F), indicating

either reduced neutrophil recruitment, activation or both.

(A)

(B)

(C)

(D) (F) (G)

(E)

Figure 2. Treatment with anti-C5aR mAb ameliorates DTH arthritis. (A) Therapeutic treatment with 500 mg/mouse of anti-C5aR or isotype control Ab
(IgG2a.1) was started at time of challenge and continued until day 11 post arthritis induction where the study was terminated. (B) Treatment with anti-
C5aR ameliorated DTHA when begun at arthritis induction. Area under curve (AUC) values calculated from individual swelling curves over days 0–11.
Mean ± SEM shown, n¼ 10. *: p� 0.05; **: p� 0.01; ***: p� 0.001, Student’s t-test. (C) Semi-quantitative histopathological scoring of arthritic and
inflammatory parameters in the two treatment groups at study termination on a scale of 0–3 (see ‘‘Materials and methods’’ section for details), n¼ 10.
*: p� 0.05; **: p� 0.01; ***: p� 0.001, Student’s t-test with Welch’s correction. (D) Sum of the individual scores in C). Maximum possible score is
15. n¼ 10. ***: p� 0.001, Student’s t-test with Welch’s correction. (E) Images show the metatarsal joint from the paw of a mouse from the
C5aR-treated group and a mouse from the IgG2a.1-treated control group with an arthritis sum score of 3.5 (mean: 2.8), and 8 (mean: 6.8), respectively,
at study termination on day 11. Arrows point towards areas of cartilage destruction in the images of Safranin O stains and towards TRAP-positive
osteoclasts in the images of TRAP stains. The stars indicate areas of extra-articular inflammation. BM: bone marrow; S: synovium. Magnification 10V,
scale bar represents 600 mm. (F) Levels of C5a protein in whole-paw homogenate supernatants in the two treatment groups measured by ELISA.
Mean ± SEM shown, n¼ 10. *: p� 0.05; **: p� 0.01, Student’s t-test. (G) Levels of the acute-phase protein serum amyloid P component (SAP) in
serum from the two treatment groups by ELISA. Mean ± SEM shown, n¼ 10. *: p� 0.05, Student’s t-test.
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A reduction in circulating neutrophils and T cells was

observed in the anti-C5aR-treated group (Figure 3G) and

total leukocyte count was reduced in the popliteal lymph node

draining the arthritic paw (dPLN) in anti-C5aR-treated mice,

as was CD4+ T cell count (Figure 3H). Furthermore, a

tendency towards a reduction in neutrophil count in the dPLN

was also observed (Figure 3H). Together, these data demon-

strate that a single dose of anti-C5aR has the ability to

significantly reduce early onset disease development and

arthritic changes in DTHA by reducing numbers of CD4+ T

cells in the draining lymph node, reducing circulating

inflammatory cells and preventing arthritic changes in the

affected paw.

A single dose of anti-C5aR leads to reduced influx of
neutrophils into the joint space

Having demonstrated that a single dose of anti-C5aR could

reduce disease activity in the very early stages of DTHA, we

now investigated the effect of a single dose more closely on

infiltration of neutrophils and macrophages into the arthritic

(A) (B)

(D)

(G) (H)

(E)

(F)

(C)

Figure 3. Disease activity in DTHA is reduced 60 h following a single dose of anti-C5aR mAb. (A) Area under curve (AUC) of paw- and ankle
swelling, measured every day until 60 h after arthritis induction. Mean ± SEM shown, n¼ 10. *: p� 0.05; **: p� 0.01, Student’s t-test. (B) Semi-
quantitative histopathology scoring of arthritic and inflammatory parameters in the two treatment groups on a scale of 0–3 (see Material and methods
for details). n¼ 10. *: p� 0.05; **: p� 0.01; ***: p� 0.001, Student’s t-test with Welch’s correction. (C) Sum of the individual scores in B (arthritis
sum score), and sum of the individual scores in B minus extra articular infiltration (arthritis score). Maximum possible score is 15 and 9, respectively.
n¼ 10. *: p� 0.05; **: p� 0.01, Student’s t-test with Welch’s correction. (D) Images show the metatarsal joint from the paw of a mouse from the
C5aR-treated group and a mouse from the IgG2a.1-treated control group with an arthritis sum score of 3 (mean: 5.6), and 6 (mean: 8.1), respectively, at
study termination at 60 h post arthritis induction. Arrows point towards areas of cartilage destruction in the images of Safranin O stains and towards
TRAP-positive osteoclasts in the images of TRAP stains. The stars indicate extra-articular inflammation. BM: bone marrow; S: synovium.
Magnification 10�, scale bar represents 600 mm. (E) Levels of receptor-activator of nuclear factor kB ligand (RANKL) protein in whole-paw
homogenate supernatants from the two treatment groups measured by ELISA. Mean ± SEM shown, n¼ 10. **: p� 0.01, Student’s t-test. (F) Levels of
myeloperoxidase (MPO) protein in whole-paw homogenate supernatants measured by ELISA. Mean ± SEM shown, n¼ 10, ***: p� 0.001, Student’s
t-test. (G) Neutrophil and T cell counts in blood of mice treated with anti-C5aR or IgG2a.1. Neutrophils were defined as CD45+CD11b+Ly6G+ and T
cells as CD45+TCRb+. Mean ± SEM shown, n¼ 10. *: p� 0.05, Student’s t-test. (H) Total leukocyte, neutrophil and CD4+ T cell count in the popliteal
lymph node draining the arthritic paw (dPLN) in mice treated with anti-C5aR or IgG2a.1. Neutrophils and T cells defined as above. Mean ± SEM
shown, n¼ 10. *: p� 0.05, Student’s t-test.
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paw. Immunohistochemical stainings for macrophages and

neutrophils on whole-paw tissue sections from both treatment

groups were performed, and the numbers of these cells were

quantified using Visiomorph digitalised image analysis.

This method did not reveal a significant difference in total

neutrophil (Ly6B.2-positive) or macrophage (F4/80-positive)

infiltration into the arthritic paws (Figure 4A), despite there

being an effect of a single dose of anti-C5aR on clinical

disease parameters (Figure 3A). As automated digitalised

image analyses are not suitable for quantifying neutrophil and

macrophage infiltration specifically into the joint space and

surrounding synovium due to varying nature of synovial

tissue in arthritis, the Ly6B.2 and F4/80-stained sections were

scored by eye in a semi-quantitative manner instead (see

materials and methods for details of the scoring system). This

analysis revealed a significant difference in neutrophil

infiltration, with the anti-C5aR-treated animals displaying a

lower degree of infiltration into the joint space and synovium

compared to isotype control-treated mice (Figure 4C). No

difference could be detected when the same scoring system

was applied to F4/80-stained sections (Figure 4D). Together,

these data indicate that anti-C5aR does not have an effect on

neutrophil and macrophage recruitment to the total of the

affected paw after a single dose and they support the finding

that a single dose of anti-C5aR does not reduce total extra-

articular inflammation (Figure 3B). On the other hand, a

single dose of anti-C5aR reduced MPO protein levels in the

arthritic paw, which is an indirect way of estimating

neutrophil numbers in tissue, so a firm conclusion cannot

be made. Importantly, the present data does indicate that anti-

C5aR treatment has an effect on neutrophil spatial organisa-

tion locally in the inflamed synovium and in the joints.

A single dose of anti-C5aR leads to changes in
inflammatory biomarkers locally in the arthritic paw

To further investigate the pathways affected by blockade of

C5aR, and to investigate whether anti-C5aR leads to a

reduction in activation of inflammatory cells, arthritic paws

were harvested and homogenised 60 h post arthritis induction

and analysed for protein levels of a range of cytokines and

chemokines. The inflammatory cytokine IL-6 was signifi-

cantly decreased in the paws of anti-C5aR-treated mice and

there was a tendency towards a reduction in IL-17, while no

change in IL-1b or IL-10 was observed. Furthermore, the

chemoattractants CXCL1/KC, CXCL2/MIP-2, CXCL5/LIX

and lymphotactin were significantly reduced in the paws of

anti-C5aR-treated animals, as was G-CSF. Finally, vascular

endothelial growth factor (VEGF), basic fibroblast growth

factor (bFGF) and vascular cell VCAM-1 were also signifi-

cantly reduced in the paws of anti-C5aR-treated mice

(Table 1). These data demonstrate that a single dose of anti-

C5aR could rapidly mediate changes in local inflammatory

mediators, which are both markers of and important for the

activation and infiltration of a variety inflammatory cell

subsets, and for angiogenesis. Although a single dose of anti-

C5aR does not reduce neutrophil infiltration into the affected

paw at this time point, it could reduce the activation level of

the infiltrating neutrophils.

Discussion

The present study demonstrates the efficacy of a blocking,

non-cell-depleting anti-mouse C5aR mAb in the early stage of

arthritis development in the DTHA model, a single-paw

arthritis model with synchronised onset, low variation and

predictive validity for efficacy of anti-arthritic therapeutics

[24]. A multiple dose study showed reduction in paw swelling

and histopathological evaluation revealed reduced synovitis,

bone erosion, cartilage destruction, reduced new bone

formation and extra-articular inflammation. Importantly,

rapid onset effects of a single dose of anti-C5aR in DTHA

were apparent as little as 60 h after a single dose administered

at arthritis induction. Significant reduction in paw swelling,

synovitis, bone erosion, cartilage destruction and recruitment

of neutrophils to the joints and synovium was demonstrated.

The reduction in paw swelling observed was similar to the

reduction observed after treatment with etanercept or dexa-

methasone in a previous study in the DTHA model [24].

RANKL levels locally in the affected paw were also reduced,

indicating reduced osteoclast activation, which supports the

reduction in osteoclast activity observed in the histopatho-

logical evaluation. Numbers of neutrophils in circulation and

the draining popliteal lymph node were reduced following a

single dose of anti-C5aR, as was MPO and G-CSF protein

levels in the affected paw, indicating reduced neutrophil
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Figure 4. Anti-C5aR treatment reduces neutrophil infiltration into joints,
but not total quantity of neutrophils and macrophages in paws.
Digitalised image analysis (see ‘‘Materials and Methods’’ section for
details) of (A) neutrophils (Ly6B.2) and (B) macrophages (F4/80)
in DTHA paws at 60 h post arthritis induction after a single dose of
anti-C5aR or isotype control antibody. The results are given as tissue
area stained positive for F4/80 and Ly6B.2 of the entire paw area
(%). Mean shown, n¼ 9–10. Semi-quantitative visual scoring (see
Materials and Methods for details) of (C) neutrophil infiltration and
(D) macrophage infiltration into the joint space and synovium of DTHA
paws at 60 h post arthritis induction after a single dose of anti-C5aR or
isotype control antibody. Evaluation was performed on Ly6B.2-stained
(C) and F4/80 (D) sections. Range 0–3. Mean ± SEM shown, n¼ 9–10.
*: p� 0.05, Student’s t-test with Welch’s correction.
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recruitment from the bone marrow. The reduction in paw

swelling could also be a result of impaired activation of

already infiltrating C5aR-positive cells, thus reducing overall

tissue inflammation. The first wave of neutrophils to reach the

paw after arthritis induction is most likely not fully dependent

on the C5a-C5aR axis, as it is also not in the delayed-type

hypersensitivity (DTH) and K/BxN models [29–32]. Indeed,

the initial extra-articular inflammation observed in DTHA is

likely to be a result of the DTH response in isolation and

unrelated to the anti-CII cocktail given, as a previous study

has shown that paw swelling 24 h after mBSA challenge was

comparable whether anti-CII had been given or not [24].

Complement activation and C5a production in DTHA most

likely takes place at the cartilage surfaces where the anti-CII

administered during induction localises and forms immune

complexes with cartilage CII. In the CAIA and CIA models

anti-CII antibodies deposit on cartilage surfaces and activate

complement [19,33], and in the K/BxN and K/BxN serum

transfer models glucose-6-phosphate isomerase (GPI)-anti-

GPI immune complexes deposit on the cartilage surfaces

and activate complement [34]. Cartilage surfaces are not very

rich in cells and thus lack the cell membrane-bound C3

inactivators decay-acceleration factor (DAF) and membrane

cofactor protein (MCP), so only soluble inhibitors and

surface sialic acid residues are present to dampen the

activation of complement pathways [34]. In addition, the

breakdown of cartilage that occurs during joint inflammation

can unmask molecules that can further contribute to the

activation of complement [33]. Together these circumstances

make the inflamed joint a location where the complement

equilibrium is unsteady and excessive activation is favoured,

which could be the reason for the pronounced effect of

blocking C5aR signalling at this site. In line with this, the

effect of anti-C5aR on neutrophil migration in the single-dose

study was isolated to the cells infiltrating the joints and

synovial tissue.

Levels of CXCL2/MIP-2 were lower in the paws of anti-

C5aR-treated mice at 60 h post arthritis induction in the

present study and this could indicate a lower level of

activation of the infiltrating neutrophils, as CXCL2/MIP-2

is secreted by activated neutrophils themselves [29] as well as

by macrophages and mast cells [35]. The chemoattractants

CXCL1/KC, CXCL5/LIX and lymphotactin, which were also

reduced in paws of anti-C5aR-treated mice 60 h after a single

dose, have been demonstrated to be upregulated in both RA

synovial tissue/fluid and other murine arthritis models

[36,37]. In addition, it is suggested that lymphotactin can

exert immunomodulatory effects through MMP release from

synovial fibroblasts and cytokine release from macrophages

in addition to its chemotactic properties [37]. The present data

indicate that C5aR signalling is important for the expression

of leukocyte chemoattractants in the earliest stages of arthritis

development and that a blockade of the receptor could

potentially represent a way of lowering leukocyte migration

and activation in the disease.

The observed reduction in G-CSF could be a contributing

factor to the more rapid resolution of inflammation observed in

DTHA after multiple doses of anti-C5aR, as fewer neutrophils

are thus released into circulation while neutrophils present in

the inflamed tissue undergo apoptosis. G-CSF is a major

cytokine for proliferation and survival of neutrophils and exerts

its effecs by down-regulating CXCL12 and CXCR4, which

leads to reduced neutrophil retention in the bone marrow [38].

C5a amplifies the production of G-CSF in vivo and in vitro, and

G-CSF in turn up-regulates C5aR on neutrophils [39]. G-CSF

can be produced by leukocytes, endothelial cells and fibro-

blasts, and the reduction observed in the present study could be

the direct result of blocking of C5aR on these cells.

IL-6 levels in paw tissue were also reduced after a single

dose of anti-C5aR. Neutrophils [40] and macrophages [41]

express IL-6 upon stimulation with C5a, and production of

this cytokine was attenuated when C5a was blocked by

Table 1. Reduction in protein biomarkers of inflammation in paw tissue following a single dose of anti-C5aR or IgG2a.1.

Analyte
Anti-C5aR-treated,

pg/g tissue (95% CI)
IgG2a.1-treated,

pg/g tissue (95% CI) % Reduction of meany p Value

Cytokines
IL-1b 950.2 (765.6–1135) 935 (774.6–1035) �1.6 0.89
IL-6 1097 (582.3–1612) 3873 (2235–5511) 71.7 0.0028
IL-10 4403 (3418–5388) 4280 (3320–5239) �2.9 0.84
IL-17 47.98 (30.28–65.67) 86.12 (43.34–128.9) 44.3 0.066
G-CSF 1681 (808.7–2562) 6129 (2584–9675) 72.6 0.013
GM-CSF 149.3 (57.3–241.4) 260 (174.5–345.5) 42.6 0.062

Chemokines
CXCL1/KC 6854 (3919–9788) 11630 (9374–13 886) 41.1 0.0092
CXCL2/MIP-2 7430 (4118–10742) 20677 (13320–28035) 64.1 0.0016
CXCL5/LIX 1134 (448.5–1819) 3301 (2227–4376) 65.6 0.0012
CXCL10/IP-10 4403 (3418–5388) 4280 (3320–5239) �2.9 0.84
CCL3/MIP-1a 3312 (2560–4065) 3361 (2522–4200) 1.5 0.92
CCL5/RANTES 1015 (863.1–1167) 1026 (835.1–1218) 1.1 0.91
Lymphotactin 2351 (2003–2699) 2836 (2416–3257) 17.1 0.030

Adhesion molecule
VCAM-1 439 (371–506.9) 503.4 (484–522) 12.8 0.027

Growth factors
VEGF 74.49 (55.89–93.09) 115.6 (89.77–141.5) 35.6 0.0091
bFGF 1567 (1048–2086) 2349 (1705–2993) 33.3 0.047

Whole-paw homogenates were analysed for protein levels of a range of inflammatory markers using multiplex analysis.
yAnti-C5aR-treated group compared to IgG2a-treated group 60 h after single-dose treatment, t-test, n¼ 10.
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antibodies or in C5aR�/� mice [40]. The reduction in IL-6 in

paw tissue observed in the present study might therefore

reflect a direct effect of anti-C5aR on activation of neutro-

phils and macrophages in DTHA. IL-6 induces RANKL

expression by synovial fibroblasts and activates osteoclast

precursor cells and thus contributes to arthritis development

[42], and so the reduced IL-6 observed following anti-C5aR-

treatment could contribute to the reduction in bone erosion

observed. IL-17 is also a key mediator in inflammation-driven

bone erosion and is upstream from RANKL in arthritis [43].

The observed reduction in IL-17 following anti-C5aR treat-

ment in the present study indicates that reduction of Th17

effector T-cell activity is a mechanism of C5aR-blockade in

experimental arthritis. Vascular endothelial growth factor

(VEGF) and basic fibroblast growth factor (bFGF) were also

significantly reduced in paws of anti-C5aR-treated mice. Both

are implicated in RA pathology through their angiogenic and

proliferative effects in inflamed synovium [44–47]. The

infiltration and retention of inflammatory cells in RA

synovium is facilitated by upregulation of VCAM-1 on

endothelial cells and synovial fibroblasts in this tissue [48].

VCAM-1 was reduced in DTHA paws following anti-C5aR

treatment, and as C5aR is expressed on endothelial cells and

synovial fibroblasts [7] this reduction in VCAM-1 could

represent a direct effect of anti-C5aR treatment on these cells.

In support of this, it has been shown that C5aR�/� mice have

lower expression of VCAM-1 mRNA than wild-type mice

after induction of CAIA [19].

Finally, we also observed an effect of C5aR-blockade on

the T cell compartment, which to our knowledge has not

previously been demonstrated in a murine arthritis model.

Numbers of total T cells in circulation was reduced, as was the

numbers of CD4+ T cells in the dPLN. Recent findings have

implicated C5a in the regulation of T-cell immunity [9,10,49],

but from our data it was not further possible to determine

whether the observed reductions in T cell subsets following

C5aR-blockade were a primary or secondary effect.

In summary, we demonstrate that treatment with anti-C5aR

mAb reduces disease activity in DTHA and prevents devel-

opment of severe arthritis. Importantly, rapid onset effects of

C5aR-blockade were apparent 60 h after a single dose. These

included a decrease in inflammatory cytokines and chemo-

attractants locally in the affected paws, indicating that anti-

C5aR-treatment could reduce inflammatory cell activation.

Reduction in the neutrophil marker MPO indicates impaired

neutrophil recruitment and activation. Immunohistochemistry

showed a reduced influx of neutrophils specifically into the

joint spaces and synovium, demonstrating that C5aR-signal-

ling is important for neutrophil recruitment into the inflamed

joints during the early stages of arthritis. Finally, an effect of

anti-C5aR on the T-cell compartment was also shown. In

conclusion, our study demonstrates that C5aR-blockade has

early-onset effects on recruitment, infiltration and activation

of inflammatory cells in experimental arthritis. Thus, data

from this preclinical study strengthen the potential of C5aR-

blockade as a treatment strategy for RA, and indicates that

blocking C5aR could be an option for treating flaring of the

disease, if treatment is initiated before full-blown joint

inflammation is present and perhaps prevent severe arthritis

from developing.
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