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Paratuberculosis is a chronic infection of economic importance to the dairy industry. The
infection may be latent for years, which makes diagnostic misclassification a general chal-
lenge. The objective of this study was to identify the spatial pattern in infection prevalence,
when results were adjusted for covariate information and diagnostic misclassification.
Furthermore, we compared the estimated spatial pattern with the spatial pattern obtained
without adjustment for misclassification. The study included 1242 herds in 2009 and 979
herds in 2013. The within-herd prevalence was modelled using a hierarchical logistic
regression model and included a spatial component modelled by a continuous Gaussian
field. The Stochastic Partial Differential Equation (SPDE) approach and Integrated Nested
Laplace Approximation (INLA) were used for Bayesian inference. We found a significant
spatial component, and our results suggested that the estimated range of influence and
the overall location of areas with increased prevalence are not very sensitive to diagnostic
misclassification.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Paratuberculosis is a chronic infection in cattle caused
by Mycobacterium avium subsp. paratuberculosis (MAP)
(Sweeney, 2011). A MAP infection may be latent for the
major part of an animal’s life, or infection may develop to
infectious and affected disease states (Nielsen and Toft,
2008). The possibility for latent infection makes diagnostic
misclassification a general challenge. Infectious animals
shed MAP in faeces and the resulting contamination of
the environment may lead to transmission of MAP to sus-
ceptible animals. Furthermore, MAP can be transmitted in
utero from a dam to her calf (Whittington and Windsor,
2009), and via milk and colostrum from infectious animals
(Streeter et al., 1995). MAP infection is of economic impor-
tance to the dairy industry, since infected cows may expe-
rience a reduced milk yield and increased mortality
(Hendrick et al., 2005). Therefore, control programmes on
MAP have been established in several countries
(Geraghty et al., 2014). In Denmark, a voluntary control
programme was initiated in 2006 by the Danish Cattle Fed-
eration (Nielsen, 2007). The programme aims at reducing
the prevalence of MAP infected cattle and providing farm-
ers with tools to manage the MAP infections. The pro-
gramme is offered to all dairy farmers. Infection status is
assessed by screening of individual milk samples for detec-
tion of MAP specific antibodies.

Verdugo et al. (2015) found a decreasing trend in the
MAP prevalence among Danish control programme herds
from 2011 to 2013, and estimated the true within- and
between-herd prevalence to be 0.07 and 0.77, respectively,
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in 2013. Bihrmann et al. (2012) did a descriptive spatial
analysis to describe the spatial pattern in MAP prevalence
across Denmark in late 2008 – early 2009, and identified
geographical areas with higher prevalence. It is not known
how this spatial pattern developed over time, and the
study by Bihrmann et al. (2012) did not take any covariate
information into account. This might influence their find-
ings since, for example, MAP infection has been associated
with herd size (Wells and Wagner, 2000), which is not ran-
domly distributed across the country. Furthermore, assess-
ment of MAP infection status is subject to misclassification,
especially low sensitivity of the diagnostic test used in the
control programme (Nielsen et al., 2013). To our knowl-
edge, the effect of adjustment for diagnostic misclassifica-
tion in estimation of the spatial pattern has not been
assessed.

The objective of this study was to identify the spatial
pattern in prevalence of MAP infection in Danish dairy
herds, including (1) location of areas with increased preva-
lence and (2) investigation of development over time
(2009–2013), when results were adjusted for covariate
information and diagnostic misclassification. Furthermore,
we compared the estimated spatial pattern with the spatial
pattern obtained without adjustment for misclassification.
We modelled the within-herd prevalence of MAP using a
hierarchical logistic regression model and included a spa-
tial component to describe any residual spatial pattern.
The spatial component was modelled by a continuous
Gaussian field. In large data sets, Bayesian inference in
such a model has only recently been made possible by
the so-called Stochastic Partial Differential Equation
(SPDE) approach (Lindgren et al., 2011), which utilises
Integrated Nested Laplace Approximation (INLA) (Rue
et al., 2009) for inference.

2. Material and methods

2.1. Data

All Danish cattle herds are registered in the Danish Cat-
tle Database (hosted by SEGES, Aarhus N, Denmark). Rele-
vant information on all herds in two separate study periods
(1st quarter of 2009, and 1st quarter of 2013) was retrieved
from the database, including unique cow identification
number, unique herd identification number, and geograph-
ical coordinates (UTM-format) of the farm location. In
total, the study included 26,076 herds in 2009, and
20,651 herds in 2013. All herds with at least one record
in the Danish milk recording system were categorised as
dairy.

All dairy herds enroled in the voluntary control pro-
gramme on MAP perform 4 annual screenings at regular
intervals. Non-enroled dairy herds may also perform occa-
sional screenings. Screening results from both enroled and
non-enroled herds were included in the study. In the anal-
ysis, enrolment was defined by enrolment status on Jan-
uary 1st. If a herd performed multiple screenings during
a study period (1st quarter, 2009 or 1st quarter, 2013),
then one of these screenings was randomly chosen for
analysis. In total, 1304 herds performed screening in
2009 (84% enroled in the control programme), and 1012
herds performed screening in 2013 (93% enroled in the
control programme). Herds located on the remote island
Bornholm (2009: 8, 2013: 4) were excluded from the anal-
ysis, as were herds with less than 10 tested cows (2009: 46,
2013: 22), and a small number of herds which had been
vaccinated against paratuberculosis (2009: 8, 2013: 7).
Within each herd, tested cows younger than 2 years of
age were excluded from analysis. In total, N2009 ¼ 1242,
and N2013 ¼ 979 herds were included in the study. Among
these, 794 herds were included in both 2009 and 2013.

All lactating cows within a screened herd were tested
using a milk antibody ELISA (ID-Screen�, ID-Vet, Montpel-
lier, France) detecting MAP specific antibodies. Samples
were automatically collected through the Danish milk
recording system. A cow was defined to be test-positive
if the test had a sample-to-positive ratio of 0.30. If at least
one cow within a herd was test-positive, the herd was
defined to be test-positive. The sensitivity and specificity
of the test for MAP were estimated by Nielsen et al.
(2013). They modelled the age-dependent sensitivity by

log
SEðxÞ

1� SEðxÞ
� �

¼ b0 þ b1 expð�b2xÞ;

where SEðxÞ is the sensitivity at age x 2 f2 years;3
years; . . . ;10 yearsg. Based on a sample-to-positive ratio
of 0.30 to define a positive test, the estimated parameter
values were b0 ¼ 1:28, b1 ¼ �9:31, and b2 ¼ 0:66, whilst
the estimated specificity SP was 0.9935 (unpublished
results based on data and model in Nielsen et al. (2013)).
In order to have a sensitivity SE that was independent of
age, we calculated an average value using the actual age
distribution of the cows included in this study. Hence, SE
was calculated as

X10
x¼2

SEðxÞP ðage of cow ¼ xÞ;

where P ðage of cow ¼ xÞ is the proportion of cows at age x
in the study. This gave an average sensitivity of 0.5332 in
2009 and 0.4913 in 2013.

The following covariate information, all on herd level,
was collected or derived from the Danish Cattle Database
and included in the analysis: (1) mean age of the tested
cows on the day of testing in each herd, (2) herd size, (3)
herd density, defined as the number of herds (both dairy
and non-dairy) per km2 within a radius of 5 km, (4) organic
production or not, (5) proportion of purchased cows in the
herd, and (6) proportion of Jersey cows within the herd.
Items (4), (5), and (6) were all defined on February 15th
in each study period. For analysis, herd size was log trans-
formed, since the distribution was skewed. Based on their
distributions, the proportion of purchased cows in the herd
was classified into three groups (none, below 5%, above 5%)
and the proportion of Jersey cows was classified into two
groups (below or above 80%).

2.2. Statistical model

Let pi denote the apparent within-herd prevalence of
MAP (i.e. the proportion of test-positive cows) in herd
i; i ¼ 1; . . . ;N, and let pi denote the true within-herd
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Fig. 1. Location of all Danish dairy herds with status on screening for
MAP, 1st quarter 2009 (top) and 1st quarter 2013 (bottom).
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prevalence (i.e. the proportion of truly infected cows) in
herd i; i ¼ 1; . . . ;N. Unless we have a perfect diagnostic test,
pi will be different from pi. Given sensitivity SE and speci-
ficity SP of the test, the apparent prevalence can be written
as

pi ¼ SEpi þ ð1� SPÞð1� piÞ; i ¼ 1; . . . ;N: ð1Þ
Using (1) as a link between the observed number of test-
positive cows and the unobserved number of truly infected
cows, the true prevalence pi was modelled as

logitðpiÞ ¼ bXi þ Ui þWðsiÞ; i ¼ 1; . . . ;N ð2Þ
where Xi; i ¼ 1; . . . ;N is a vector of herd level covariates,
and b is a vector of regression parameters. The random
effect U ¼ ðUiÞi¼1;...;N � Nð0;r2

uIÞ was included to account
for the hierarchical structure given by the clustering of
cows within herds, and W ¼ ðWðsiÞÞi¼1;...;N � Nð0;RÞ is a
realisation of a latent stationary Gaussian field (GF) repre-
senting the spatial dependence between herds located at
sites s ¼ ðsiÞi¼1;...;N . The spatially structured covariance
matrix R is given by the Matérn covariance function

CðhÞ ¼ r2
w

ðjhÞk
2k�1CðkÞKkðjhÞ; ð3Þ

where h ¼ ksi � sjk; i ¼ 1; . . . ;N; j ¼ 1; . . . ;N; r2
w is the mar-

ginal variance, C is the gamma function, and Kk is a modi-
fied Bessel function of the second kind and order k. The
smoothness parameter k was fixed at 1, and j is a scaling
parameter. The range of influence (corresponding to the
distance at which the correlation is close to 0.1) is defined
as

ffiffiffiffiffiffi
8k

p
=j (Lindgren et al., 2011).

The model given by (2) is referred to as the IID+GF
model (since the Ui’s are Indedependent, Identically Dis-
tributed) with adjustment for misclassification. Substitut-
ing the true prevalence pi in (2) with the apparent
prevalence pi, we have an IID+GF model without adjust-
ment for misclassification. The model given by omission
of the GF W in (2) is referred to as the IID model (with
or without adjustment for misclassification depending on
the prevalence parameter).

2.3. Inference

The Integrated Nested Laplace Approximation (INLA)
approach (Rue et al., 2009) was used for Bayesian inference
in all models. This approach applies Laplace approxima-
tions to provide deterministic approximations to the pos-
terior marginal distribution of all parameters. All
analyses were done in R (R Core Team, 2013) using the
INLA package (www.r-inla.org).

Inference in the IID+GF model was based on the so-
called Stochastic Partial Differential Equation (SPDE)
approach, developed by Lindgren et al. (2011). The basic
idea in this approach is to represent the GF by a Gaussian
Markov random field (GMRF) defined on a triangulation
of the spatial region (i.e. Denmark). This representation
offers huge computational advantages since the GMRF is
given by a sparse precision matrix Q , as opposed to the
dense covariance matrix R of the GF. The precision Q of
the GMRF depends on the parameters r2
w and j, just like

R. The SPDE approach is included in the INLA package,
which also includes a function for creating the required tri-
angulation of the spatial region. The triangulation, referred
to as a mesh, was based on the observation sites with addi-
tional mesh nodes added to create a regular mesh. The

http://www.r-inla.org
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mesh was extended beyond the observation area to correct
for edge effects. The maximum allowed triangle edge
length was 5 km inside the area and 50 km outside the
area. The cutoff (minimum allowed distance between
nodes) was 5 km. The mesh consisted of a total of 2012
nodes with 2009 data, and of 1995 nodes with 2013 data.
A sensitivity analysis was performed to assess the impact
of the mesh on the parameter estimates (2009 data only).
The cutoff (which could be changed and still produce a reg-
ular mesh) was changed to 6 km (1410 nodes), to 4.5 km
(2431 nodes), and to 2.5 km (5198 nodes).

Reported parameter estimates were based on mean,
standard deviation, and 95% credible intervals from the
marginal posterior distributions. The Deviance Information
Criteria (DIC) was used to compare the fit of the different
models, and Moran’s I (Moran, 1950) was used to test for
spatial correlation in residuals. Linearity of continuous
covariates was assessed by plotting the estimates obtained
when classifying each variable in 20% quantiles and assign-
ing the median value to each interval. By visual inspection
of these plots, all continuous covariates showed a non-
linear pattern, and the categorised versions were therefore
included in the analyses. For comparison of the analyses in
2009 and 2013, the categorisation in the 2013 data fol-
lowed the cut points of the 2009 data.

The estimated spatial pattern (i.e. the Gaussian field)
was illustrated on a map by projecting the posterior mean
and standard deviation of W from the mesh nodes to a
5 km by 5 km grid across Denmark. The predicted preva-
lence of MAP was calculated as the posterior mean of the
fitted value pi at each herd site si; i ¼ 1; . . . ;N, and the spa-
tial distribution was illustrated by a smooth surface cre-
ated by inverse distance weighting (5 km by 5 km grid).
2.4. Prior distributions

Prior distributions must be assigned to all parameters.
The regression parameters were assigned independent
zero-mean Gaussian prior distributions with precision
0.001. The log of the precision su ¼ 1=r2

u of the random
effect U was assigned a log Gamma(1, 0.0005) prior
(default of the INLA package). The marginal variance r2

w

of the GF was parametrized as r2
w ¼ 1=ð4pj2s2wÞ, where p

is the mathematical constant p (and hence not related to
the true within-herd prevalence pi). The hyper parameters
ðlogðjÞ; logðswÞÞ were assigned zero-mean Gaussian prior
distributions with precision 0.001. A sensitivity analysis
was performed to assess the impact of the prior distribu-
tions. This involved changing the Gamma parameter from
Table 1
Summary of data from the two study periods (1st quarter 2009, 1st quarter 201
herds/cows screened for MAP and included in the study, and the number of inclu

2009

Herds (%) Cows (%)

Dairy 4301 (100) 548,779 (100)
Screening 1242 (28.9) 155,354 (28.3)
Test-positive 1035 (83.3) 7580 (4.9)
0.0005 to 0.001 and 0.00001, and changing the Gaussian
precision from 0.001 to 0.1 and 0.00001. The sensitivity
SE and specificity SP of the test for MAP were fixed at given
values (SE=0.5332 in 2009, SE=0.4913 in 2013, and
SP=0.9935).

3. Results

Fig. 1 shows the location of the Danish dairy herds in
2009 and 2013. Most herds were located in the north-
western and south-western part of the country. Only a lim-
ited number of herds were located in the eastern part of
the country. From 2009 to 2013, the number of dairy herds
decreased while the total number of cows increased
(Table 1). The proportion of herds performing screening
for MAP was fairly constant through the period, but the
total proportion of tested cows dropped. The proportion
of test-positive cows was reduced, which was accompa-
nied by a reduction in the proportion of test-positive herds.

In both 2009 and 2013, the GF+IID model had a lower
DIC and hence provided a better fit to the data than the
IID model, regardless of adjustment for misclassification
or not (Table 2).

This indicated the presence of spatial variation in the
data, which was supported by Moran’s I showing signifi-
cant spatial correlation in the residuals from the IID model.
Except for 2009 with adjustment for misclassification, the
spatial variation was adequately modelled by the GF, since
no spatial correlation was found in the residuals from the
GF+IID model. In general, the models without misclassifi-
cation had the lowest DIC.

The estimated range of influence (corresponding to the
distance at which observations were no longer correlated)
changed slightly from 16 km in 2009 to 14 km in 2013
(with adjustment for misclassification), but the
uncertainty of the 2009 estimate was large with the 95%
credible interval reflecting a skewed posterior distribution
with a heavy right tail (Table 2). The estimated range of
influence was not substantially affected by adjustment
for misclassification.

The estimated GF with standard deviation is mapped in
Fig. 2 (2009) and Fig. 3 (2013). The GF shows the residual
spatial pattern after covariate information has been
accounted for. Hence, an area with increased MAP preva-
lence after adjustment for covariates was indicated by a
positive value (red colour) in the maps. A number of dis-
tinct areas with increased prevalence were seen across
the country in 2009 and 2013. The standard deviation
reflected the location of the herds, and was large compared
to the value of the GF, especially with adjustment for
3) showing the total number of Danish dairy herds/cows, the number of
ded herds/cows that were test-positive for MAP.

2013

Herds (%) Cows (%)

3623 (100) 562,550 (100)
979 (27.0) 122,808 (21.8)
733 (74.9) 3932 (3.2)
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misclassification. The standard deviation increased with
adjustment for misclassification. In general, the overall
location of areas with increased prevalence did not change
between models with and without adjustment for misclas-
sification. In 2009, however, the estimated spatial pattern
was much more smooth with adjustment for misclassifica-
tion than without. In 2013, the opposite was the case.

The values of the GF were larger in 2013 than in 2009
(different scales in Figs. 2 and 3), indicating larger spatial
differences in 2013. These were mainly seen in the western
part of the country, where an area to the south had the
highest increase in prevalence. Areas in the south-eastern
parts of the country with increased prevalence in 2009
were not persistent in 2013.

The distribution of the covariates included in the analy-
sis changed from 2009 to 2013 (Table 3).

The age at screening, herd density, and the proportion
of purchased animals within the herds decreased, whereas
herd size increased. Less non-enroled herds were screened.
Increased MAP prevalence was mainly associated with
purchase of animals and Jersey herds (Table 3). Herds with
organic production tended to have a lower MAP prevalence
than herds with non-organic production (not significant).
Control programme herds had a significantly lower preva-
lence than the non-enroled, screened herds in 2013. This
difference was not seen in 2009.

In all but a very few exceptions, the odds ratios esti-
mated without adjustment for misclassification were clo-
ser to 1 (the null) and had more narrow credible
intervals than the odds ratios estimated with adjustment
for misclassification.

The predicted prevalence with adjustment for misclas-
sification within each tested herd is mapped in Fig. 4.
The predicted prevalence decreased across the country
from 2009 to 2013, which is clear from the change in
colouring from red to green. In 2013, only very local spots
of high prevalence were seen.

For comparison, we identified and analysed the 794
herds included in both 2009 and 2013. In 2013, the range
was estimated to 12 km (5; 37) with adjustment for mis-
classification. The overall spatial pattern did not change,
but some of the very local spots of high predicted preva-
lence disappeared (not shown).
3.1. Sensitivity analysis

The regression parameter b, the precision su ¼ 1=r2
u of

the random effect U, and the hyper parameter logðjÞ of
the GF were not sensitive to the chosen prior distributions.
The hyper parameter logðswÞ of the GF changed slightly
(7.5%) when increasing the precision of the prior distribu-
tion from 0.001 to 0.1 (the default of the INLA package) in
the model without adjustment for misclassification. How-
ever, a decrease in precision from 0.001 to 0.00001 did
not affect the estimate, and 0.001 was concluded to be a
satisfactory precision of the prior.

Changing the mesh did not affect the estimates of the
regression parameter or the random effect U. Without
adjustment for misclassification, the estimated range of
influence varied slightly (between 10 km and 17 km) when
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changing the mesh, but variation was small considering
the uncertainty of the estimate. With adjustment for mis-
classification, the range of influence could not be estimated
with the reduced mesh consisting of 1410 nodes (result:
0.4 km (�27; 655)). Estimates obtained with 2012 and
2431 nodes were essentially alike. With 5198 nodes, the
analysis demanded more memory than available in our
standard laptop (Intel Core Duo CPU, 2.8 GHz, 3 GB RAM).

4. Discussion

The main source of between-herd transmission of MAP
is considered to be movement of infected animals
(Sweeney, 1996; Nielsen and Toft, 2011). In 2000-2009,
the median distance of movement of cattle within Den-
mark was 15.3 km (Mweu et al., 2013). This corresponds
well with the range of influence, which measures the spa-
tial extent of the correlation between herds, being esti-
mated to 14–16 km in the present study. Bihrmann et al.
(2012) estimated the range of influence from a semivari-
ogram without taking diagnostic misclassification and
covariate effects into account, and obtained a similar result
as in the present study (16.8 km). Furthermore, their esti-
mated spatial pattern in within-herd prevalence in 2009
was very similar to our result in terms of location of areas
with increased prevalence. The predicted within-herd
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prevalence, however, was lower in the study by Bihrmann
et al. (2012). Although some of this difference may be
explained by the diagnostic misclassification, it may also
be attributable to the fact that we used inverse distance
weighting to produce the map of predicted within-herd
prevalence, and the result was less smooth than the kriged
map by Bihrmann et al. (2012). In the present study, we did
not use kriging, since a semivariogram could not be very
well fitted to the within-herd prevalence obtained as fitted
values from the model.

That movement of cattle is important in relation to the
spread of MAP was confirmed in the present study by the
within-herd prevalence being associated with purchase of
animals. Furthermore, MAP prevalence was found to be
higher in Jersey cows (compared to mainly Holstein cows),
which was also previously shown by Jacobsen et al. (2000).
The observed changes in the distribution of the covariates
from 2009 to 2013 reflected a general trend in Denmark
towards fewer, but larger herds. The expansion of the dairy
herds leads to a lower mean age, and the proportion of pur-
chased animals is affected by the increasing use of sex-
sorted semen in some herds, which may lead to a reduced
need for purchase of animals.

Adjustment for misclassification adds uncertainty to
the model. This resulted in wider credible intervals of the
estimated odds ratios and increased standard deviation of



Table 3
Estimated odds ratios (OR) with 95% credible intervals (CI) obtained by fitting a hierarchical logistic regression model including a spatial component to the
within-herd prevalence of MAP infection in Danish dairy herds with or without adjustment for diagnostic misclassification.

2009 2013

Without adj. for
miscl.

With adj. for miscl. Without adj. for
miscl.

With adj. for miscl.

N (%) OR 95% CI OR 95% CI N (%) OR 95% CI OR 95% CI

Organic
production
No 1070 (86) 1 Ref. 1 Ref. 840 (86) 1 Ref. 1 Ref.
Yes 172 (14) 0.86 (0.73; 1.02) 0.83 (0.68; 1.01) 139 (14) 0.84 (0.67; 1.05) 0.81 (0.60; 1.05)

Control
programme
Yes 1062 (86) 1 Ref. 1 Ref. 932 (95) 1 Ref. 1 Ref.
No 180 (14) 1.05 (0.90; 1.22) 1.04 (0.86; 1.24) 47 (5) 1.69 (1.23; 2.26) 2.00 (1.35; 2.86)

Agea

[2,3.30] 250 (20) 1 Ref. 1 Ref. 583 (60) 1 Ref. 1 Ref.
(3.30; 3.47] 248 (20) 1.08 (0.91; 1.27) 1.10 (0.89; 1.34) 140 (14) 1.01 (0.82; 1.22) 0.99 (0.76; 1.26)
(3.47; 3.63] 246 (20) 1.18 (0.99; 1.39) 1.24 (1.01; 1.52) 103 (11) 1.08 (0.85; 1.34) 1.09 (0.81; 1.43)
(3.63; 3.86] 254 (20) 1.08 (0.91; 1.28) 1.12 (0.91; 1.37) 153 (16)b 0.94 (0.71; 1.20) 0.89 (0.65; 1.19)
(3.86; 7.55] 244 (20) 1.37 (1.14; 1.64) 1.49 (1.19; 1.84) – – – – –

Herd sizea

0–97 249 (20) 1 Ref. 1 Ref. 156 (16) 1 Ref. 1 Ref.
98–131 248 (20) 1.14 (0.94; 1.38) 1.19 (0.94; 1.48) 148 (15) 1.09 (0.81; 1.46) 1.11 (0.76; 1.58)
132–157 243 (20) 1.19 (0.97; 1.43) 1.22 (0.97; 1.53) 159 (16) 1.14 (0.85; 1.51) 1.18 (0.82; 1.66)
158–204 248 (20) 1.22 (1.00; 1.47) 1.27 (1.00; 1.59) 221 (23) 1.23 (0.94; 1.60) 1.26 (0.89; 1.75)
205–1400 254 (20) 1.31 (1.07; 1.59) 1.39 (1.09; 1.75) 295 (30) 1.08 (0.82; 1.40) 1.05 (0.74; 1.44)

Herd densitya

[0; 0.54] 260 (20) 1 Ref. 1 Ref. 387 (40) 1 Ref. 1 Ref.
(0.54; 0.69] 245 (20) 1.18 (0.98; 1.39) 1.23 (1.00; 1.51) 299 (31) 1.01 (0.84; 1.21) 1.03 (0.81; 1.27)
(0.69; 0.80] 228 (20) 1.13 (0.94; 1.35) 1.17 (0.94; 1.45) 154 (16) 1.24 (0.98; 1.54) 1.33 (0.99; 1.75)
(0.80; 0.94] 257 (20) 1.05 (0.88; 1.26) 1.07 (0.86; 1.32) 139 (14)b 0.94 (0.73; 1.19) 0.90 (0.65; 1.21)
(0.94; 1.50] 252 (20) 1.13 (0.93; 1.36) 1.17 (0.93; 1.45) – – – – –

Purchase
None 291 (23) 1 Ref. 1 Ref. 390 (40) 1 Ref. 1 Ref.
Below 5% 348 (28) 1.38 (1.16; 1.61) 1.51 (1.24; 1.84) 284 (29) 1.41 (1.17; 1.68) 1.60 (1.26; 2.00)
Above 5% 603 (49) 1.64 (1.40; 1.92) 1.85 (1.52; 2.24) 305 (31) 1.96 (1.63; 2.34) 2.41 (1.91; 3.00)

Jersey
Below 80% 1065 (86) 1 Ref. 1 Ref. 813 (83) 1 Ref. 1 Ref.
Above 80% 6177 (14) 2.03 (1.73; 2.35) 2.35 (1.95; 2.81) 166 (17) 1.68 (1.39; 2.01) 1.98 (1.56; 2.47)

a Cut points based on the 20% quantiles of the distribution in 2009.
b Includes the last group due to small numbers.
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the Gaussian field. This is, however, needed to account for
the noise induced in the observed data by the diagnostic
misclassification. Otherwise, the variation will be underes-
timated. Furthermore, the induced noise caused the covari-
ate estimates to be biased towards the null without
adjustment for misclassification. That is always the case
with non-differential misclassification, whereas the direc-
tion of the bias could change in case of differential misclas-
sification (Copeland et al., 1977). In the present study,
misclassification was assumed non-differential, but the
sensitivity actually depended on the age of the tested
cow. This could not be incorporated in the model, since
data were aggregated at herd level. The latter was done,
since the model cannot handle multiple observations (i.e.
one for each cow) at the same location.

The diagnostic misclassification was independent of
the spatial location of the herds, since all milk samples
in the Danish control programme on MAP are analysed
in the same laboratory. Hence, the spatial pattern
would be expected to be depleted by the random noise
added to the data by the misclassification. This was seen
in 2013, where the estimated Gaussian field was more
smooth without adjustment for misclassification than with
adjustment for misclassification. In 2009, however, the
smoothness of the estimated Gaussian field increased with
inclusion of misclassification in the model, which was
unexpected. We have no real explanation for this. It may
somehow be related to the misclassification depending
on age, since the age of the tested herds was actually not
randomly distributed across the country (2009: Moran’s I
p ¼ 0:001). Furthermore, the age distribution changed
from 2009 to 2013, which could explain the different beha-
viour of the estimated Gaussian fields in 2009 and 2013
(2013: Moran’s I p ¼ 0:01). At the same time, the spatial
structure of the 2009 data was not satisfactorily described
by the model with misclassification, since spatial
correlation was still found in the residuals from this model.
This suggested that the spatial component estimated
with adjustment for misclassification in 2009 was actually
too smooth.
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Overall, however, the estimated spatial pattern in terms
of the range of influence and the location of areas with
increased prevalence did not depend on adjustment for
misclassification. Berke and Waller (2010) studied the
effect of non-spatial diagnostic misclassification on the
observed spatial pattern in a case study on data aggregated
in polygons. They considered the semivariogram, Moran’s
I, and spatial scan statistics and also concluded that, with
large sample sizes, the spatial pattern was not seriously
affected. Bihrmann et al. (2014) studied conditional
autoregressive (CAR) models in a small simulation study
on spatial binary data with diagnostic misclassification.
The CAR models, however, do not provide any estimate
of the spatial pattern, and can only be used to account
for spatial correlation in data.

In the present study, the DIC suggested a better fit of the
models without adjustment for misclassification than with
adjustment for misclassification. The two models may,
however, not be truly comparable, since modelling the true
prevalence instead of the apparent prevalence may be con-
sidered a change of data. In any case, the model with
adjustment for misclassification may be preferable because
of the biased estimates obtained without adjustment for
misclassification.

This study was based on data from a voluntary control
programme. Therefore, the studied herds are not necessar-
ily representative of the total Danish dairy herd popula-
tion. In 2011, the estimated median true within-herd
MAP prevalence was 7.4% among the herds participating
in the control programme (Verdugo et al., 2015), and
5.4% among dairy herds with no screening for MAP infec-
tion (Kirkeby et al., submitted for publication). This sug-
gests a slightly higher prevalence of MAP infectionin the
herds participating in the control programme. In the
2009 analysis, 14% of the herds were actually not enroled
in the programme. These herds might be suspected of
performing screening because of experiencing problems
with MAP infection, but their within-herd prevalence was
similar to the within-herd prevalence of the enroled herds
(OR 1.05 (0.90; 1.22)).

It is assumed that the full effect of the control pro-
gramme in terms of a decrease in the within-herd MAP
prevalence is not observed until after 4–8 years of enrol-
ment (Nielsen and Toft, 2011). In 2009, the herds had only
been enroled for a maximum of 3 years (Mar 2006–Apr
2009). In 2013, however, 81% of the analysed herds had
been enroled in the control programme since at least
2009, i.e. at least 4 years. The decrease across the country
from 2009 to 2013 in within-herd prevalence found in this
study is therefore likely to reflect the effect of the control
programme, and thereby not be applicable to the non-
participating dairy herds.

The non-tested herds may be considered a missing data
problem. Bihrmann and Ersbll (2015) studied the estimate
of the range of influence in case of missing data in a simu-
lation study. In general, the estimate did not change much,
but with 75% missing data, corresponding to the situation
in the present study, large variation between data sets
were observed. In the simulation study, the missing data
did not depend on spatial location. Spatial differences in
the participation in the control programme on MAP has,
however, been found (Bihrmann et al., 2012). This may
not necessarily affect the estimated range of influence,
but the estimated spatial pattern may be influenced. For
example, an area with low estimated prevalence may sim-
ply be the result of none of the herds within that area being
tested. This was not accounted for in the present study, and
could be a topic for future research.

A strength of the data used in this study is the availabil-
ity of the exact location of each measurement. Hence, there
is no bias introduced by aggregating data in more or less
random polygons defined by e.g. administrative regions,
also known as the modifiable areal unit problem (MAUP)
(Openshaw and Taylor, 1979).
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In conclusion, this study presented a model to describe
the spatial pattern in infection prevalence, when the
prevalence is subject to diagnostic misclassification and
covariate effects. We used the model to estimate the
spatial pattern in within-herd prevalence of MAP infection
in Danish dairy herds in 2009 and 2013, and found a
significant spatial component. The smoothness of the esti-
mated spatial pattern was affected by diagnostic misclassi-
fication, but our results suggested that the estimated range
of influence and the overall location of areas with
increased prevalence are not very sensitive to diagnostic
misclassification.

Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.sste.2015.10.001.
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