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Abstract
Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an

extensive host range including Brassica crops. Glucosinolates (GSLs) are an important

group of secondary metabolites characteristic of the Brassicales order, whose degradation

products are proving to be increasingly important in plant protection. Enhancing the defense

effect of GSL and their associated degradation products is an attractive strategy to

strengthen the resistance of plants by transgenic approaches. We generated the lines of

Brassica napus with three biosynthesis genes involved in GSL metabolic pathway

(BnMAM1, BnCYP83A1 and BnUGT74B1), respectively. We then measured the foliar

GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea.
Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased
the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while

over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only

in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that

BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue dam-

age compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines

showed no significant difference in comparison to the controls. These results suggest that

the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tai-

loring the GSL profiles by transgenic approaches or molecular breeding, which provides

useful information to assist plant breeders to design improved breeding strategies.
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Introduction
Sclerotinia sclerotiorum and Botrytis cinerea, which are closely related necrotrophic plant path-
ogenic fungi, are notable for their wide host ranges and environmental persistence [1, 2]. Both
of them cause the rotting of leaves, stems and pods, resulting in vast economic damages in agri-
cultural crops, especially in Brassica oil crops [3, 4], which produce approximate 72.5 million
tonnes of oilseeds worldwide in 2013 (FAOSTAT data 2013, http://faostat.fao.org/site/567/
DesktopDefault.aspx?PageID=567#ancor). For example, infection of B. napus caused by S.
sclerotiorum causes 10%–20% of yield loss every year in China, and the yield loss can be up to
80% in severely infected fields [5]. Chemical control and their application not only cause envi-
ronmental contamination but also lack the suitable forecasting methods to enable the timely
application of fungicides. Therefore, breeding resistance to the two fungi in this crop is an
effective approach to reduce crop losses. However, the progress of such an effort is slow due to
the complex interactions between necrotrophs and their host plants [6] as well as the lack of
resistant germplasm [5].

Plants are able to produce a diverse array of compounds that contribute to defense against
herbivores and pathogens [7]. This includes regulatory compounds such as jasmonic acid, sali-
cylic acid and ethylene as well as defensive compounds such as glucosinolates (GSLs). The reg-
ulatory and defense compounds have to coordinate with each other to jointly participate in the
plant defense system [8]. As the key components of defense metabolites, GSLs and their break-
down products have been identified to have potential antiherbivore [9–11] and antimicrobial
properties [12–14]. The chemical structure of GSLs comprises a common core together with a
variable side chain [15]. According to the type of amino acid precursor from which the side
chain is derived, GSLs are classified into three classes: aliphatic, benzenic or indolic GSLs (For
GSL abbreviations, see Fig 1) [16]. The GSL biosynthesis pathway in the order Brassicales has
been reported to contain three steps: side-chain elongation, core-structure formation and side-
chain modification (Fig 2) [17–19].

B. rapa, B. oleracea and B. napus are three important Brassica crops and shared a common
ancestor with Arabidopsis thaliana [20–23]. The identification of the genes in Arabidopsis GSL
biosynthesis allows for the extension of this knowledge to the Brassica species [19]. In B. olera-
cea, two genes (BoGSL-ELONG and BoGSL-PRO) are involved in side chain elongation, and
one gene (GSL-ALK) is involved in side chain modification [24, 25]. BoGSL-ELONG was
cloned based on the sequence information of theMAM (methylthioalkylmalate synthase) fam-
ily genes in Arabidopsis, and was functionally characterized using an RNA interference
(RNAi) approach in B. napus [24, 26]. The results suggested that BoGSL-ELONG is involved in
4C and 5C aliphatic GSL biosynthesis in Brassicaceae. Additionally, BoGSL-PRO that controls
3C GSL biosynthesis in B. oleracea was also coloned using a comparative analysis of the Arabi-
dopsisMAM family genes [25, 27]. In B. rapa, theMAM gene family orthologous to theMAM
genes in Arabidopsis controls the step of side chain elongation in GSL biosynthesis [28, 29]. In
GSL core-structure formation, aldoximes are oxidized into either nitrile oxides or aci-nitro
compounds by AtCYP83A1 and AtCYP83B1, the two genes of cytochrome P450 family. The
former converts aliphatic aldoximes to thiohydroximates, and the latter metabolizes both Trp-
derived and Phe-derived acetaldoximes [30–34]. In B. rapa, two CYP83A1 genes named
BrCYP83A1-1 and BrCYP83A1-2 were respectively cloned from pak choi, but no functional
analysis was conducted with the two genes [35]. Thiohydroximates are in turn S-glucosylated
by glucosyltransferases of the UGT74 family, UGT74B1 and UGT74C1, forming desulfogluco-
sinolates in Arabidopsis [36–38]. Insertional ugt74b1mutant lines showed significantly
decreased aliphatic and indolic GSLs [36]. Another member, UGT74C1, can complement the
phenotypes and chemotypes of ugt74b1mutant and shows thiohydroximate UGT activity in
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vitro, suggesting that UGT74C1 is an accessory enzyme in GSL biosynthesis with a potential
function during plant’s adaptation to environmental challenges [37, 38].

Aliphatic GSLs are important in resistance to chewing insects and some adapted pathogens
[14, 39–42]. The chain length of aliphatic GSLs determined by the GSL-ELONG locus is a
critical factor for the resistance to both diamondback moth (Plutella xylostella) [43] and two
specialist aphid species [44]. A recent study showed that AtCYP83A1 is very important for ali-
phatic GSL metabolism for the resistance to the B. cinerea in Arabidopsis, but the loss-function
mutant cyp83a1 showed a dramatically reduced parasitic growth of the biotrophic powdery
mildew fungus Erysiphe cruciferarum (E. cruciferarum) [40]. Interestingly, amyb28myb29 dou-
ble mutant, which totally lacks aliphatic GSLs, showed a wild-type level of susceptibility to E.
cruciferarum. The authors explained that the cyp83a1mutant might have a reduced supply of
the fungus with inductive signals from the host and an accumulation of potentially fungitoxic
metabolites [2, 40, 45]. This result suggests that aliphatic GSLs display different effects in the
resistance to biotrophic and necrotrophic pathogens. Indolic GSLs play a predominant role in
defense against non-host pathogens and oviposition by specialized lepidopteran moths [9, 11,
13, 46–48]. The plant lacking indolic GSLs shows a higher suscceptivity to pathogens, espe-
cially the necrotrophic fungi such as Alternaria brassicicola [49], Plectospaerella cucumerina
[50], S. sclerotiorum [48] and B. cinerea [51]. In the Brassicaceae, the levels of indolic GSLs in
B. napus are positively correlated with the resistance to S. sclerotiorum [52–54].Despite the
obvious importance of GSLs in the resistance against various pathogen infections, there have
been few reports on the use of GSL metabolism genes to enhance the stress resistance in B.
napus by a transgenic approach. Importantly, most modern varieties of B. napus are referred to
as ‘double lows’ as they have seeds with low GSL and erucic acid. The reduction of seed GSL is

Fig 1. Abbreviations, trivial names and side-chain structures of the glucosinolates detected in this study.

doi:10.1371/journal.pone.0140491.g001
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thought to be associated with a concomitant decrease in GSL production in leaves [55], result-
ing in decreased plant disease resistance [56].

The current study was aimed to explore the possibility of enhancement in the resistance to
fungal diseases in B. napus based on the understanding of the biological function of GSLs as
revealed in model plant Arabidopsis previously. We found that the expression of three GSL
biosynthesis genes (BnMAM1, BnCYP83A1 and BnUGT74B1) in B. napus were highly respon-
sive to either or both of S. sclerotiorum or B. cinerea infection. Transgenic B. napus plants over-
expressing these three genes individually showed enhanced foliar GSL levels. Subsequently, the

Fig 2. Glucosinolate biosynthetic pathways in Brassicaceae. Arrows between compounds represent the number of putative enzymatic reactions. For
simplicity, only genes discussed in the text have been included. The figure is constructed following several publications [17–19].

doi:10.1371/journal.pone.0140491.g002
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overexpressing lines were inoculated with S. sclerotiorum and B. cinerea, to investigate the
effects of the three genes on enhancing the pathogen resistance of B. napus. Our results indicate
a new and important method to strengthen the resistance against S. sclerotiorum and B. cinerea
by overexpressing GSL biosynthesis genes in B. napus.

Materials and Methods

Plant materials and growth conditions
B. napus plants were planted in the isolated nursery field (Huazhong Agriculture University
experimental farm, Wuhan, China) and green house (University of California Davis, Davis,
California, USA). The field trial and green house did not require any specific permits as the
nursery was set up for this type study. For some pre-test experiments, plants were grown in a
greenhouse at 23/18°C (day/night) under a 13-h illumination time with a light density of 230–
300 μEm-2s-1.

Gene cloning, sequence alignment and phylogenetic analysis
Total RNA was extracted from the leaves of B. napus using the Plant Total RNA Extraction Kit
(Biotake). For each sample, 2 μg of total RNA was used for reverse transcription with Trans-
Script First-Strand cDNA Synthesis Super Mix (TransGen). BnMAM1, BnCYP83A1 and
BnUGT74B1 were cloned from a cDNA library of B. napus cv. Jia2201 and the primers for clon-
ing were designed based on the sequence information of Arabidopsis AtMAM1, AtCYP83A1
and AtUGT74B1, respectively. All cloning primers are listed in S1 Table. Sequence alignment
was performed using CLUSTALX1.83 [57], and phylogenetic analysis was applied to the align-
ment results. The similarity of the predicted protein sequences were compared based on a
BLOSUM62 matrix [58].

Plasmid construction and plant transformation
Full-length BnMAM1, BnCYP83A1 and BnUGT74B1 cDNA were amplified with the primers
YYp01 and YYp02, YYp19 and YYp20B, YYp07 and YYp08, respectively, using the cDNA
from B.napus (cultivar Jia 2201) leaves as a template. The fragments were cloned to pMD18-T
(Takara) and sequenced. The confirmed fragments were then digested with XbaI and SacI and
sub-cloned into the corresponding sites of pBI121 with a CaMV 35S promoter. The constructs
for plant transformation were introduced into Agrobacterium tumefaciens GV3101 by electro-
transformation. B. napus (cultivar Jia 572) plants were transformed according to the method as
described by Zhou [59]. Putative transformants (T0) were transferred to soil. DNA was isolated
from young leaves and used to determine the presence of the transgene by PCR using CaMV
35S promoter-specific forward primer (35S-5) and gene-specific reverse primer. Primers used
in this study are listed in S1 Table.

DNA preparation and Southern blot analyses
Genomic DNA was isolated from young leaves of each transgenic line by CTAB extraction pro-
tocols [60]. For DNA blotting analysis, 20 μg of B.napus genomic DNA was digested with
EcoRI (New England Biolabs) and separated on 0.8% agarose gel for each line. After electro-
phoresis, the digested DNA was transferred onto a Hybond N+ nylon membrane (Amersham).
For hybridization, a conserved 522 bp 32P-labeled NPTII 3’-terminal sequence was used as a
probe. The membrane was hybridized for 24 h at 55°C, and then washed twice with a solution
of 0.1 × SSC and 0.1% SDS at 65°Cfor 20 min. The hybridized membrane was scanned with a
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FUJI FLA-9000 image analysis system (Fujifilm) following the manufacturer’s instructions as
previously described [61].

Glucosinolate Analysis
7 weeks after sowing when the plants had six true leaves and before bolting, the fourth leaf
from the bottom of each plant was collected and stored in 90% methanol to inhibit enzymatic
breakdown of chemical compounds and to prepare for the extraction. In total, 6 plants were
sampled for each line. At maturity, seeds were harvested from the same 6 plants and were fully
dried. 2-Propenyl/allyl GSL (Sinigrin, Sigma-Aldrich) was used as the internal standard. GSLs
were extracted from the leaves and analyzed by high-performance liquid chromatography
(HPLC) according to previously described methods [62] with some modifications. One leaf
was harvested into a 50-ml tube with 15 ml of 90% methanol and fifteen 3-mm ball bearings,
or 200 mg of dried seeds were added into a 2-ml tube with 1 ml of 90% methanol and two
3-mm ball bearings. Then the samples were ground into fine powder in a paint shaker by high-
speed agitation. The final volume of GSL extract was 500 μl, and 10μl extract was measured by
HPLC. The entire experiment was replicated three times.

For data analysis, GSL contents were analyzed via ANOVA using a general linear model
within the R software package (x64 3.1.2) [63]. For all overexpressing lines, each of them was
tested for altered GSL content in an individual ANOVA against WT. All three independent
experiments were combined and an experiment term was included in the model to test for
effects.

Plant inoculation
Sclerotinia sclerotiorum (Ss-1) and Botrytis cinerea (Bc- Canola-3) cultured on PDA were pro-
vided by Prof. Guoqing Li (State Key Laboratory of Agricultural Microbiology, Huazhong
Agricultural University). The PCR-positive plants and controls (7-week-old) were used for
inoculation. Inoculation of the detached leaves was performed as described previously [5]. The
experiment was in a randomized complete block design and was repeated three times. For each
replicate, we sampled more than 12 leaves with each leaf coming from an individual plant. At
48h after inoculation of S. sclerotiorum or 96h after inoculation of B. cinerea, the lesion size
(LS) was measured and calculated with the formula LS = (a+b)/2, where a and b represent the
long and short diameters of lesions, respectively.

Gene expression analysis
Total RNA was prepared from the sampled tissues with TRIZOL reagent (Invitrogen). For
each sample, 5 μg RNA was treated with 10 U DNase I (New England Biolabs) to remove the
residual DNA, and was then used for reverse transcription reaction with the TransScript First-
Strand cDNA Synthesis Super Mix (TransGen). qRT-PCR was performed with three technical
replicates on a Bio-Rad CFX96 Real-Time system (Bio-Rad) and DBI Bioscience Bestar-Real
Time PCRMaster Mix kit, following the manufacturer’s instructions (DBI Bioscience) as previ-
ously described [64]. The data were analyzed with LINREG, as described by Ramakers, Ruijter
[65]. The experiment was repeated using three independent biological replicates. Primers used
in this study are listed in S1 Table.

Overexpressing a Glucosinolate Gene Enhances Resistance in B. napus
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Results

Response of BnMAM1, BnCYP83A1 and BnUGT74B1 to S.
sclerotiorum and B. cinerea infection in B. napus
Previous studies in Arabidopsis showed that AtMAM1, AtCYP83A1, AtUGT74B1 are genes
located at the key points in the GSL biosynthesis pathway [17–19], and are related to both ali-
phatic and indolic GSL synthesis as revealed by mutant analyses [30, 36, 66]. However, if the
genes homologues in B.napus are responsive to fungal pathogens infection was not clear. To
determine whether BnMAM1, BnCYP83A1 and BnUGT74B1 function in the defense responses
to S. sclerotiorum and B. cinerea, we used wild-type (WT) B. napus to measure the expression
of the three genes in response to pathogen infection by qRT-PCR (Fig 3). The results show that
following inoculation with S. sclerotiorum, the accumulation of BnMAM1 and BnCYP83A1
transcripts is induced rapidly and reached a peak within 6 hpi. But this induction was transient,
and the expression levels of the two genes decreased to non-infection level after 24 hpi (Fig
3A). In contrast, the expression of BnUGT74B1 was slowly induced before 12 hpi and was rap-
idly induced thereafter until 24 hpi when it reached the maximum, and then it was weakly

Fig 3. Response of BnMAM1, BnCYP83A1 and BnUGT74B1 to Sclerotinia sclerotiorum and Botrytis cinerea infection.Relative expression levels of
BnMAM1, BnCYP83A1 and BnUGT74B1 in Brassica napuswere determined by qRT-PCR at 0, 6, 12, 24 and 36 h post S. sclerotiorum inoculation (A) and 0,
12, 24, 48 and 72 h post B. cinerea inoculation (B). The expression levels were relative to no inoculation (0 h) and quantified by qRT-PCR. Values are means
of three replicates. Each bar represents means ± SE.

doi:10.1371/journal.pone.0140491.g003
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down-regulated till 36 hpi. These results suggest that both aliphatic and indolic GSLs biosyn-
thesis genes are responsive to S. sclerotiorum infection.

Interestingly, the expression patterns of the three genes in response to B. cinerea inoculation
were different from those in response to S. sclerotiorum inoculation. After inoculation with B.
cinerea, the expression of BnMAM1 and BnCYP83A1 was continuously down-regulated from
the beginning (Fig 3B); conversely, the expression of BnUGT74B1 was up-regulated from the
beginning to the end. These results suggest that the genes involved in indolic GSL biosynthesis
are more active than those in aliphatic GSL biosynthesis in response to the infection by B.
cinerea.

Overexpression of BnMAM1, BnCYP83A1 and BnUGT74B1 in B. napus
To explore the possibility if the resistance to S. sclerotiorum and B. cinerea could be modified
by manipulation of GSL levels in host plants through overexpressing BnMAM1, BnCYP83A1
and BnUGT74B1, we cloned the three genes from the cDNA library of B. napus cv. Jia2201 (a
high-GSL cultivar) by a homology cloning approach (S1–S3 Figs). Subsequently, the cloned
genes were inserted behind the CaMV 35S promoter respectively in the vector pBI121 (Fig
4A), and the constructs were separately transformed into B. napus cv. Jia572, a low-GSL culti-
var. More than thirty lines for each construct were produced. Kanamycin and PCR were used
to screen each transgenic line (Fig 4B). Southern blot analysis was performed using a probe
specific to the NPTII fragment (S4 Fig). Except for a few plants that showed chlorotic leaves
and that did not survive to maturity, most transgenic plants did not show phenotypic changes
during any developmental stage. Based on the results of southern blot analysis and qRT-PCR
analysis, two independent transgenic lines with higher expression of the corresponding gene
(Fig 4C) were chosen for each construct, and were used for further analysis.

Glucosinolate content analysis
To investigate the effect of overexpression of the three GSL biosynthesis genes, we first com-
pared the leaf GSL profiles of each 7-week-old T2 transgenic line and the controls (untrans-
formed wild-type). The GSL contents were independently measured in the leaves of more than
6 plants for each T2 transgenic line, and three aliphatic and three indolic GSLs were detectable
(Table 1). 2OH3B GSL, 3-butenyl GSL and 4-pentenyl GSL all belong to aliphatic GSLs. I3M,
4OH-I3M and 4MO-I3M are all indolic GSLs. Compared with in the wild type (WT) plants, in
the BnMAM1-overexpressing lines, two 4-carbon (C4) side-chain aliphatic GSLs (2OH3B and
3-Butenyl GSL) accumulated to 1.7 and 1.5 fold higher levels respectively, while the content of
another 5-carbon (C5) aliphatic GSL (4-Pentenyl GSL) was similar to that of WT. The contents
of all the indolic GSLs were the same as those of WT. BnCYP83A1-overexpressing lines showed
a similar GSL profile to BnMAM1-overexpressing lines; their 2OH3B and 3-Butenyl GSL con-
tents were increased to 2.2 and 1.8 fold higher than WT. In BnCYP83A1-overexpressing lines,
there were the same contents of both 4-Pentenyl and all the indolic GSLs as WT. In all the
transgenic lines, only the BnUGT74B1-overexpressing lines showed increased indolic GSLs
content, among which I3M GSL was increased to 1.5 fold that of WT, while 4OH-I3M and
4MO-I3M GSL showed no difference. BnUGT74B1-overexpressing lines also lead to increased
2OH3B and 3-Butenyl GSL content, while the content of 4-Pentenyl GSL was not changed
when compared with those of WT. Interestingly, the GSLs accumulation in seeds is a little dif-
ferent from in leaves. In all transgenic lines examined, only one aliphatic GSL (2OH3B GSL)
content was increased compared with WT plants (S2 Table), and other aliphatic GSLs (3-Bute-
nyl, 4-Pentenyl and 5MSOP GSL) were similar to WT. For indolic GSL, only the BnUGT74B1-
overexpressing lines showed increased I3M content compared with WT.

Overexpressing a Glucosinolate Gene Enhances Resistance in B. napus
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Fig 4. Characterization ofBnMAM1-, BnCYP83A1- and BnUGT74B1-overexpressing lines in Brassica napus. (A) Diagram of the plasmids used in this
study. pBI121 contain BnMAM1, BnCYP83A1 or BnUGT74BA1 cDNAs, respectively. RB, right border; NOS-pro, nopaline synthase gene promoter; NPTII,
coding region of neomycin phosphotransferase II gene; CaMV-35S, cauliflower mosaic virus 35S promoter; NOS-ter, nopaline synthase gene terminator; LB,
left border. (B) Molecular characterization of BnMAM1-, BnCYP83A1- and BnUGT74BA1-overexpressing lines. Structure of the BnMAM1, BnCYP83A1 or
BnUGT74BA1 genes including exon and intron boundaries. Accumulation of BnMAM1, BnCYP83A1 or BnUGT74BA1mRNA inWT (untransformed wild-type
control) and corresponding two independent transgenic T2 lines were measured by RT-PCR on 7-week-old leaves. Actin 7 (ACT7, Brassica napus) gene
expression was used as a constitutive control. Primers used for this study are indicated as solid black arrows (See primers in S1 Table). (C) Accumulation of
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Inoculation with S. sclerotiorum and B. cinerea
To determine the effects of overexpressing the three genes on the resistance to S. sclerotiorum,
positive T2 transgenic plants were selected by PCR. Leaves from these PCR-positive plants and
the controls (WT) at the six-true-leaf stage were inoculated with mycelial plugs of S. sclero-
tiorum (Fig 5A–5D) and B. cinerea (Fig 5F–5I). For the S. sclerotiorum (Ss-1) inoculum, the
results indicate that only BnUGT74B1-overexpressing lines developed less severe disease symp-
toms and less tissue damage than the control, while no significant difference was observed
between BnMAM1- and BnCYP83A1-overexpressing lines and the control at 48 h post-inocu-
lation (hpi) (Fig 5E). Investigation of disease progression shows that soft-rotting necrosis
occurred as early as 16 hpi, and we counted the leaves with necrosis. The results show that
more than 90% of BnMAM1- and BnCYP83A1-overexpressing plants and the control were
infected, but necrosis was observed in less than 10% of BnUGT74B1-overexpressing plants
(Table 2). Necrosis was delayed in most of the BnUGT74B1-overexpressing plants until 24 hpi.

We also inoculated the transgenic lines with B. cinerea (Bc- Canola-3), which is closely
related S. sclerotiorum as a necrotrophic plant pathogenic fungus. The results are similar to
those of the inoculation of S. sclerotiorum. Only BnUGT74B1-overexpressing lines showed
smaller lesion areas than the control at 96 hpi (Fig 5J), and the infection rate was significantly
lower than the control at 32hpi, when the gray mold diseases just occurred in other transgenic

BnMAM1, BnCYP83A1 or BnUGT74BA1mRNA in 7-week-old leaves of WT control and corresponding overexpressing lines. The expression level of Actin 7
(ACT7, Brassica napus) was used as a constitutive control. Values are the means and SE of three replicates performed on cDNA dilutions obtained from
three independent mRNA extractions. The significant differences is shown as ** (P < 0.05) on the bar. Primers used for this study are indicated as hollow
white arrows (See primers in S1 Table).

doi:10.1371/journal.pone.0140491.g004

Table 1. GSL contents (nmol/g) in 7-week-old leaves of BnMAM1, BnCYP83A1 and BnUGT74B1 overexpressing T2 lines.

GSLa Wild type BnMAM1 overexpressing lines BnCYP83A1 overexpressing lines BnUGT74B1 overexpressing lines

WT OE-M-1 Pb OE-M-2 P OE-C-1 P OE-C-2 P OE-U-1 P OE-U-2 P

2OH3B 13.70
±2.72

24.05
±2.81

0.017 25.10
±3.75

0.018 35.04
±10.03

0.033 29.88
±3.95

0.002 24.61
±5.61

0.025 32.75
±7.61

0.022

3-Butenyl 12.51
±1.64

20.52
±2.18

0.006 17.49
±1.06

0.026 26.02
±3.86

0.002 19.61
±2.86

0.031 28.11
±5.53

0.009 26.03
±4.26

0.005

4-Pentenyl 20.32
±4.96

24.44
±4.97

NSc 25.75
±5.59

NS 23.24
±5.14

NS 23.99
±2.41

NS 26.07
±6.23

NS 25.48
±5.29

NS

I3M 167.58
±17.78

165.34
±18.52

NS 150.35
±17.74

NS 166.31
±18.23

NS 156.27
±20.96

NS 245.31
±32.94

0.013 240.22
±31.04

0.028

4OH-I3M 5.32±0.53 6.45±0.73 NS 5.27±0.53 NS 7.43±1.33 NS 5.88±0.83 NS 7.43±0.87 NS 7.18±0.92 NS

4MO-I3M 11.47
±0.82

11.25
±1.15

NS 12.04
±0.98

NS 12.06
±1.00

NS 12.83
±1.27

NS 13.39
±0.98

NS 13.68
±1.20

NS

Total
Aliphatic

46.52
±8.59

69.01
±8.13

0.041 68.33
±7.83

0.043 84.31
±16.07

0.038 73.48
±7.99

0.035 78.79
±15.72

0.047 84.26
±16.04

0.043

Total Indolic 184.37
±18.03

183.05
±18.57

NS 167.65
±18.17

NS 185.8
±18.40

NS 174.98
±22.45

NS 266.13
±34.17

0.04 261.07
±32.00

0.042

Total 230.88
±20.91

252.06
±24.44

NS 235.99
±21.58

NS 270.11
±27.45

NS 248.46
±27.88

NS 344.92
±45.89

0.028 345.34
±38.56

0.013

The data (means ±SE and P value, n = 18) were collected from three independent experiments and were analyzed via ANOVA.
aFor GSL abbreviations, see Fig 1.
bP value for GSL differences between the overexpression line and WT as determined by ANOVA.
cNot a significant P value (P > 0.05).

doi:10.1371/journal.pone.0140491.t001
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lines and the control (Table 3). All the results of inoculation with S. sclerotiorum and B. cinerea
suggest that the overexpression of BnUGT74B1 could significantly inhibit or delay the necrotic
diseases caused by S. sclerotiorum and B. cinerea.

Fig 5. Resistance of BnMAM1, BnCYP83A1 and BnUGT74B1 overexpressing T2 plants to S. sclerotiorum andB. cinerea. (A-D) Disease responses
of inoculated plants with S. sclerotiorum at 48 h post-inoculation (hpi). (E) Lesion sizes of leaves inoculated with S. sclerotiorum, which were measured for
the first 48 h after inoculation. Means and SE are shown (n� 12). The significant differences is shown as ** (P < 0.05) using t-tests. OE- M-1 and OE-M-2 are
transgenic lines for BnMAM1, OE- C-1 and OE-C-2 are transgenic lines for BnCYP83A1, OE- U-1 and OE-U-2 are transgenic lines for BnUGT74B1. WT,
untransformed wild-type control. (F-I) Disease responses of inoculated plants with B. cinerea at 96 hpi. (J) Lesion sizes of leaves inoculated with Botrytis
cinerea, which were measured at 96 hpi. Means and SE are shown (n� 12). The significant differences is shown as ** (P < 0.05) using t-tests.

doi:10.1371/journal.pone.0140491.g005

Table 2. The morbidity rate of S. sclerotiorum infection at early stage.

Wild type BnMAM1 BnCYP83A1 BnUGT74B1

WT OE-M-1 OE-M-2 OE-C-1 OE-C-42 OE-U-1 OE-U-2

16 hpi 46 47 37 37 42 3 4

Total 49 51 40 39 46 41 43

Ratio 93.88% 92.16% 92.50% 94.87% 91.30% 7.32% 9.30%

The ratio of the number of inoculation sites showing necrosis to the total number of inoculation sites was expressed as early stage morbidity. The lines

OE-M-1 and OE-M1-2 are transgenic for BnMAM1. The lines OE-C-1 and OE-C-2 are transgenic for BnCYP83A1. The lines OE-U-1 and OE-U-2 are

transgenic for BnUGT74B1. WT, untransformed wild-type control.

doi:10.1371/journal.pone.0140491.t002
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Discussion
Over the past two decades, almost all genes involved in the GSL biosynthesis pathway have
been identified and characterized in model plant Arabidopsis thaliana [19]. Loss-of-function
and gain-of-function studies have demonstrated that aliphatic and indolic GSLs play important
roles in plant defence, but little direct evidence has been found for the specific GSL biosynthesis
genes from B. napus in defense against the pathogens S. sclerotiorum and B. cinerea. Our study
provides new data that BnMAM1, BnCYP83A1 and BnUGT74B1 are all highly responsive to S.
sclerotiorum and B. cinerea infection, and overexpression of these three genes led to marked
increase in either or both of aliphatic and indolic GSLs levels in leaves. All three genes overex-
pression significantly increased two aliphatic GSLs levels (2OH3B and 3-Butenyl GSLs) com-
pared with the wild type control, but only BnUGT74B1 overexpression increased indolic GSL
content (I3M GSL) (Table 1). We further find that only BnUGT74B1 overexpression enhances
the resistance to S. sclerotiorum and B. cinerea while BnMAM1- and BnCYP83A1-overexpres-
sing lines show similar disease symptoms and tissue damage to the wild type control (Fig 5,
Tables 2 and 3).

In Brassicaceae, BoGSL-ELONG and BoGSL-PRO involved in side chain elongation have
been identified and characterized in B. oleracea. The former is involved in the biosynthesis of
four-carbon (4C) GSLs, whereas the latter is involved in the biosynthesis of three-carbon (3C)
GSLs. [24, 25, 67].MAM gene silencing in B. napus significantly induced the production of 3C
GSLs, while the contents of 4C and two 5C side-chain GSLs were decreased [26]. Similar gluco-
sinolate contents were detected by silencing BnGSL-ALK gene families in B. napus [68]. In our
study, two 4C side-chain aliphatic GSLs (2OH3B and 3-Butenyl GSLs) contents were increased
by overexpression of BnMAM1 compared with the wild type control (Table 1), while the level
of 5C side-chain GSL (4-Pentenyl GSL) was similar to wild type control. These results indicate
that the copy of BnMAM1 used in this study may only catalyze the elongation of 3C to 4C
GSLs, and there may be other copies responsible for production of 5C GSLs.

When the transgenic lines were inoculated with S. sclerotiorum, BnMAM1 and BnCYP83A1
showed the same transcription profile: they were up-regulated at the early stage (6 hpi) and
were rapidly down-regulated thereafter (Fig 3A). By contrast, the expression of BnUGT74B1
was continuously induced especially after 12 hpi while it was only slightly induced before 12
hpi. These results suggest that aliphatic GSL biosynthesis pathway was induced for defending
against S. sclerotiorum infection at the early stage while the BnMAM1- and BnCYP83A1-over-
expressing lines show similar disease symptoms and tissue damage to the wild type control. By
contrast, with the inoculation of B. cinerea, the expression of BnUGT74B1 was increased during
the whole disease procession, but the expression of BnMAM1 and BnCYP83A1 were down-reg-
ulated from the beginning (Fig 3B). These results show that indolic GSL play an important role

Table 3. The morbidity rate ofB. cinerea infection at early stage.

Wild type BnMAM1 BnCYP83A1 BnUGT74B1

WT OE-M-1 OE-M-2 OE-C-1 OE-C-42 OE-U-1 OE-U-2

32 hpi 23 38 34 33 36 2 3

Total 24 41 36 36 40 25 25

Ratio 95.83% 92.68% 94.44% 91.67% 90.00% 8.00% 12.00%

The ratio of the number of inoculation sites showing necrosis to the total number of inoculation sites was expressed as early stage morbidity. The lines

OE-M-1 and OE-M1-2 are transgenic for BnMAM1. The lines OE-C-1 and OE-C-2 are transgenic for BnCYP83A1. The lines OE-U-1 and OE-U-2 are

transgenic for BnUGT74B1. WT, untransformed wild-type control

doi:10.1371/journal.pone.0140491.t003
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in defense against B. cinerea infection, while the aliphatic GSLs contribute little to the defense.
The degradation products indolic GSLs, especially I3M and 4MOI3M, are very important
defense compounds to biotic and abiotic stresses [10, 12, 13, 48, 69, 70]. In our study, overex-
pression of BnUGT74B1 not only significantly increased the level of I3M GSL in transgenic
plants but also significantly enhances the resistance of the transgenic plants to S. sclerotiorum
and B. cinerea (Fig 5). Although it seems that aliphatic GSL do not play an important role in
the defense against necrotrophic S. sclerotiorum and B. cinerea pathogens, but it could provide
the resistance to other pests and diseases, such as chewing insects and some adapted pathogens
[14, 39–42]. So far, no immune or highly resistant germplasm for S. sclerotiorum and B. cinerea
in B. napus has been reported, and few germplsms of host resistance to the pathogen are avail-
able to breeders [1]. The resistance to the pathogens in plants exhibits mainly quantitative vari-
ation controlled by quantitative genes [5]. Many factors including GSLs content in plants may
contribute to the differences in resistance among different genotypes [12]. Currently the
genetic improvement of resistances to these two fungal pathogens still heavily relies on the
accumulation of such quantitative resistance [5]. In this study, such kind of the resistance by
overexpressing GSL biosynthesis gene, although only as significant as quantitative resistance, is
still valuable for the breeding for necrotic fungal infection.

As plant matured, GSLs are transported from vegetative tissues to reproductive tissues [55, 71,
72]. In our study, the results of seeds GSLs showed that the GSLs accumulations in leaf and seed
are different and the increasing content of leaves does not necessarily lead to the increase in seeds
for individual GSLs. Such a difference is likely due to GSL transport mechanism [73] and second-
ary modifications [17–19]. Therefore it is possible that we can silence the GSL transporters, such
as GTR1 and GTR2 [73], to maintain higher levels of GSLs in vegetative tissues while to restrict a
low level in the seed. However, the molecular mechanisms of host defense to S. sclerotiorum
remain poorly understood in the GSL–S. sclerotiorum interaction, which restricts the engineering
of resistance by transgenic approaches and still need further elucidate.

In general, the resistance to two necrotrophic fungi S. sclerotiorum and B. cinerea was
enhanced in transgenic B. napus plants by overexpressing BnUGT74B1, which is complemen-
tary to the positive effects observed in a study on indolic GSL [12–14, 48, 51]. The results may
facilitate the understanding of the mechanisms underlying the resistance to S. sclerotiorum and
B. cinerea, which may provide clues to the development of effective strategies for controlling
the diseases caused by S. sclerotiorum and B. cinerea.
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S1 Table. List of primers used in constructs and assays.
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S2 Table. GSL contents (μmol/g) of seeds from BnMAM1, BnCYP83A1 and BnUGT74B1
overexpressing T2 lines.
(DOCX)

S1 Fig. Alignment of the amino acid sequence of AtMAM1 and BnMAM1.
(TIF)

S2 Fig. Alignment of the amino acid sequence of AtCYP83A1and BnCYP83A1.
(TIF)

S3 Fig. Alignment of the amino acid sequence of AtUGT74B1and BnUGT74B1.
(TIF)
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S4 Fig. Southern blot analysis of EcoRI -digested genomic DNA of each transgenic lines.
The copy number of each transgene was estimated based on the number of the bands seen on
Southern blots. The genomic DNA was digested with EcoRI and a conserved 522 bp 32P-labeled
NPTII 3’-terminal sequence was used as a probe. WT, untransformed wild-type control. OE-
M-1 and OE-M-2 are transgenic lines for BnMAM1, OE- C-1 and OE-C-2 are transgenic lines
for BnCYP83A1, OE- U-1 and OE-U-2 are transgenic lines for BnUGT74B1.
(TIF)
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