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ABSTRACT: Nanofibrillar cellulose is a very promising innovation with diverse
potential applications including high quality paper, coatings, and drug delivery
carriers. The production of nanofibrillar cellulose on an industrial scale may lead
to increased exposure to nanofibrillar cellulose both in the working environment
and the general environment. Assessment of the potential health effects following
exposure to nanofibrillar cellulose is therefore required. However, as nanofibrillar
cellulose primarily consists of glucose moieties, detection of nanofibrillar cellulose
in biological tissues is difficult. We have developed a simple and robust method
for specific and sensitive detection of cellulose fibers, including nanofibrillar
cellulose, in biological tissue, using a biotinylated carbohydrate binding module
(CBM) of β-1,4-glycanase (EXG:CBM) from the bacterium Cellulomonas f imi.
EXG:CBM was expressed in Eschericia coli, purified, and biotinylated. EXG:CBM
was shown to bind quantitatively to five different cellulose fibers including four
different nanofibrillar celluloses. Biotinylated EXG:CBM was used to visualize cellulose fibers by either fluorescence- or horse
radish peroxidase (HRP)-tagged avidin labeling. The HRP-EXG:CBM complex was used to visualize cellulose fibers in both
cryopreserved and paraffin embedded lung tissue from mice dosed by pharyngeal aspiration with 10−200 μg/mouse. Detection
was shown to be highly specific, and the assay appeared very robust. The present method represents a novel concept for the
design of simple, robust, and highly specific detection methods for the detection of nanomaterials, which are otherwise difficult to
visualize.

■ INTRODUCTION

Nanofibrillar cellulose (also called nanocellulose) is a dense net-
work of highly fibrillated celluloses ranging from 10 to 100 nm in
diameter and several micrometers in length.1,2 Nanofibrillar
cellulose constitutes an innovation potential within the forest
sector since nanofibrillar cellulose can be used as high strength
materials in products such as high quality paper, coatings,
cosmetics, vehicles, furniture, food, electronic components,
and pharmaceuticals. Recently, the production of nanofibrillar
cellulose on an industrial scale has become economically
feasible.1,3,4 Because of their mechanical properties and low
production costs, nanofibrillar cellulose constitutes an attrac-
tive alternative to other nanofibers, e.g., carbon nanotubes.4,5

Nanofibrillar cellulose is produced by the mechanical refining
of wood or natural fiber pulp, followed by either grinding or
homogenization.2

Workers exposed to cotton dust, which principally consists
of cellulose, have been reported to develop chest tightness,
hyperresponsiveness, and chronic bronchitis.6 Exposure to
wood dust (where cellulose is the major constituent) causes
cancer of the nose and the paranasal sinuses,7 and exposure to
textile fibers in weavers has also been considered possibly
carcinogenic.8,9 Cellulose fibers have been shown to persist in
the lungs of rats with a half-life in the range of 1000 days after
intratracheal deposition.9 Workers may be exposed to airborne
nanofibrillar cellulose particles from grinding or spray drying
during production.1 However, data on health effects in workers
exposed to nanofibrillar cellulose are at present largely un-
available.1 There are reasons for health concern related to
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nanofibrillar cellulose since they, like asbestos and carbon
nanotubes, are high aspect ratio materials, and exposure could
cause physiological responses (e.g., inflammation) in the respi-
ratory tract. Studies of nanomaterial toxicity are often hampered
by difficulties in detecting and quantifying the nanomaterial in
biological tissues. This is especially true for carbon-based nano-
materials and biological nanomaterials like nanofibrillar cellulose,
which mainly consists of glucose moieties.
Exoglucanases (EXG) bind cellulose with very high specificity

and affinity via the cellulose binding domain EXG:CBM.10 We
have utilized the specific binding properties of EXG:CBM to
develop a new detection method for the visualization of cellulose
fibers. Here, we show that biotinylated EXG:CBM can be used
to visualize pulp cellulose as well as four different types of
nanofibrillar cellulose fibers in biological tissue, that biotiny-
lated EXG:CBM can be used on both cryopreserved and
paraffin embedded lung tissues, and that specific staining can be
obtained using both fluorescence- and horse radish peroxidase
(HRP)-tagged avidin labeling.

■ METHODS
Production and Purification of EXG. The plasmid pJexpress401:22788

carries the coding sequence corresponding to the 110 amino acid long
EXG:CBM [PDB: 1EXG] from the gene Cex (β-1,4-glycanase from
the bacterium Cellulomonas f imi). The structure of the EXG:CBM
protein has been solved by NMR.11 EXG:CBM contains a disulfide
bond, and to ensure correct disulfide bond formation, the PelB signal
peptide sequence from Pectobacterium carotovorum was fused to the
reading frame encoding EXG:CBM in order to target EXG:CBM to
the periplasm. The reading frame, including the signal peptide, was
custom synthesized by DNA2.0 (Menlo Park, CA, USA) in a vector,
pJexpress401 (DNA2.0), under control of the T5 promoter and with

kanamycin resistance as the selection marker. The codon bias of the
EXG:CBM reading frame was optimized for expression in Escherichia
coli according to the algorithms of DNA2.0. EXG:CBM was pro-
duced from the plasmid pJexpress401:22788 in E. coli strain MAS72
(rec+ derivative of MAS90).12 MAS72 was grown at 37 °C in buffered
rich medium supplemented with salts13 and 30 μg/mL kanamycin.
EXG:CBM synthesis was induced by the addition of isopropyl
β-D-1-thiogalactopyranoside (IPTG) to the growth media to a final
concentration of 0.1 mM at a cell culture density of OD600 = 1, and the
cultures were left to grow for 20 h at 37 °C. Cells were harvested,
washed, and resuspended in 50 mM Tris-HCl and 1 mM EDTA at
pH 7.0. A sequence of 20 s sonication at 40% maximum energy (an
amplitude of 8 μm) on a Soniprep 150 (Sanyo) sonicator, followed by
a 60 s pause while kept on ice released the protein from the periplasm
into the supernatant. Cell debris was removed by centrifugation at
20,000g for 20 min at 4 °C. Protein yields of EXG:CBM from 1 L
culture, grown as above, were typically 15− 20 mg.

EXG:CBM was purified taking advantage of the affinity of the
protein for cellulose10 by incubating the cell lysate with 1 g (dry weight)
of Avicel (Sigma-Aldrich) per liter original culture with agitation for 1 h
at 25 °C. The Avicel with bound EXG:CBM was pelleted by centrifuga-
tion at 5,000g for 20 min at room temperature, and the supernatant was
discarded.

The Avicel pellet was packed in a Pharmacia XK 16 column with a
thermostatic jacket and washed with three column volumes of 1 M
NaCl followed by the same amount of water. To elute the protein, the
temperature of the column was ramped up from 70 to 82 °C during
20 min, while continuously running water over the column (2 mL/min).
EXG:CBM was eluted, and fractions containing protein (as determined
by absorbance at 280 nm) were collected and lyophilized. After
dissolving in water, insoluble material was pelleted by centrifugation as
described above. The yield of EXG:CBM at this point was typically
80−90%, and the protein was more than 95% pure as judged by
SDS−PAGE (Figure 1A, lane 3). However, when performing assays

Figure 1. Production and purification of EXG:CBM (A) and MALDI-TOF evaluation of the biotinylation of EXG:CBM (B). (A) SDS−PAGE gel of
crude E. coli extract from cells producing EXG:CBM and subsequent purification with Avicel. Lane 1: molecular weight marker (phosphorylase
b (97 kDa), albumin (66 kDa), ovalbumin (45 kDa), carbonic anhydrase (30 kDa), trypsin inhibitor (20.1 kDa), and α-lactalbumin (14.4 kDa). Lane 2:
cell lysate loaded equivalent to 200 μL of induced culture. Lane 3: cell lysate equivalent to 2 mL of induced culture incubated with 3 mg of Avicel and
washed. Lane 4: ∼50 μg of EXG:CBM after the last purification step. (B) Biotinylation of EXG:CBM. Labeling of EXG:CBM (Mw = 11079 Da) using
the biotinylation reagent biotin-NHS in 12-fold molar excess at pH 7.0 resulted in a modification of the protein’s two available amino groups. Masses
correspond to modification of either the N-terminus or the side chain of Lys28 (Mw = 11305 Da) or both (Mw = 11531 Da). Nearby peaks stem from
adduct ions.

Table 1. Characteristics of the Five Different Cellulose Fibers (CF) Used in the Study

material concentration (%) fiber length (nm) fiber width (nm) aspect ratio zeta potential (mV) remarks

CF1 2.40 2000−20 000 2−15 100−1000 −15 enzymatic pretreatment
CF2 1.60 2000−50 000 3−10 100−5000 −32 carboxy-methylated
CF3 0.79 500−10 000 4−10 100−1000 −25 biocide 12,5 ppm (BIM MC 4901), carboxylated
CF4 1.47 2000−20 000 7−20 100−2000 −2
CF5 4.30 bulk-sized
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for carbohydrate content using the phenol-sulfuric acid method,14 the
EXG:CBM preparation at this stage consistently revealed a slight
carbohydrate (cellulose) contamination (equivalent to about 1 mole
glucose monomer per mole EXG:CBM).
To remove trace elements of cellulose and reagents from the

labeling reaction, fractions were applied to a Pharmacia Superdex 75
size-exclusion column using 100 mM ammonium hydroxide (pH 8.5)
as mobile phase, and the protein fractions were pooled and lyophilized.
The yield of EXG:CBM was 70−75% at this final stage.
The purity of EXG:CBM in the different steps of the purification

procedure is shown in Figure 1A. It should be noted that EXG:CBM
is retained on Superdex 75 most likely due to a slight affinity for the
column material and elutes after the column volume. No carbohydrate
was detected in EXG:CBM samples from this step. After an additional
lyophilization, the protein was stored as powder and dissolved in water
or a proper buffer just before use and centrifuged as above to pellet
any insoluble material.
EXG:CBM Biotinylation. To biotinylate EXG:CBM, a 30 mM

stock solution of NHS-biotin (Thermo Scientific) was made freshly
in DMSO and was added in 12-fold molar excess to 1 mg/mL
EXG:CBM in 20 mM sodium phosphate (pH 7.0). The reaction was
incubated for 5 h at 25 °C with stirring after which the reaction was
quenched by the addition of 1 M Tris-HCl to a final concentration of
10 mM. The biotinylated EXG:CBM was separated from the reaction
mixture by Superdex 75 gel-filtration as described above.
MALDI-TOF MS. EXG:CBM samples were prepared by dilution

in 0.1% trifluoroacetic acid (TFA) to a concentration of 1 μM.
Fresh matrix was prepared by thoroughly mixing sinapinic acid with a
1:1 (v/v) solution of 0.1% TFA and acetonitrile. Any undissolved
sinapinic acid was pelleted by centrifugation for 15 min at 15,000g.
Equal volumes of the resulting supernatant and the diluted EXG:CBM
samples were mixed and spotted on the steel target. Crystallized spots
were analyzed in a Bruker Autoflex MALDI-TOF mass spectrometer,
using a laser power intensity of 64.75 μJ. The spectra obtained were
normalized to the highest intensity recorded.
Measurement of Cellulose Binding by EXG:CBM. The method

was based on a depletion assay for EXG:CBM.15 Two-hundred and
fifty μL binding reactions were made by mixing 200 μL of the prepared
stock of cellulose fiber (250 μg/200 μL) and 50 μL of varying con-
centrations of EXG:CBM in binding buffer (50 mM sodium
phosphate, pH 6.5) and incubated for 1 h while shaking. Samples
from the incubations were then transferred to 0.2 μm spin-filters
(modified nylon VWR Centrifugal Filter, art. no. 516-0234) and
centrifuged at 10.000g for 2 min. The filtrate was collected, and 450 μL
of binding buffer was added. Binding of EXG:CBM to the nylon
membrane of the spin-filters was determined in a binding experiment
performed as described above with the omission of cellulose fibers in
the incubation. The EXG:CBM concentration remaining in the filtrate
was determined on a PerkinElmer LS 55 luminescence spectrometer
based on two standard curves: one determined for 0.0075−0.1 μM
EXG:CBM at a slit width of 2.5 nm for excitation and 10 nm for
emission and one determined for 0.1−2.5 μM EXG:CBM at a slit
width of 2.5 nm for excitation and 2.6 nm for emission. The latter
standard curve was verified by absorbance measurements at 280 nm.
Both standard curves showed that the intensity was linearly dependent
on protein concentration with R2 > 0.99 for both lines.

Analysis of Binding Data. Results from binding experiments
were analyzed using the OriginLab 9.1 software by fitting the built in
equations for one-site binding or two-site binding isotherms to the
data:
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where [bound] is the concentration of EXG:CBM bound to the
cellulose and removed from the sample during centrifugation. Bmax is
the calculated concentration of binding sites in the sample. [L]
designates the free EXG:CBM concentration obtained in the sample
that passed through the spin filter (see above procedure). The data
analysis was performed after subtracting the binding of EXG:CBM
binding to the nylon membrane of the spin-filters.

Celluloses. Four nanofibrillar cellulose materials (denoted
CF1-CF4) and one bulk-sized cellulose fiber (denoted CF5) were
used in the study. All cellulose samples were derived from natural
wood-based pulp, and they consisted of glucose, xylose, and mannose.
Material characteristics are presented in Table 1. The materials were
produced and provided by Stora Enso Oyj and UPM Kymmene Oyj.
Physicochemical characteristics of the cellulose fibers were provided by
the manufacturers. Fiber length was determined by scanning electron
microscopy (Zeiss Model EVO MA 10) and laser diffraction (Horiba
LA 950). Fiber width was determined by atomic force microscopy
(Cypher System, Asylum Research). Zeta potential was determined by
dynamic light scattering (Malvern Zetasizer Nano).

Dispersion of Celluloses. Cellulose dispersions were prepared
in phosphate buffered saline (PBS, Lonza, Basel, Switzerland). The
amount of cellulose needed was either measured with a 1 mL syringe
(SOFT-JECT Insulin U-100) or weighed due to high viscosity of the
material. Cellulose was dispersed in PBS by high speed vortexing
for 10 min to yield a 4 mg/mL stock dispersion. Further dilutions
were prepared from the stock dispersion by a dilution series, followed
by vortexing for 10 min. Immediately before administration, the
dispersions were vortexed quickly.

Animals. Female C57BL/6 mice were obtained from Scanbur AB
(Karlslunde, Denmark) and quarantined for 1 week. The mice were
7−8 weeks old at arrival and were housed in groups of 4 mice per cage
in humidity- and temperature-controlled ventilated rooms with a 12 h
day/night cycle. Rodent diet (Altromin no. 1314 FORTI, Altromin
Spezialfutter GmbH & Co., Germany) and water were provided
ad libitum. Cage-side clinical observations were conducted on a daily
basis during the study.

Mice in groups of 8 were exposed to 10, 40, 80, or 200 μg of each of
CF material in a 50 μL volume (corresponding to 0.2, 0.8, 1.6, or
4 mg/mL dispersions) by single pharyngeal aspiration. Since PBS was
used as vehicle, mice in the control group were exposed to 50 μL of
PBS. The mice were sacrificed by an overdose of isoflurane 24 h after
exposure. A slice from the left lung was fixed in formalin, while another
slice from the left lung was embedded in O.C.T. compound (optimal
cutting temperature) (TissueTek, Sakura, The Netherlands) and snap
frozen on dry ice.

Table 2. Binding Data for EXG to the Different Types of Cellulose

KD1 (μM) Bmax1 KD2 Bmax2

CF2 0.0063 ± 0.0023 1.46 ± 0.17 0.65 ± 0.28 2.47 ± 0.28
CF1 0.010 ± 0.0055 1.33 ± 0.22 0.72 ± 0.31 2.03 ± 0.19
CF3 0.022 ± 0.0062 2.28 ± 0.35 0.76 ± 0.56 2.36 ± 0.37
CF4 0.055 ± 0.0083 2.69 ± 0.09 - -
CF5 0.084 ± 0.017 3.24 ± 0.17 - -
nylon filter 0.35 ± 0.054 1.07 ± 0.038 - -

Binding constants (KD) and maximum binding (Bmax) and (-) indicate that only a one-site binding model was used for fitting. Data were fitted to a
two-site binding model, when this was appropriate.
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The study was approved by the Animal Experiment Board and the
State Provincial Office of Southern Finland.
Histology and Immunohistochemistry. The formalin fixed

samples were trimmed, dehydrated, and embedded in paraffin. Sections

from both formalin fixed and frozen tissues were cut at 3 μm on a
Microtome (Leica Microsystems, Wetzlar, Germany). For general
morphology, the sections were stained with hematoxylin and eosin
(H&E) stain.

Figure 3. Specific staining of CF1 with biotinylated EXG:CBM in paraffin embedded and cryopreserved lung tissues, counterstained with Mayer’s
hematoxylin. (A) Cryopreserved lung sections from mice exposed to 200 μg of CF1 stained with biotinylated EXG:CBM. Microscope objective
10×. Arrows locate cellulose fibers identified by the EXG:CBM staining. (B) Paraffin embedded tissue from vehicle (PBS) exposed mice stained with
biotinylated EXG:CBM. Microscope objective 10×. (C) Paraffin embedded lung tissue from mice exposed to 200 μg of CF1. Microscope objective
10×. Arrows locate intrabronchially located cellulose fibers identified by the EXG:CBM staining. (D) Control staining of a serial section of the same
tissue as that in panel C stained using the immunohistochemistry protocol but excluding biotinylated EXG. Arrows locate unstained cellulose fibers.
Microscope objective is 10×.

Figure 2. Specific staining of CF1 with EXG:CBM in paraffin embedded lung tissue sections from mice exposed to CF1. (A) H&E staining of
paraffin embedded lung tissue from mice exposed to 200 μg of CF1. Microscope objective ×10. Arrows locate unstained cellulose fibers. (B) Serial
section of the same tissue as in panel A stained with biotinylated EXG:CBM conjugated to HRP, counterstained with Mayer’s hematoxylin. Arrows
locate cellulose fibers identified by the EXG:CBM staining.
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For EXG:CBM staining, frozen sections were fixated in acetone for
5 min, or paraffin was removed from the sections, and the sections
were washed with PBS. Endogenous peroxidase was blocked with
Ultravison Hydrogen Peroxide Block (Thermo scientific, Fremont CA,
USA) for 10 min. After washing with PBS, 30% rabbit normal serum
with avidin from Avidin/Biotin Blocking kit, Vector Laboratories
(Burlingame, CA, USA) was applied to the sections for 30 min and
then removed by gentle suction. Biotinylated EXG (final dilution
1:300 with biotin from Avidin/Biotin Blocking kit) was applied
to the sections for 60 min. After washing with PBS, Streptavidin
Peroxidase Conjugated (Rockland, Limerick, PA, USA) was applied to
the sections for 30 min at a dilution of 1:300. After washing in PBS,
peroxidase enzyme activity was visualized by incubation in Large
Volume AEC Chromogen Single Solution (Thermo Scientific) for
5 min. The sections were then counterstained with Mayers
hematoxylin, dried and mounted.
Fluorescence Staining for Cellulose. For fluorescence staining,

tissue sections (from paraffin or OCT) were blocked with avidin from
Avidin/Biotin Blocking kit, Vector Laboratories (Burlingame, CA,
USA) in 2% rat serum in nanopure water for 10 min. The slides
were then blocked with biotin from Avidin/Biotin Blocking kit for
10 min. Then, biotinylated EXG (diluted 1:300 final concentration)
was applied to the sections for 60 min. After washing in PBS, avidin
FITC conjugate (ImmunoPure Avidin, Fluorescein Conjugated,
Thermo Scientific) was added to the slides for 30 min in the dark.
After washing, the slides were mounted and analyzed.

■ RESULTS

Protein labeling. EXG:CBM has two potential biotinyla-
tion sites, the N-terminus and the ε-amine of lysine 28. Successful
biotin-labeling was indicated by the increased masses of EXG:CBM
of 226 or 452 Da, respectively, detected by MALDI-TOF MS,

indicating single and double biotinylation along with a small
signal from unlabeled EXG:CBM (Figure 1B).

Celluloses. Four nanofibrillar cellulose materials (denoted
CF1−CF4) and one bulk-sized cellulose fiber (denoted CF5)
were used in the study (Table 1).

EXG:CBM Binding to Nanofibrillar Cellulose. Cellulose
fibers CF1−CF5 were assayed for EXG:CBM binding capability
(Table 2). EXG:CBM showed strong binding to CF2 (KD1 =
6.3 ± 2.3 nM), and the binding was best fitted to a two-site
binding model. Both the low KD and the two-site binding pre-
viously have been observed for EXG:CBM, when binding to
crystalline cellulose, like Avicel.15

The four other cellulose fibers were tested for their ability to
bind EXG. Cellulose fibers CF1 and CF3 showed EXG binding
characteristics similar to those of CF2 but with slightly lower
affinity for EXG:CBM (Table 2). The two remaining cellulose
fibers (CF4 and CF5) could not be fitted to a two-site binding
model. The calculated binding affinity was about 10-fold lower
for CF4 and CF5 compared to that of the high affinity site
on CF2; therefore, we propose that the KD for the second
binding site was too high to be detected in our binding assay.
Biotinylation had no effect on the affinity of EXG:CBM for any
of the tested celluloses (results not shown).

Tissue Staining of Cellulose with EXG:CBM Protein.
Four different types of nanofibrillar cellulose and one bulk
cellulose were deposited into the lungs of mice by aspiration,
and the mice were sacrificed after 24 h. Biotinylated EXG:CBM
bound to avidin-HRP was used to visualize cellulose fibers in
lung tissue. CF1 was faintly visualized in lung tissue by H&E

Figure 4. HRP-EXG:CBM staining of lung sections from mice dosed with different amounts of CF1. Paraffin embedded lung sections were stained
with biotinylated EXG:CBM and counterstained with Mayer’s hematoxylin. Microscope objective is 20×. A, 200 μg of CF1; B,: 80 μg of CF1; C,
40 μg of CF1; and D, 10 μg of CF1. Arrows locate cellulose fibers identified by the EXG:CBM staining.
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staining (Figure 2A) and clearly visualized following incubation
with biotinylated EXG:CBM followed by avidin conjugated to
HRP (Figure 2B). The HRP staining appeared as dark red
spots in the alveolar sacs/ducts. EXG-HRP staining of CF1was
also demonstrated on cryopreserved lung tissue from mice dosed
with CF1 by aspiration (Figure 3A). Specificity was demon-
strated by the lack of HRP staining in EXG:CBM-stained lung
tissue from the vehicle-exposed mice (Figure 3B) and by the lack
of HRP staining when CF1-exposed lung tissue was stained
with avidin conjugated to HRP in the absence of biotinylated
EXG:CBM (Figure 3D), versus staining with the presence of
EXG:CBM from the same series of sections (Figure 3C), thus
confirming that there was no nonspecific binding of HRP-avidin.
Mice were exposed to 200, 80, 40, and 10 μg of CF1

(Figure 4A−D) to assess the sensitivity of the HRP-EXG:CBM
staining visualized in lung sections. The five different CF materials
were all visualized in lung tissue by EXG:CBM-HRP staining.
Thus, CF2 (Figure 5A), CF3 (Figure 5B), CF4 (Figure 5C), and
CF5 (Figure 5D) were readily visualized with HRP-EXG:CBM.
EXG:CBM was also visualized with fluorescence using

FITC conjugated to avidin. Again, a highly specific staining
was detected in paraffin embedded lung tissue from mice ex-
posed by aspiration to CF1 (Figure 6A). The CF1 in Figure 6A
was faintly visible under light microscopy (Figure 6B). No
signal was detected in lung sections from vehicle exposed mice
(Figure 6C). EXG:CBM was also visualized with fluorescence
in cryopreserved tissue slides from mice exposed to CF3
(Figure 7A) and CF1 (Figure 7B).

■ DISCUSSION

The understanding of how exposure is related to biodistribu-
tion and the internal dose is crucial in the evaluation of adverse
effects of hazardous agents. In nanotoxicology, detection of
nanomaterials in biological tissues is often hampered either by
high background levels (e.g., zink oxide, iron oxide, and others)
or by the lack of sensitive and specific detection methods of the
nanomaterials. Nanomaterials may be visualized using electron
microscopy provided that they are electron dense16,17 or may
be recognized by their specific structures.18,19 Other detection
methods such as dark field hyperspectral microscopy have been
used to visualize nanomaterials.20−22 We have taken an alter-
native approach and utilized the specific binding properties of a
CBM of a cellulose degrading enzyme to develop highly specific
visualization of cellulose fibers.
We demonstrate that the detection method can be used to

detect and visualize different kinds of cellulose fibers including
four different nanofibrillar celluloses. The binding assay is
simple and robust and may be used on both cryopreserved and
paraffin-embedded tissues. The level of nonspecific staining is
very low, the staining procedure is straightforward, and the
assay has good sensitivity. The KD of the EXG:CBM binding
to nanofibrillar cellulose is in the order of 10−8 M, thus in the
same range as the antibody−antigen interaction. Furthermore,
in contrast to many antibodies, EXG:CBM-binding is not com-
promised by formaldehyde treatment, and EXG:CBM recog-
nizes both unmodified cellulose and cellulose fibers which have
been modified by carboxylation and methylation (such as CF2

Figure 5. HRP-EXG:CBM staining of paraffin embedded lung sections from mice exposed to 40 μg of cellulose fibers and counterstained with
Mayer’s hematoxylin. Microscope objective is 10×. A, CF2; B, CF3; C, CF4; and D, CF5. Arrows locate cellulose fibers identified by the EXG:CBM
staining.
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and CF3). Thus, the binding of EXG:CBM is quantitative and
robust. The fact that paraffin embedding does not interfere with
the assay furthermore opens a wide variety of possible applica-
tions including detection of cellulose fibers in preserved animal
tissues, tissues from patients, and occupationally exposed individuals.
On the basis of previous investigations of the interaction

of EXG:CBM with cellulosic materials, the application of
EXG:CBM can likely be extended to the detection of com-
pounds like bacterial microcrystalline cellulose, Avicel, and
α-chitin (a β-1,4 polymer of 2-N-acetyl-glucosamine units).10

The affinity of EXG to Avicel was exploited in the present
purification of EXG. The β-1,4-glycanase from Cellulomonas
f imi from which EXG:CBM is derived has been shown to
hydrolyze para-nitrophenyl-β-xylobioside showing that the
enzyme has affinity for xylans (hemicellulose) in the active
site. However, this observation cannot be extended to describe
the binding specificity of EXG:CBM alone.23

Inhalation of cellulose fibers in cotton dust has been
associated with respiratory disease.6 Wood dust has been
classified as a human carcinogen that can cause adenocarcino-
mas of nose and paranasal sinuses and occupational exposure to
wood dust is associated with highly increased risk of sinonasal

cancer.7,24,25 Since there is no relevant model for testing the
carcinogenicity of wood dust in animals, the carcinogenic com-
ponent in wood dust is still unknown. The very long latency
between exposure and cancer could indicate that long-term
retention of wood-dust components is important and might
point to cellulose.24 A method for specific detection of cellulose
is critical for understanding the distribution and retention
of inhaled cellulose. The binding data for all of the studied
cellulose fibers in the present study (Table 2) show quantitative
binding of EXG:CBM to all of the studied cellulose fibers.
The high specificity for cellulose of our detection method allows
for the development of assays for quantitative and qualitative
detection of nanofibrillar cellulose. The EXG:CBM was
biotinylated on two sites, and both mono- and dibiotinylated
EXG:CBM were detected (Figure 1B). However, a uniform
double-labeling of EXG:CBM should be achievable by increasing
the excess amount of NHS-biotin used.
In a study of cellulose toxicity, Cullen et al. did not succeed

in locating cellulose fibers in macrophages after a 14-day
inhalation exposure to cellulose fibers or after a 28 day recovery
period, probably because the low refraction index of cellulose
prevented its visualization in optical microscopy.24 Using the

Figure 7. Cryopreserved lung sections of mice exposed for 24 h. A: Lung section from a mouse exposed to 200 μg of CF3 by aspiration. The section
was stained with biotinylated EXG:CBM and FITC fluorescent avidin. Microscope objective is 40×. Arrows locate cellulose fibers identified by the
EXG:CBM staining. B: Lung section from a mouse exposed to 200 μg of CF1 by ASP. The section was stained with biotinylated EXG:CBM and
FITC fluorescent avidin. Microscope objective is 40×. Arrows locate cellulose fibers identified by EXG:CBM staining.

Figure 6. Paraffin embedded lung sections of mice exposed to CF1 or vehicle for 24 h. A: Lung section from a mouse exposed to 200 μg of CF1 by
aspiration (ASP). The section was stained with biotinylated EXG:CBM and FITC fluorescent avidin. Microscope objective is 40×. Arrows locate
cellulose fibers identified by the EXG:CBM staining. B: The same tissue section in bright field with no counterstaining. CF1 is located by arrows.
Microscope objective is 40×. C: Lung section from a vehicle-exposed mouse stained with biotinylated EXG:CBM and FITC fluorescent avidin.
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methods described herein, cellulose fibers were faintly visible in
H&E staining as can be seen by comparing Figure 2A and B or
Figure 3C and D. In other work, microcrystalline cellulose has
been visualized with a modified Russell Movat penta-chrome
stain.26 However, the staining procedure was characterized as
“technically challenging” by the authors due to inconsistency of
the staining results and due to additional staining of tissue
collagen leading to potential misinterpretations.26 We believe that
the presently described method is a promising tool for specific
visualization of cellulose fibers in future in vivo experiments, due to
the high specificity and robustness of the assay.

■ CONCLUSIONS
In conclusion, we have described a novel, robust method for
the specific detection of cellulose fibers including four different
nanofibrillar celluloses. The binding to cellulose fibers was
quantitative, and the method can be used to visualize cellulose
in biological tissue with high sensitivity and specificity. The
quantitative binding to cellulose may allow for the development
of quantitative detection assays.
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