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Abstract
Wegeneralize the theory of Cooper-pairing by spin excitations in themetallic antiferromagnetic state
to include situationswith electron and/or hole pockets.We show that Cooper-pairing arises from
transverse spinwaves and fromgapped longitudinal spinfluctuations of comparable strength. How-
ever, each of these interactions, projected on a particular symmetry of the superconducting gap, acts
primarily within one type of pocket.We find a nodeless −dx y2 2-wave state is supported primarily by the

longitudinal fluctuations on the electron pockets, and both transverse and longitudinal fluctuations
support nodal −dx y2 2-wave symmetry on the hole pockets. Our resultsmay be relevant to the asym-

metry of theAF/SC coexistence state in the cuprate phase diagram.

1. Introduction

In contrast to the hole-doped cuprates, where quasi long-range static π π( , ) antiferromagnetic (AF) order
coexists with superconductivity (SC) only in the presence of disorder, electron-doped cuprates exhibit a
homogeneous AF–SC coexistence phase [1]. This coexistence has been studied theoreticallymostly with
phenomenological interactions leading to the AF and SCorder in cuprates [2–10] as well as in ferropnictides
[11] and heavy fermions [12]. However, themicroscopic foundation of the instability of theAF phase to SC due
to pairing by itinerant electronic excitations is partially understood, thanks to early works by Schrieffer,Wen and
Zhang [13], who generalized the theory of spin fluctuation pairing inweakly interacting Fermi liquids [14] and
AF correlatedmetals [15] to themagnetically ordered phase. For example, while onemight expect that low-
energy AF spinwaves could contribute substantially to pairing, it is known that the pairing vertex obeys aWard
identity, which prevents its divergence at the orderingwave vector, a property which is known as the Adler
principle. It was further shown [17–20] that the net contribution of spinwaves to the pairing vertex in the hole-
doped systemswas of the same order as that of longitudinal (gapped) spin and charge fluctuations, so both types
offluctuationsmust be included.

Although this classic problemhas been the subject of theoretical scrutiny for twenty years, no general
calculation of the evolution of the gap function across the phase diagramhas been obtained. The original work of
Schrieffer et al [13] and subsequent developments for hole-doped cuprates used a single band described by
nearest-neighbor hopping t only and near half-filling. Herewe analyze the full pairing interaction in the itinerant
approach, including both longitudinal and transverse fluctuations, for a general Fermi surface and for both hole-
and electron-doping.We develop a controlled analytical solutions for the leading pairing instability by
projecting the effective spin–fluctuation interaction onto low-order circular harmonics of the small Fermi
pockets, following the procedure proposed byMaiti et al [22]. For the hole-doped case, wefind that the leading
eigenvector of the linearized gap equation occurs with nodal −dx y2 2-wave symmetry in the spin singlet channel.

In the case of electron doping, spin singlet nodeless −dx y2 2-wave pairing is the only channel that is strongly

favored.Our findings have clear relevance for the topology of the overall phase diagram in theweak-coupling
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picture of the cuprates, since −dx y2 2 Cooper-pairing can be easily suppressed bymagnetic order only on the hole
doped side, and the coexistence of AF and SC is found only upon electron doping.

2.Model

The commensurate AF state is treated inmeanfield for the single-bandHubbardmodel

 ∑ ∑ε= +
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σ σ
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+ ′+ ′c c Uc c c c
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on the square lattice withε μ= − + + ′ −t k k t k k2 (cos cos ) 4 cos cosx y x yk , with t and ′t the nearest and next
nearest hoppings. After decoupling the second term via amean-field (MF) approximation and diagonalizing the
resultingHamiltonian via unitary transformation, we obtain two electronic bands (labeled α and β) in the

reduced (magnetic) Brillouin zone (rBZ)with dispersions ε ε= ± +α β + −E W( )k k k
, 2 2 where

σ= ∑ 〈 〉σ σ σ′ ′+ ′W U c c2 sgnQk k k, ,
†

, is the AF order parameter, determined self-consistently for a givenU, and

ε ε ε= ±±
+( ) 2Qk k k . For completeness, one also has to include the self-consistent determination of the

chemical potential.
Typical Fermi surfaces in the AFmetal for the case of electron and hole dopings are then shown infigure 1.

Note that for small electron doping only electron pockets at π±( , 0) and π±(0, ) are present, while for hole
doping only hole pockets around π π± ±( 2, 2) can occur. For intermediate values of electron doping and finite
temperatures both types of pockets can appear.

The effectiveHamiltonian in the paramagnetic state   = + + ±c z is obtained by summing all
randomphase approximation (RPA) type processes in the charge, longitudinal spin and transverse spin–
fluctuation channels [13].
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where the interactions are expressed in terms of the various components of the bare charge and spin

susceptibilities, = χ
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. The bare charge susceptibility χ0 and the bare spin
longitudinal susceptibility have the same values in the pure AF state. The susceptibilities χ0, χz and χ± are
functions of k−k′.

We nowperform a change of basis to the eigenstates of the AF state, the so-called α and β bands [8]. The
corresponding effective intraband (αα or ββ interactions in the singlet and triplet channelsΓ ′k k( , )0 and

Γ ′k k( , )z x y
1

/ , are expressed as

Figure 1. Structure of the Fermi surface topology in the commensurate AF state in layered cuprates for hole (a) or electron (b) doping.
Here, we set t=1 and ′ =t t0.35 . The size of the hole pockets centered around π π± ±( 2, 2)points of the BZ and the electron pockets
around π±( , 0) and π±(0, ) points of the BZ depends on the amount of doping.Here, we employ =U t2.775 and n=0.95 (a) and
n=1.10 (b). The dashed line refers to themagnetic BZ boundary.
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There are also interband (α α ββ† † +h.c.) pair scattering interactionsΓ ′0 andΓ ′z x y
1

, which are identical in form to

the intraband vertices with ↔m n2 2 and ℓ↔p2 2. In addition, the Cooper-pairing vertex is taken to be
symmetrized and antisymmetrizedwith respect to k′ in the spin singlet Γ Γ′ + − ′k k k k(0.5[ ( , ) ( , )])0 0 and spin
triplet Γ Γ′ ‒ − ′k k k k(0.5[ / ( , ) / ( , )])z x y z x y

1
,

1
, channels, respectively.

Another important consequence of theAF state is that the spin rotational symmetry present in the
paramagnetic state is broken, and all components of the susceptibility are different [13, 17, 18, 26].While the
transverse component is gapless and shows aGoldstonemodewith spinwave excitations around the AFwave
vector, the longitudinal spin excitations are gapped up to twice the AF gapmagnitude. The behavior of the spin
excitations in theAF state is well understood including the effect of ′t as well as their doping dependence, see
e.g. [26].

Note that despite the fact that the spin rotational symmetry is broken in the AF state, the Cooper-pairing
vertices in the spin triplet and the spin singlet channels remainwell separated. This is a consequence of the fact
that the inversion symmetry is still preserved.However, an additional contribution toCooper-pairing due to
Umklapp terms,〈 〉−↑ − ↓cc k Qk, , , present in the AF state only, has opposite symmetry, whenwritten in terms of the
original c operators. Namely, onefinds that terms〈 〉−↑ − ↓cc k Qk, , contributing to the spin singlet vertex in the AF
backgroundwould have a spin triplet symmetry in the paramagnetic state and vice versa.

An important property of the spin singletCooper-pairing in theAFbackground is that thefluctuation
exchange pairing potentials have the symmetryΓ Γ Γ′ + = + ′ = − ′k k Q k Q k k k( , ) ( , ) ( , )0 0 0 . Note that this
symmetry is also fulfilled for the opposite spin triplet potentialΓ1

z, aswell as for transverse and longitudinal parts of
thefluctuations separately. This requires that any solution for the superconducting gap function changes sign for

→ + Qk k [13]. Therefore, it excludes isotropic s-wave aswell as dxy symmetries of the superconducting gap. In
the spin singlet channel this yields extended s-wave symmetrywith the gap changing sign across the rBZboundary,
or −dx y2 2-wave symmetrywhich in this case is compatiblewith the conditionΓ Γ′ + = − ′Qk k k k( , ) ( , )0 0

without any gapnodes at the rBZboundary. In the opposite spin triplet channel, this condition allowsp-wave
solutionswith ksin x or/and ksin y form [13].The equal spin triplet vertices obey an analogous sublattice

symmetrywithout the sign change,Γ Γ Γ′ + = + ′ = ′k k Q k Q k k k( , ) ( , ) ( , )x y x y x y
1

,
1

,
1

, . It is important to note
that there are clearly twodifferent contributions toCooper-pairing for low frequencies. Thefirst arises from the
transversefluctuationswhich is dominated by the spinwaves at theAFmomentum, and the second is a
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combinationof the longitudinal spin and chargefluctuations. To analyze thedominant instabilities further,we
studyboth small electron andhole doping.

3. Small pocket expansion

Toproceed analytically, we assume small sizes of the electron and hole pockets and expand the pairing
interactions including the AF coherence factors aswell as the possible superconducting gaps, extended s-wave
with form similar to +k kcos cosx y, −dx y2 2-wavewith −k kcos cosx y in the spin singlet channel, and odd
parity p-wavewith ksin x k[sin ]y dependence in the opposite spin singlet channel, respectively, around the
correspondingmomenta.We assume the pockets to be circular and expand the interaction in terms of angular
harmonics up to order kF

2, writing them in terms of the θncos and ϕncos where the angles θ andϕ are defined in
figure 1. The deviation of pockets frombeing circular will enhance the corresponding higher order angular
harmonics terms in the interaction butwill not change the overall gap structure itself.

Taking into account the symmetry of the pairing interaction on the background of theAF state in the rBZ, it
is sufficient to consider only three pockets, one electron pocket whichwe choose to lie at π( , 0) (e) and two hole
pockets whichwe take at π π( 2, 2) (h1) and π π−( 2, 2) (h2). All others are automatically included by
performing the angular integration over the angles and bearing inmind the properties of the pairing potential
and gap under → +k k Q. For extended s-wave symmetry wefind

Δ θ Δ θ Δ θ Δ θ
Δ ϕ Δ ϕ

= =
=

( ) cos , ( ) sin ,

( ) cos 2 , (8)
h h h h

e e

1
s s

2
s s

s s

where the angles are defined infigure 1. Equation (8) shows that the gap generally has nodes on both electron
and hole pockets. In addition the gap on the electron pocket has ϕcos 2 dependence as a result of the expansion
of the +k kcos cosx y wave function around π( , 0).

For the −dx y2 2 channel, the expansion gives the following formof the gaps on the electron and hole pockets

Δ θ Δ θ Δ θ Δ θ

Δ ϕ Δ α ϕ

= =

= +( )
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( ) 1 cos 4 . (9)
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e e e
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Here, the gap on the hole pockets is nodal, while on the electron ones thefirst term is a constant.
Finally, the symmetry properties of the spin triplet Cooper-pairing allow for the p-wave nodeless solution

for the hole pockets. In this case the gap (either ksin x or ksin y)may be expanded around the hole pockets
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= ±
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The± sign refers to two distinct p-wave states.

3.1. Longitudinal spin and charge interactions
In a similar fashion, we now expand the effective pairing interaction between opposite spin electrons in the
transverse and longitudinal/charge channels, equations (3)–(4). For the longitudinal/charge channel
contribution to the spin singlet and opposite spin triplet Cooper-pair scattering Γ Γ≡ −ℓ

ρV s
z , one finds for the

interactionwithin hole and electron pockets,
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0 is the second derivative of the bare longitudinal spin
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⎡⎣ ⎤⎦, and ≡ −∼

V Y Y Q(0) ( ). Note thatV̄ is negative

(attractive), sinceVz(Q) is the largest term and the same is true for
∼
V . In addition, note that the coefficients ch

andde appear to have odd symmetry under the change of k to−k (or ′k to− ′k ), which can be seen by doing the
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explicit analysis. Thus, they contribute only to the triplet Cooper-pairing. At the same timeah,bh, and ce possess
even symmetry and contribute to the spin singlet symmetry. In both cases, the dominant contribution is given by
the constant term ch e, , independent of the pocket type. In addition, this constant term is almost independent of
the pocket size and, therefore, yields the dominant contribution from longitudinal spin fluctuations.Most
importantly, it does not give rise to a conventional s-wave state due to the sublattice symmetry of ′V k k( , )
mentioned above. Looking at the expansion of the superconducting gaps, equations (7)–(9), one sees that the
constant term from the longitudinal spinfluctuations contributesmostly to the −dx y2 2-wave pairing on the
electron pockets, while on the hole pockets itmay give rise to one of the two nodeless odd-parity p-wave states
[13].However, because the triplet pairing contribution from the transverse potential is repulsive on the hole
pocket aswe shall see below in equation (12), the possible solutionmight be an f-wave (not shown) rather than
p-wave. For the hole pockets, there is a leading projection onto the −dx y2 2-wave state that scales with the sizes of

the hole pockets( )kF
h 2

.

3.2. Transverse spin interaction
For the transverse part of the pairing vertex the expansion ismore subtle, since the coefficients of the unitary
transformation (p2, n2) are such that for any ′ ≈k k they tend to zero, as required by the Adler principle.
However, the total pairing vertex in the transverse channel is non-zero as the smallness of p n,2 2 is compensated
by the diverging transverse part of the spin susceptibility Γ χ≡ − ∼⊥ ±V 2 s

tr
RPA, and overall there is a contribution

of the spinwaves to the pairing vertexwhich is also independent of the sizes of the electron and hole pockets,
similar to the longitudinal channel [17–21]. It is easy to check from equations (3)–(4) that the transverse spin
fluctuation contribution to the pairing vertex has the samemagnitude but opposite sign in the spin singlet,Γ0,
and the spin triplet,Γ1

z Cooper-pairing, respectively.
To obtain the leading angular harmonics in the spin singlet and spin triplet pairing channels due to

transverse spin fluctuations, we expand both the coefficients of the unitary AF transformations enteringΓ⊥
s , as

well as the diverging part of the spin susceptibility atQ up toq2 and combine them together. The expansion for

Γ≡ ⊥V 2 s
tr then has the following form:
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wehave ≡Ah yW

2
2 , ≡ ±B V (0)( )h

tk

W
2F

h

, and ≡Ae
k

yW2
F
e2

2 . Here, y is related to the spinwave stiffness and is positive

once commensurate AF order is stable. In addition,+− and−+ refer to the odd-parity termswhich change sign
under thek to−k or ′k to− ′k transformations. They contribute to the spin triplet Cooper-pairing only, while
other terms contribute to the spin singlet Cooper-pairing. Note that for spin singlet Cooper-pairing the overall
sign of the transverse pairing interaction is reversed, as seen from equation (3).

4.Discussion

In this section, we nowusewhat we have learned above about the spin fluctuation pairing interaction in the limit
of small electron or hole pockets to determine the leading pairing channel in various cases. It is worth noting
that, while a great deal of workwent into studying the properties of this interaction in the AF state, ultimately all

5
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previousworkers in thisfield did not address this problem explicitly, but simply listed the possible states
consistent with sublattice symmetry.

We begin by noting that an important difference between the transverse fluctuations and the charge and
longitudinal spin fluctuations is that the former contributemostly to theCooper-pairing for the hole pockets. In
particular, the leading spin-wave contribution to the pairing vertex does not depend on the sizes of the hole
pockets, while around the electron pockets it is reduced in strength by the smallness of these pockets, i.e. it
vanishes for →k 0F

e . This indicates that the longitudinal and transverse spinfluctuations act differently in the
different parts of the rBZ.While the charge and longitudinal spin fluctuations contribute equally to theCooper-
pairing around π( , 0) and π π( 2, 2), the low-energy transverse fluctuations aremost effective around

π π± ±( 2, 2). Furthermore, as both types offluctuation do not contribute to the interbandCooper-pair
scattering until higher order in kF, the same remains true also in the situationwhen both electron and hole type
pockets are present at the Fermi surface. To see how the analytical calculations agreewith the full numerical
ones, we show infigure 2 the good agreement of the analytical calculations for the longitudinal and transverse
pairing potentials, Vl

ee andV
tr
ee on the electron pockets for the doping level of n=1.03, together with the

numerical evaluation ofΓ Γ−ρ s
z , and Γ− ⊥2 s .We also compare with a low-order harmonic fit to the numerical

results with the coefficients ce, de, andAe treated as independent.

4.1. Pairing instability for electron- and hole-doping
Overall the results shown in (11)–(12) for the leading expansion coefficients up to quadratic order in the Fermi
momentum that contribute to the spin singlet and spin triplet Cooper-pairing channels are summarized in
tables 1 and 2. Regarding the dominant pairing instability, the situation is clear for the electron pocket at π( , 0)
by simply projecting the longitudinal part of the Cooper-pairing vertex (11), which dominates in this limit as
shown above, onto the gaps (8)–(10) in the linearized superconducting gap equation

Figure 2.Comparison of the analytical calculations up to( )kF
e 2

for the longitudinal (left panel) and transverse (right panel) pairing

potentials, Vl
ee andV

tr
ee on the electron pockets for the doping level of n=1.03 (black curves), together with the full numerical

evaluation ofΓ Γ−ρ s
z , and Γ− ⊥2 s (blue points).Wefind = −c 5.687e , = −d 2.478e and =A 1.214e (in units of t). The red curves

denote thefit when ce, de, andAe are not computed analytically butfitted to the numerical results with the least squaremethod
( = −c 5.745e , = −d 2.315e and = −A 1.569e (in units of t)). Here, we use ′ =t t0.35 and =U t2.775 , which gives =W t0.6537 .

Table 1.Contribution of the spinfluctuationmediatedCooper-pairing potential, expanded up toO k( )F
2

terms, in the p-wave spin triplet channel.

Electron pocket Hole Pocket

long./ch. transverse long./ch. transverse

Pair-building contribution ∼d O k(( ) )e F
e 2 — ∼c O (1)h —

Pair-breaking contribution — ∼A O k(( ) )e F
e 2 — ∼A O (1)h
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∫λ Δ ϕ
π

Γ ϕ ϕ Δ ϕ= − ′ ′
ϕ′ ( ) ( )N

( )
2

, , (13)e e
e

0,1

whereNe is the density of states on the electron pockets and the angular integral runs over all relevant pockets.
The constant part of the longitudinal spinfluctuations, ce in equation (11), is attractive in the spin singlet channel
and gives rise to the −dx y2 2-wave symmetry of the superconducting order parameter, which can also be
approximated by a constant on the electron pockets with appropriate sign changes frompocket to pocket
enforced by sublattice symmetry. The d-wave state is nodeless due to the placement of the electron pockets at the
π( , 0)points. Thefirst non-vanishing higher order harmonic is in this case ϕcos 4 , which can be also promoted

by the longitudinal and transverse spinfluctuations, weakened by the( )kF
e 2

factor. In principle, longitudinal

spin fluctuations are also attractive in the opposite spin triplet channel, however the ksin x or ksin y function
does not have an angle-independent constant term in the expansion around the π( , 0) and π(0, )points.

The situation ismore complicated for the hole pockets, where contributions fromboth longitudinal and
transverse channels remain in the limit of small kF

h. The largest part of the pairing vertex, which originates from
the transverse spin fluctuations, is attractive also only in the −dx y2 2-wave channel.

4.2. Comparisonwith the strong-coupling limit
It is interesting to compare our results with the strong-coupling limit, studied extensively in the past [19, 20].
The important advantage of theweak-coupling scenario is that one can verify the evolution of the spin
fluctuationCooper-pairing from the paramagnetic to theAF states continuously as a function of the AF order
parametermagnitude, while in the strong coupling approach the transition from theAF to the paramagnetic
limit cannot be taken continuously (at least we are not aware of such a study in the literature).

Let us note that the strong andweak coupling approaches agree qualitatively for hole-dopingwith hole
pockets around π π± ±( 2, 2), and for electron-doping with pockets around π±( , 0) and π±(0, ), both strong
andweak-coupling approaches give similar results with −dx y2 2-wave symmetry beingmost dominant one.
Therefore let us illustrate the situation for the hole pockets. In this case themain contribution to theCooper-
pairing comes indeed from the transverse spin fluctuations and it is easy to verify the following relation for the
coherence factors + ′ = ′ + = ′p p nk Q k k k Q k k( , ) ( , ) ( , )2 2 2 . This results in the antiperiodic condition for

the total transverse potentialΓ Γ′ + = − ′⊥ ⊥k k Q k k( , ) ( , )s s where one needs both terms of the pairing potential
to satisfy the total antiperiodicity of the potential. This antiperiodicity of the potential requires also the
antiperiodicity of the superconducting gap, Δ Δ+ = −k Q k( ) ( )s s in order to fulfill the gap equation. This
excludes the isotropic s-wave solution for the superconducting gap in the entiremagnetic BZ.

An important difference between theweak-coupling and the strong-coupling approaches is related to the
definition of the problem. In the latter case one considers the problemof theCooper-pairing for the fermions
due toGoldstone excitations (spinwaves) without taking into account the unitary transformations of the
fermions from the paramagnetic to the AF state. In this case the fermions are considered to be the bare ones, that
is, they are not dressed by the AF coherence factors. In theweak-coupling approach, onefinds two contributions
to the transverse pairing vertexΓ⊥

s in equation (6), and the second one occurs due toUmklappCooper-pairs (in
otherwords, in terms of the original c operators in the paramagnetic state, this corresponds toCooper-pairing
with largeQmomentum transfer, i.e. ↑ − − ↓c ck k Q ). This pairing is absent in the paramagnetic state and exists only
if the AF gap is non-zero. In addition, if both k and k′ are small, i.e. we consider only one hole pocket centered at
π π( 2, 2), such that the spinwaves contribute only to the second term, since − ′ + ′+−V pk k Q k k[ ( )] ( , )2

contains the susceptibility peaked at thewavevectorQwhere the trueGoldstonemode arises. Aswe said, due to
antiperiodicity of the total pairing vertex this term cannot stabilize the global isotropic s-wave solution in the
entiremagnetic BZ. For the Fermi surface topologywith small hole pockets, the pairing potential expanded near
the pocket gives rise to the conventional nodal spin singlet −dx y2 2-wave solution and odd parity f-wave solution.

The −dx y2 2 state is forced to have nodes on the hole pockets.We note that in the strong-coupling case, both p-

wave and −dx y2 2-wave solutionswere found; however, the details of the competition between these states were

Table 2.Contribution of the spinfluctuationmediatedCooper-pairing potential, expanded up toO k( )F
2 terms, in the spin-

singlet −dx y2 2-wave channel. Note that all contributions in the extended s-wave symmetry channel are pair-breaking.

Electron pocket Hole Pocket

long./ch. transverse long./ch. transverse

Pair-building, −−d wave symmetryx y2 2 ∼c O (1)e ∼A O k(( ) )e F
e 2 ∼b O k(( ) )h F

h 2 ∼A O (1)h
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not analyzed [19, 20]. In this regard, we believe that the analysis of the strong coupling is still not complete, as the
limiting case of theAF gap going to zero is not well understood there.

At the same time, in theweak-coupling limit an inclusion of the self-energy effects due to the coupling of
transverse spin fluctuations to conduction electrons also introduces significant corrections to the properties of
themagnetic state like a renormalization of themagnitude of themagnetic order parameter, and the spinwave
velocity [27, 28]. Furthermore, for smallU, the effective interaction between quasiparticles is of the order of the
bandwidth in the transverse channel and so both vertex and self-energy corrections are relatively small [28]. In
this limit, onemight expect that theMF treatment of themagnetic state leads to at least qualitatively correct
results. On the contrary, for largeU the interaction ismuch larger than the bandwidth of both the holes and the
spinwaves. This correspondsmore to the strong-coupling situation inwhich one has strong vertex and self-
energy renormalization. It is known that atfinite hole doping this effectively yields an instability of theAF state
with commensurate orderwith respect to the spiralmagnetic state [28]. These effects we also found previously in
theweak-coupling case, where the spinwave spectrumbecomes unstable forfinite hole-doping [26]. Here, we
assume that the coupling of the transverse spinfluctuations to the conduction electrons do not change the results
significantly, which should be true in theweak to intermediate coupling regimes.

We observe also that the gap equation in theAF state reduces correctly in theweak-coupling approach to the
gap equation in the paramagnetic state. For the limiting case of anAF gap going to zero, onefinds that the second
term in the pairing vertex vanishes and the only remaining contribution comes from the first term,which refers
to the non-Goldstone largeQ repulsive spin fluctuations. These fluctuations in the paramagnetic state give rise
to the d −x y2 2-wave solution for the superconducting gap on the hole-doped and electron-doped sides of the
phase diagramwith large Fermi surfaces. An important difference, however, is that in contrast to the hole-doped
side the d −x y2 2-wave solution on the electron-doped counterpart cannot befitted by the lowest ϕcos 2 harmonic
of the superconducting gap due to the position of the hot spots on the Fermi surface close to the diagonal of the
rBZ. Analytically, this continuation is straightforward to see, however; numerically there are some
complications atfinite dopingmostly on the hole-doped side related to the instability of the commensurate
magnetic order against incommensurate spiral AF state once hole pockets appear on the Fermi surface. As a
result, the computations becomemore involved and the complete numerical phase diagram cannot be obtained
at this stage.Nevertheless, we see that the superconducting transition temperatures will be smaller in the AF state
than in the paramagnetic state. In the presence of both the transverse and longitudinal fluctuations themain
effect on the superconducting gap andTcwill be determined by the smallness of the electron and the hole pocket
size. Thesewill be determined by the amount of doping, x, andTcwill scale with this quantity.

5. Summary

In summary, we have discussed the important ways inwhich the pairing instability in theAF state differs
between the electron- and hole-doped cases.When long-range AF order occurs, the fluctuationswhich
generically lead to −dx y2 2-wave pairing in the paramagnetic state for systemswith a cuprate-like Fermi surface are
frozen out.We have shown that the residualfluctuations turn out to be quite strong in the case of electron
pockets, and remain constant in the −dx y2 2-wave channel even in the limit of small pockets (large
magnetization), yielding a nodeless d-wave ground state. In the hole-doped case, the pairing due to these
residualfluctuations is constant in the limit of small hole pockets in both the singlet and triplet channel. It is
strongest for (nodal) −dx y2 2-wave symmetry, andmuchweaker in the spin triplet channel, due to a near
cancellation of contributions from longitudinal and transverse channels.

We emphasize that our rigorous conclusions do not apply generically to the entire range of dopings and
temperatures, but only to the limit of small Fermi surface pockets (largemagnetization). A full calculation of the
microscopic phase diagram including the free energy analysis requires a treatment of SC andmagnetism in the
ordered state on equal footing, including the renormalization of the AF instability in the case <T TN c, which is
beyond the scope of this work.

It is also important tomention that our results in theweak-coupling limit for the symmetry of theCooper-
pairing are consistent with those found in the strong-coupling limit [29]. In particular, in the strong-coupling
limit the dominant symmetry remains also −dx y2 2-wave. This result does not change in theweak-couplingwhere
the contribution of the longitudinal spinfluctuations, ignored in the strong-coupling approach, is also included.
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