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Abstract. Groundwater head and stream discharge is assim-

ilated using the ensemble transform Kalman filter in an in-

tegrated hydrological model with the aim of studying the

relationship between the filter performance and the ensem-

ble size. In an attempt to reduce the required number of en-

semble members, an adaptive localization method is used.

The performance of the adaptive localization method is com-

pared to the more common distance-based localization. The

relationship between filter performance in terms of hydraulic

head and discharge error and the number of ensemble mem-

bers is investigated for varying numbers and spatial distribu-

tions of groundwater head observations and with or without

discharge assimilation and parameter estimation. The study

shows that (1) more ensemble members are needed when

fewer groundwater head observations are assimilated, and (2)

assimilating discharge observations and estimating parame-

ters requires a much larger ensemble size than just assimi-

lating groundwater head observations. However, the required

ensemble size can be greatly reduced with the use of adaptive

localization, which by far outperforms distance-based local-

ization. The study is conducted using synthetic data only.

1 Introduction

Data assimilation (DA) is frequently used in hydrological

modeling for correcting errors in the models. Stemming from

parameter uncertainty, model structure uncertainty, uncer-

tainty in forcing data and boundary condition uncertainty, the

errors can lead to significant bias in the model states. Data as-

similation can help reduce the bias in the model sequentially,

leading to improved predictive capabilities of the model. It

is also commonly used for history matching, for quantifying

uncertainty and for estimation of model parameters.

Application of data assimilation for state updating in hy-

drological modeling has been studied extensively using a

number of different models with most models focusing only

on a part of the hydrological cycle. These include ground-

water models (e.g., Hendricks Franssen et al., 2011), land

surface models (e.g., Albergel et al., 2008), rainfall–runoff

models (e.g., Moradkhani et al., 2005) and others. A few

studies have also used more integrated hydrological models

in conjunction with assimilation of multiple types of obser-

vations, but the subject is still in its infancy as a research

topic. Studies that focused on integrated hydrological mod-

eling include Camporese et al. (2009) and Shi et al. (2014).

Camporese et al. (2009) applied the ensemble Kalman filter

(EnKF) to a coupled surface–subsurface model of a synthetic

tilted v catchment and assimilated both stream discharge and

groundwater hydraulic head observations with the aim of up-

dating both groundwater and stream states. Shi et al. (2014)

applied the EnKF to a coupled physically based land surface

hydrological model of a small catchment. Using observa-

tions of seven different model states ranging from discharge

to transpiration, they successfully estimated six parameters

pertaining to different processes in the model while simulta-

neously updating the model states.
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Using data assimilation for parameter estimation has be-

come common in hydrological modeling (Moradkhani et al.,

2005; Vrugt et al., 2005; Hendricks Franssen and Kinzel-

bach, 2008; Nie et al., 2011) due to the importance of param-

eter uncertainty in hydrological models. Notably, Hendricks

Franssen and Kinzelbach (2008) used the augmented state

vector approach to update a spatially distributed groundwater

hydraulic conductivity field in a groundwater model. As pre-

viously stated, Shi et al. (2014) also successfully estimated

several parameters in their coupled surface–subsurface hy-

drological model.

The effects of observation densities and patterns on param-

eter estimation in hydrological modeling have been studied

using a number of hydrological models and inverse model-

ing methods. Juston et al. (2009) studied the effect of vary-

ing the observation intervals of groundwater head and stream

discharge for calibration of a hydrological model of a small

catchment. They found that even relatively sparse observa-

tion subsets can provide similar restraints to the model pa-

rameters as complete (frequent) observation sets, as long as

significant hydrological events are represented by the data.

The effect of differing observation densities and assimila-

tion/updating frequencies of hydraulic head observations in a

groundwater model was also studied by Hendricks Franssen

and Kinzelbach (2008). Experimenting with 3 and 28 obser-

vation points, respectively, and updating frequencies of 1 and

5 month−1, they found the observation point density to have

the largest effect on filter performance. However, no in-depth

analysis of the subject was performed in their study.

Spurious correlations in EnKF arise when the correlation

cannot be properly described by the ensemble of models,

having a detrimental effect on the filter performance. Local-

ization is a commonly used method for reducing these spu-

rious correlations and as such has been the subject of sev-

eral studies (Anderson, 2007; Hunt et al., 2007; Sakov and

Bertino, 2011). Applying localization often allows for the use

of a significantly reduced ensemble size, making it particu-

larly useful for computationally heavy models, as a means

for reducing the required computational time. Several local-

ization methods exist, with distance-based methods being the

most common (Sakov and Bertino, 2011; Ott et al., 2004;

Fertig et al., 2007). Distance-based methods specify the area

of influence of an observation based on spatial distance and

often removes or reduces correlation between observations

and model states beyond a user-specified distance. Alterna-

tively, several adaptive localization methods have been de-

veloped (Anderson, 2007; Bishop and Hodyss, 2009) that at-

tempt to distinguish real correlation from spurious correla-

tion, making them particularly useful if distance-based local-

ization is problematic, for example due to model structure.

This study investigates the relationship between ensem-

ble size and number of observations with filter performance

in a catchment size coupled surface–subsurface model. Fur-

thermore, a new approach to adaptive localization is used

and compared to distance-based localization and the possible

benefits of applying adaptive localization with different en-

semble sizes and groundwater head observation densities are

evaluated. The study is performed using a synthetic test setup

of a catchment located in Denmark and includes the applica-

tion of parameter estimation and assimilation of both ground-

water head and stream discharge observations. The novelty

of the study lies in the extensive study in the relationship be-

tween the observation density and the required ensemble size

as well as in the application of adaptive localization, neither

of which, despite potentially having big impact on the filter

performance, has previously been investigated in detail for

application in integrated hydrological models.

2 Methods

2.1 Model

The hydrological model used in this study is a transient, spa-

tially distributed model based on the MIKE SHE model code

(Graham and Butts, 2005). This code allows for an integrated

approach to hydrological modeling in which all the major hy-

drological processes are included, comprising feedback be-

tween the processes. As such, it is a good platform for in-

vestigating the assimilation of multiple observation types in

hydrological models, as well as estimation of parameters re-

lated to different hydrological processes.

2.2 Study area

2.2.1 The Karup catchment

The Karup catchment, which is located in the northern part

of the Jutland Peninsula in Denmark, forms the basis for this

study. The catchment has a size of 440 km2 and its land use is

primarily agriculture. The geology of the catchment is dom-

inated by quaternary sand. The catchment is very flat, with

a south–north slope ranging from 93 m a.s.l. in the southern

part to 22 m a.s.l. in the northern part. The main drainage fea-

ture of the catchment is the Karup River, which springs at

the southern edge of the catchment and runs from southeast

to northwest and is joined by seven tributaries (Fig. 1). The

stream is strongly groundwater dominated, meaning that the

interaction between surface water and groundwater is very

strong.

2.2.2 Model setup

An integrated approach to modeling of the catchment is used

in this study, which includes modeling of the groundwater

flow, vadose zone flow, streamflow, surface flow and evap-

otranspiration. Surface, stream, vadose zone and groundwa-

ter flows are coupled dynamically, allowing water to be ex-

changed between the modules at each time step.

Hydrol. Earth Syst. Sci., 19, 2999–3013, 2015 www.hydrol-earth-syst-sci.net/19/2999/2015/
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Figure 1. Karup catchment with locations of synthetic discharge

and hydraulic head observations.

Modeling of the groundwater is done using a finite differ-

ence approximation of the governing 2-D Boussinesq equa-

tion, which is coupled to a 1-D and vertical description of

unsaturated flow using the gravity flow formulation of unsat-

urated flow (Graham and Butts, 2005). Evapotranspiration

is modeled using the Kristensen and Jensen (1975) model.

Streamflow is modeled using the MIKE 11 river model with

a kinematic routing description.

A horizontal grid size of 1 km× 1 km is used, with the ver-

tical discretization of the unsaturated zone gradually increas-

ing from 0.05 m at the top to 1 m below a depth of 10 m.

The model simulations span 5 years, from 1968 to 1972

(both included). The first 2 years is the spin up, where the

model is allowed to stabilize and the ensemble of states is

allowed to develop a spread without the assimilation of ob-

servations. In the following 3 years, observations are assim-

ilated using the filter. However, only the last 2 years, 1971

and 1972, are used for evaluating the filter performance.

Applied precipitation in the model is based on measured

daily precipitation from nine gauges located in the catch-

ment. The measured data is extrapolated to the model do-

main using Thiessen polygons, thus applying the measured

precipitation to the model grid points located closest to the

measuring location. Spatially uniform daily values of poten-

tial ET (evapotranspiration) are specified.

2.2.3 Model parameterization

A 3-D geological model delineating six geological units

forms the basis for the spatial distribution of hydrogeolog-

ical parameters. Meltwater sand is the dominating geologi-

cal unit, and five lenses (clay, quartz sand, mica sand, mica

clay/silt, and limestone) of varying extent make up the re-

maining geology. The parameter values specified in the ge-

ological model are in a preprocessing step interpolated and

gridded to the horizontal 2-D computational grid to ease the

computational requirements of the model. The parameters

for the groundwater zone are hydraulic conductivity (hori-

zontal and vertical, respectively), specific yield and specific

storage for the six units.

The parameterization of the unsaturated zone is spatially

distributed and is based on texture data classified into nine

soil types (Greve et al., 2007). These range from coarse sandy

soil (soil type 1) to heavy clayey soil (soil type 8), and also

includes organic soil (soil type 11). The dominating soil type

is soil type 1, which accounts for approximately 90 % of the

catchment. The parameters of the unsaturated zone are the

saturated and residual moisture contents, saturated hydraulic

conductivity and soil matric potentials at field capacity and

at wilting point.

Land use is based on data from local authorities and di-

vided into four classes: agriculture (56 %), forest (18 %),

heath (18 %) and wetlands (7 %). Forest and heath are de-

scribed using constant values for the land-use-related param-

eters leaf area index (LAI) and root depth (RD), while LAI

and RD of agricultural land are seasonally dependent, di-

vided into a growing season and a non-growing season.

Parameterization of the stream discharge model is done in

a non-distributed manner, with each branch (the Karup River

and each of the seven tributaries) having the same parame-

ter values. The parameters of the stream discharge model are

the Manning number, the drain level and the drain time con-

stant describing the drainage in the wetland areas near the

river, and the leakage coefficient describing the river–aquifer

interaction.

2.3 Data assimilation

A number of algorithms exist that may be used for data as-

similation. In hydrological data assimilation, the ensemble

Kalman filter (EnKF) and variations and extensions thereof

are primarily used and have been shown to perform well. The

variations of the EnKF have primarily been made to improve

the computational efficiency of the filtering or to relax some

of the assumptions made in the EnKF about model and pa-

rameter error.

This study uses the ensemble transform Kalman filter

(ETKF) (Bishop et al., 2001), which is a computationally ef-

ficient implementation of the EnKF. The ETKF is also deter-

ministic and does not require a full error covariance matrix to

be generated, which makes it computationally less demand-
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ing. Furthermore, adaptive localization is particularly easy in

the ETKF, as will be shown in Sect. 2.3.2, due to the im-

plementation which updates the states variable by variable,

rather than updating the entire state vector. This makes the

ETKF a natural choice of filter for this study.

2.3.1 Ensemble transform Kalman filter

The practical implementation of the ETKF in this study is

based on that of Harlim and Hunt (2005).

The m× k matrix, Xf, is a forecasted ensemble of state

variables (groundwater hydraulic head, stream discharge and

stream water level) composed of k numbers of 1× m vec-

tors containing the state variables of the respective ensemble

members, where k is the number of ensemble members and

m is the number of state variables. It is structured as

Xf
=

[
xf

1, . . .,x
f
n

]
. (1)

A s× k matrix Yf of model observations (s is the number of

observations) is formed by applying a linear operator H that

maps the state space into observation space to each column of

Xf. This matrix is averaged over the columns to form a s× 1

vector of mean model observations, yf, which is then colum-

nwise subtracted from Yf to form the s× k matrix of model

observation anomalies, Yb. Next, Xf is averaged columnwise

to form the m× 1 vector of mean model states xb and this

vector is subtracted from each column of Xf to create am×k

matrix of model state anomalies, Xb.

A k× s matrix, C, is computed as follows:

C=
(

Yb
)T
·R−1

·Pobs, (2)

where R is a s×s matrix of observation covariance, and Pobs

is a s× s diagonal matrix with the localization weights of

each observation on the diagonal. The k× k error covariance

matrix is computed by

P̃ a
=

[
(k− 1) · I+CYb

]−1

, (3)

where I is a n×n identity matrix. The k×k matrix of analysis

error covariance is computed as

Wa
=
[
(k− 1) · P̃ a

]1/2
. (4)

The k× 1 vector of updating weights, wa, is computed as

wa
= P̃ aC · (y− yb), (5)

where y is a k× 1 vector of observations and yb is a k× 1

vector of the mean model observations. wa is then added each

column of Wa, forming the k× k matrix of updated error

covariance, W. The m× k matrix is calculated as

Xc = XbW. (6)

Finally, the updated model ensemble, Xu, is calculated by

adding xb to each column of Xc.

2.3.2 Localization

This study uses an adaptive localization method that

is a combination of two separate adaptive localization

methods proposed by Anderson (2007) and Bishop and

Hodyss (2009), respectively. Anderson (2007) proposed to

split the ensemble into a number of subensembles, and for

each subensemble calculate the correlation coefficients be-

tween the state variables and the model observations. The

correlation coefficients for each subensemble are then cross-

validated, and for each grid point the observations are given

a localization weight based on the cross-validation. That

means that for grid points where subensembles agree on the

correlation coefficient (between the grid point and the obser-

vation grid point), the observations are given a high localiza-

tion weight, as opposed to points in which there is disagree-

ment between the subensembles. Bishop and Hodyss (2009)

instead proposed to calculate the sample correlation coeffi-

cient (between the grid point and an observation) of the en-

tire ensemble, and simply raising it to a power. The localiza-

tion weight of an observation (with regard to a specific grid

point) then equals the power of the correlation coefficient,

giving observations with higher correlation coefficients ex-

ponentially higher localization weight than observations with

low correlation. The adaptive localization method used in

this study is a combination of Anderson (2007) and Bishop

and Hodyss (2009), as proposed by Miyoshi (2010).

The following procedure is applied to each state variable in

the state vector: the ensemble is first split into two subensem-

bles with equal number of members. For each subensemble,

the sample correlation coefficient between the state variable

in question and each of the model observations is determined

and these are then cross-validated using

pobs,a =

(
1−
|c1− c2|

2

)a

, (7)

where pobs,a is the localization weight, c1 and c2 are the cor-

relation coefficients from the first and second subensembles,

and a is a constant used for tuning the localization.

Another localization weight, pobs,b, is determined using

the sample correlation coefficient for the entire ensemble, c,

and another tuning constant, b:

pobs,b = |c|
b. (8)

The final (applied) localization weight, pobs (Eq. 2), is calcu-

lated as the product of pobs,a and pobs,b. Tuning the localiza-

tion (i.e., determining the optimal values for the constants a

and b) is in this study done by evaluating the mean root mean

square error (RMSE) for the entire model domain.

For comparison, a distance-based localization method was

used. The concept behind distance-based localization is that

model grid points that are located far from each other should

be expected to have little or no correlation, and so it creates

a spatial window around each observation in which nonzero

Hydrol. Earth Syst. Sci., 19, 2999–3013, 2015 www.hydrol-earth-syst-sci.net/19/2999/2015/
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localization weights are applied. Model grid points located

further away from the observation are given a localization

weight of zero. Several methods for calculating distributions

of the localization weights in the spatial window exist, but in

this study the Gaussian decay is used:

pobs = exp

(
−d2

2 ·
(
r
2

)2
)
, (9)

where d is the physical distance between two points, and r

is a user-specified localization radius. This weight is for each

observation calculated for all model state variables and re-

sults in a smooth distribution of localization weights from 1

at a distance of zero to 0 as the distance increases. At a dis-

tance of r , the localization weight is 0.135.

2.3.3 Parameter estimation with the ETKF

The data assimilation framework is set up as a joint state up-

dating and parameter estimation framework, where parame-

ter estimation is conducted using the augmented state vector

approach (Drécourt et al., 2005; Liu and Gupta, 2007). The

state vectors (Eq. 1) are extended to also contain the param-

eters that are to be estimated as follows:

Xf
=

[
xf

1

θ f
1

, . . .,
xf
n

θ f
n

]
, (10)

where θ f
i is the set of parameters used to propagate the ith

ensemble member. The mapping matrix H is extended ac-

cordingly, and the standard ETKF approach is applied.

2.3.4 Inflation

In order to compensate for the systematic underestimation of

error variance that is common in the EnKF, covariance infla-

tion (Anderson and Anderson, 1999) was applied to both the

groundwater head states and the stream discharge states. The

inflation is applied by adding a percentage to the ensemble

of forecast anomalies:

Xb
= (1+α) ·Xb, (11)

where α is the inflation factor.

Covariance inflation of the ensemble of parameter values

was performed by inflating the spread to a fixed spread (as

described by the standard deviation). This is done using an

adaptive inflation factor that was calculated as follows:

α =
σTarget

σForecast

, (12)

where α is the standard deviation. σTarget denotes the de-

sired spread of the ensemble of parameter values and σForecast

denotes the spread of the ensemble before updating. This

method is only applied if the forecast standard deviation of

the ensemble of parameters is smaller than the target standard

deviation which in this study is set to 10 % of the initial stan-

dard deviation of the ensemble. This value has been shown

to produce the best results, by maintaining a sufficient spread

that does not create instabilities in any of the ensemble mem-

bers.

2.3.5 Asynchronous assimilation

This study utilizes asynchronous assimilation, which refers

to the assimilation of observations available at times different

from the updating time. The AEnKF (asynchronous EnKF;

Sakov et al., 2010) is a simple extension of the EnKF that

allows for the asynchronous observations to be assimilated

with little cost to the computational time or the storage re-

quirements. The AEnKF requires the storage of model ob-

servations at the time that the asynchronous observations are

available, which are then appended to the state vector and

through the covariance matrix used to update states and pa-

rameters at the time of assimilation.

The term “assimilation window” is in the following used

as the time span between two assimilation time steps. The

observations collected in this assimilation window are as-

similated at the time of the update, which requires that the

ensemble model results stored at the observation time steps

are used. So, given a set of j observations at times t1, . . ., tj
collected in the assimilation window, the ensemble observa-

tions is formulated as follows:

HXf
=

[
(Hxf)T1 , . . ., (Hxf)Tj

]
. (13)

Similarly, the observation vector is extended to correspond

to the ensemble observations and filtering is carried out as

described in Sect. 2.3.1.

2.3.6 State variables

In this study, the groundwater hydraulic head, the stream dis-

charge, and the stream water level are updated at each as-

similation step. The states are updated every 2 weeks, when

groundwater head observations are available. Discharge ob-

servations in the assimilation window are included as asyn-

chronous observations. This method allows all observations

to be included without having to update the states at daily in-

tervals, which would require significant computational time.

2.3.7 Estimated parameters

The choice of parameters to estimate was based on a sensitiv-

ity analysis which was performed using the AUTOCAL soft-

ware (Madsen, 2003). The included parameters were those

with scaled sensitivities (Table 1) of 1 % or more of the sen-

sitivity of the most sensitive parameter. For practical rea-

sons, as they tended to cause instabilities, parameters relating

to the vadose zone were excluded. The exclusion of vadose

zone parameters, even if they are sensitive, also means that

the spread of the ensemble of parameter values is not sequen-

www.hydrol-earth-syst-sci.net/19/2999/2015/ Hydrol. Earth Syst. Sci., 19, 2999–3013, 2015
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Table 1. List of parameters included for estimation, including their normalized sensitivity coefficients to head and discharge observations,

respectively.

Normalized sensitivity Normalized sensitivity

Parameter name Parameter description coefficient (head) coefficient (discharge)

HK_mws Horizontal hydraulic conductivity 1.00 1.00

of meltwater sand

Leakage Stream bed leakage coefficient 0.22 0.29

HK_qs Horizontal hydraulic conductivity 0.06 0.11

of quaternary sand

Drain level Drain level 0.03 0.07

Drain constant Drain constant 0.01 0.04

tially decreased, which helps maintain a spread in the ensem-

ble of state variables and avoid an ensemble collapse.

The hydraulic conductivities of meltwater sand and qua-

ternary sand are included. Despite being hydrogeological pa-

rameters related to the groundwater module of the model,

these are, as evident from Table 1, also sensitive to the dis-

charge observations. Also included are the drain level and

drain time constant, which control the amount and dynam-

ics of groundwater drained to the nearest stream once the

groundwater table exceeds the drain level and are as such

particularly important for drain flow. The leakage coefficient,

which is important with respect to base flow, is another cou-

pling parameter, which represents the hydraulic properties of

the thin layer of the sediments at the bottom of the stream.

Four of the five estimated parameters, the hydraulic con-

ductivities of meltwater sand and quaternary sand, as well as

the stream bed leakage coefficient and the drain time constant

were transformed logarithmically in the filter as the expected

parameter uncertainty is expected to span several decades,

with drain level being the only parameter not transformed.

As commonly practiced in calibration of hydrological mod-

els, the horizontal hydraulic conductivities were tied to the

vertical hydraulic conductivities of the respective geological

units at a fixed ratio of 10 to 1.

The parameter updates are dampened by a factor of 0.1,

meaning that only a tenth of the update (as determined by

the filter) is used. This is based on Hendricks Franssen et

al. (2008), who showed that damping improves the parameter

estimation process.

2.4 Twin test setup

This study uses a twin test in which observations are gener-

ated by extracting selected state values from a forward run

(“true” model), and adding normally distributed noise to em-

ulate typical real-world observation errors. For comparison,

the results of a model similar to the true model, but with per-

turbed initial parameter values, will be shown. This shows

the states of the model if no state updating or parameter es-

timation is applied and will in the following be denoted the

base model. The parameter values used to generate the base

model and the true model can be seen in Table 2.

2.5 Model noise

Model noise is added to the ensemble through the forcings,

i.e., precipitation and reference evapotranspiration, and the

parameters. Noise on forcings is added as a Gaussian noise

with a standard deviation of 20 % of the observed value,

while no spatial correlation of the noise is considered.

Noise is added to a large number of model parameters re-

lating to all model processes as seen in Table 2. In total,

noise is added to 66 parameters, only 5 of which are es-

timated. Adding noise to parameters that are not estimated

helps maintain the spread of the ensemble even as the spread

of the estimated parameters is reduced.

The noise added to both forcings and parameters is based

on experience with uncertainty in real data and parameters.

The magnitude of parameter uncertainty is for many param-

eters well understood, as sensitivity analysis and calibration

has been performed on several hydrological models, includ-

ing the Karup catchment model (Refsgaard, 1997). Correla-

tion in parameter values is only included where this is widely

accepted to exist and easily quantifiable (i.e., horizontal and

vertical hydraulic conductivity). The noise added to the forc-

ings represents a significant simplification of the understand-

ing of forcing uncertainty, which is likely to be highly cor-

related both temporally and spatially. A better description of

the correlation in forcing noise would most likely have re-

sulted in better description of the error covariances, which

currently is determined based on the difference in model be-

havior between the ensemble members, and thereby better

filter performance in terms of distributing the state updates.

However, spatially and temporally correlated ensembles of

forcings are difficult to generate and outside the scope of this

study.

2.6 Data availability

The spatial distributions of hydraulic head observations stud-

ied are visualized in Fig. 2. The spatial distribution denoted
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Table 2. List of parameters perturbed to create the true model and to add noise to the filter ensemble. Parameters in bold are included in

the parameter estimation. Parameters with very low sensitivity were omitted. Parameters are perturbed using Gaussian noise with standard

deviation (SD) shown in the table.

Parameter name Distribution True value base value SD Log transformed

Hor. hyd. conductivity Meltwater sand −8.52 −7.60 0.818 x

Hor. hyd. conductivity Quaternary sand −6.21 −7.01 1.151 x

Hor. hyd. conductivity Clay −15.42 −15.42 0.194 x

Hor. hyd. conductivity Mica sand −11.74 −11.74 0.201 x

Hor. hyd. conductivity Mica clay/sand −16.34 −16.34 0.213 x

Specific yield Meltwater sand 0.25 0.25 0.025

Specific yield Clay 0.05 0.05 0.004

Specific yield Quaternary sand 0.25 0.25 0.023

Specific yield Mica sand 0.20 0.20 0.022

Specific yield Mica clay/sand 0.05 0.05 0.005

Specific storage Meltwater sand −11.62 −9.90 0.308 x

Specific storage Clay −9.57 −9.90 0.335 x

Specific storage Quaternary sand −11.74 −9.90 0.318 x

Specific storage Mica sand −9.21 −9.90 0.320 x

Specific storage Mica clay/sand −6.21 −9.21 0.367 x

Drain level Global −1.00 −0.90 0.215

Drain time constant Global −14.33 −15.02 0.381 x

Leakage coefficient Global −15.48 −14.79 0.885 x

Overland Manning no. Global 4.00 5 0.213

Overland detention Global 0.01 0.02 0.001

Leaf area index Forest 5.00 6 0.431

Leaf area index Heath 2.50 2 0.209

Leaf area index Agriculture 4.00 5 0.413

Root depth Agriculture 900 1000 43.87

Leaf area index Wetland 5.00 6 0.435

Root depth Wetland 710 700 98.91

Stream Manning no. Global 20 25 1.964

Sat. moisture content Soil type 1 0.40 0.40 0.020

Soil matric pot. (field cap) Soil type 1 2.00 2.00 0.088

Soil matric pot. (wilting point) Soil type 1 4.20 4.20 0.168

Sat. hyd. conductivity Soil type 1 −11.18 −11.18 0.345 x

“35 obs” contains observations in all the locations where

actual (i.e., real-world) observations are also available and

presents an extensive spatial coverage of observations, with

observations located in between almost all the branches of

the river network and with many of the observations located

in neighboring model grid cells. The spatial distribution “8

obs” is a subset of “35 obs” and represents a less exten-

sive coverage of observations and with significantly fewer

observations than “35 obs”. Moreover, “2 obs” is a subset of

“8 obs” and contains only two observations located approxi-

mately halfway downstream of the Karup River, and as such

represents a scenario in which the spatial coverage of obser-

vations is poor. Finally, “0 obs” (not depicted in the figure)

represents a scenario in which no groundwater head obser-

vations are available. Discharge observations are made avail-

able in five locations (see Fig. 1), two of which are on the

main river branch (one at the catchment outlet and one ap-

proximately halfway downstream) with the remaining obser-

vations located on the northwestern tributary. Note that the

distribution names only describe the groundwater head ob-

servations and that stream discharge observations are always

assimilated unless otherwise is stated in the scenario name

(see Sect. 2.7).

The frequency of groundwater head observations is ev-

ery 28 days, while the frequency of discharge observations

is daily. Head observations are added a normally distributed

white noise with a standard deviation of 0.05 m. The assump-

tion of head observations being uncorrelated in time is a sim-

plification, as systematic error due to poor representation of

the observation location in the model (i.e., the model grid

point does not coincide with the observation location) is com-

mon in real head observations. The biases in head observa-

tions could potentially impact the filter performance, but ac-

counting for bias is outside the scope of this study. Discharge

observations are assigned a normally distributed white noise

that is proportional to the observed value using a standard

deviation of 5 % of the observed discharge, which is a com-

mon error observed in real-world observations of discharge
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Herschy (1999). This means that discharge measurement er-

rors increase in peak flow situations and are larger for down-

stream locations, while the measurement error of head is not

related to the location or the observed value.

The states and parameters are updated every time ground-

water head observations, i.e., every 28 days, and the daily

discharge observations available in between updates are as-

similated asynchronously. Tests have shown that the length

of the assimilation window is of little importance and there-

fore no other assimilation window was tested.

2.7 Scenarios

This study will consist of four scenarios, with varying avail-

ability of discharge observations and with and without pa-

rameter estimation. In all four scenarios groundwater head

data are assimilated.

InclParInclQ: the primary scenario in this study, in which

discharge observations are assimilated and parameters are es-

timated, constitutes the most complex scenario. Estimating

parameters makes the updates more nonlinear compared to

stand-alone state updating, and assimilating discharge obser-

vations can be expected to require more ensemble members

due to the complex relationship between stream discharge

and groundwater head.

InclParNoQ: this scenario includes parameter estimation

but excludes discharge observations (stream discharge and

water level are still included in the state vector). This means

that the update of groundwater head, stream discharge and

stream water level as well as the parameter estimation is

based only on head observations.

NoParInclQ: this scenario includes the assimilation of dis-

charge observations but excludes parameter estimation. This

way, the influence of differing parameter sets is removed, al-

lowing the direct results of updating the states to be seen.

NoParNoQ: this scenario excludes both the assimilation of

discharge observations and parameter estimation. The sim-

plest of the included scenarios, this scenario, when compared

to scenario NoParInclQ illustrates the value of discharge ob-

servations on state updating.

2.8 Performance indicators

The performance of the filter will be evaluated based on three

indicators:

– mean root mean square error of hydraulic head for the

entire domain (every model grid), calculated based on

the mean of the ensemble at each time step (12 h time

steps) and the true model state. Hereafter denoted head

RMSE;

– mean root mean square error of discharge in all grid

points in the river network model, calculated based on

the mean of the ensemble at each time step (2 h time

steps) and the true model state. Hereafter denoted dis-

charge RMSE. Note that this indicator inadvertently is

dominated by downstream grid points with higher flow;

– the convergence of estimated parameters to the true

value, including the spread and mean of the ensemble

of parameters.

3 Results and discussion

3.1 Localization tuning

Tuning of the localization algorithm is carried out using a

scenario in which two hydraulic head observations and all

five discharge observations are available. An ensemble size

of 50 is used, as experience had shown that this ensemble size

resulted in significant spurious correlation with this number

of observations.

The head RMSE as a function of the two localization con-

stants can be seen in Fig. 3. Based on these results, constant

values of a and b of 2 are used in the remainder of this study.

Due to the computational time required, only integer values

of the constants are tested, although it may have been possi-

ble to fine-tune the localization algorithm by using fractions.

Localization using distance-based localization was ana-

lyzed with varying localization distances and compared to

using adaptive localization and no localization, as seen in

Fig. 3. Overall localization distances of 20 and 10 km that

apply to both the groundwater domain and the stream do-

main were tested. Compared to using no localization, a small

increase in head RMSE is obtained in the case of 20 km lo-

calization distance, whereas a significant increase in head

RMSE is seen when a localization distance of 10 km is used,

which may be explained by true correlation (at a distance of

more than 20 or 10 km) being removed from the filter. Simul-

taneously, spurious correlation occurring within the specified

radii of the observations is not removed by this type of local-

ization, which may lead to increases in head RMSE. Com-

pared to adaptive localization worse results are obtained, and

it is clear that simple distance-based localization with local-

ization distances that apply to both groundwater variables

and stream variables is not sufficient. It should be noted that

the distance-based localization method applied does not dis-

tinguish between model processes and that the localization

distance also applies to the cross-correlation between the dif-

ferent state variables (i.e., groundwater observations are lo-

calized with the described distance with regards to stream

variables and vice versa).

As a result, using lower localization distances for corre-

lation across model processes was tested. This means that

head observations are localized with a smaller radius with

regards to stream discharge and water level and vice versa.

Two scenarios were analyzed in which the localization dis-

tance within the same model process is infinite (i.e., no lo-

calization) and with localization distances across processes

of 5 and 0 km, respectively. The latter scenario means that
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35 obs 8 obs 2 obs

Figure 2. Spatial distributions of observations. Dots and crosses respectively denote groundwater hydraulic head and stream discharge

observation locations, respectively.

Figure 3. Head RMSE as a function of the adaptive localization

constants a and b (a) and head RMSE using different localization

methods (b).

there is no update across model processes and the two model

states (groundwater and stream) are therefore updated inde-

pendently from each other. As Fig. 3 shows, both scenarios

led to a reduction in head RMSE compared to not using lo-

calization, yet head RMSE is still significantly higher than

for the scenario with adaptive localization.

The effect of localization becomes clear when studying the

time series of head RMSE (Fig. 4). Using no localization, the

spurious correlations become dominant, as evident from the

regular spikes visible in the dark blue line in Fig. 4. Using

the distance-based localization method with 20 km localiza-

tion radius does little to remove the spikes (and by extension,

the spurious correlation), and a localization radius of 10 km

only exacerbates them. Using differentiated localization radii

for intra- and cross-process correlation removes a significant

part of the spurious correlation with 0 km radius significantly

outperforming a 5 km radius. However, a few spikes do per-

sist and, compared to the adaptive localization, the decrease

in head RMSE during some updates is not as big, suggesting

that real correlation is removed.

The lower graph of Fig. 4, which shows the discharge

RMSE as a function of time, illustrates why spurious corre-

lation is a particular problem for discharge modeling. While

the filter can reduce the discharge RMSE to almost zero at

the updating time, peaks in the RMSE often appear in the

time step immediately after the update. These peaks are the

results of spurious correlation in the groundwater manifest-

ing itself in the discharge and are due to the nature of the

Figure 4. Head (a) and discharge (b) RMSE for the entire model

domain as a function of time with different types of localization

applied. Note that only the discharge RMSE for the year 1972 is

shown.

groundwater–streamflow interaction. Spurious correlation in

groundwater appears where little real correlation with the ob-

servation points is present, which makes the grid cells that

exchange water with the stream more sensitive than others.

The dynamics of these cells are significantly different from

the slow changing dynamics of most groundwater model

cells, and any change in the interaction cells are reflected in

the streamflow. Put simply, a change in the groundwater head

of a few centimeters is barely noticeable in most grid cells,

but may result in a significant change in the streamflow if the

change is found in the grid cells that controls the interaction

with the streamflow.

Figure 5 gives an insight into why the distance-based lo-

calization methods perform worse than the adaptive local-

ization. As the figure shows, the localization weight de-

rived from the adaptive localization algorithm is not a simple

function of distance. In the case of groundwater localization

weights, they seem to be highly correlated with the proxim-

ity to the stream network, with model grid points located next

to the stream network (and therefore exchanging water with

the stream network) generally assigned very low weights.

This may be explained by the dynamics of these groundwater

model grid points displaying significantly different dynam-

ics as previously discussed. As for stream model grid points,
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Figure 5. Mean localization weight derived from the adaptive local-

ization algorithm for different observation locations and observation

types. Two groundwater observations and two stream discharge ob-

servations are included – magenta crosses indicate the observation

locations. The two left columns show localization weights for the

two groundwater head observations, the third and fourth columns

show localization weights for the two discharge observations. An

example of the localization weights as obtained using the distance-

based localization method, with a localization distance of 10 km, is

included for comparison on the right.

the distribution of localization weights appears to primarily

depend on the branch on which the observation is located.

The most downstream observation (at the model outlet) has

the highest localization weights on the main branch of the

network while the observation located on the tributary has

the highest weights on that tributary (and on its tributaries).

For both observations there is an alternation between high-

and medium- to low-localization weights visible in the fig-

ure, which is a result of the alternation between discharge and

water level calculation used in the model. The adaptive local-

ization algorithm assigns a lower weight to water level vari-

ables than to discharge variables due to the fact that discharge

is what is being observed. One could think that this could

lead to some discrepancies in the stream network states after

updates, due to improper discharge–water level relations, but

no effects (i.e., post update instability or state fluctuations)

of this were seen, leading to the conclusion that the model is

able to adjust any discrepancies there might be quickly after

the states have been updated.

3.2 InclParInclQ

Head RMSE as a function of ensemble size for the scenario

InclParInclQ can be seen in Fig. 6. Using 35 observations

and no adaptive localization, a small improvement in head

RMSE is seen when increasing the ensemble size from 25 to

50, but no change is seen when increasing from 50 to 100,

and it appears that an ensemble size of 50 is sufficient in this

case. When applying localization, almost no improvement is

seen when increasing the ensemble size, suggesting that an

ensemble size of 25 (or even less) is sufficient. Reducing the

number of observations to 8, an improvement is seen when

increasing the ensemble size from 25 to 50, 100 and even

200, with the largest improvement achieved when increas-

Figure 6. Head RMSE (a) and discharge RMSE (b) as a function

of ensemble size in the InclParInclQ scenario for different numbers

of groundwater head observations.

ing from 25 to 50. The results suggest that some improve-

ment may still be possible with ensemble sizes larger than

200. However, an ensemble size of 200 is already very time

consuming, despite the relatively small area and large spa-
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tial discretization of the model, and larger ensemble sizes are

not realistic for practical applications. Using localization, the

improvement seen when increasing the ensemble size is very

small, and a small increase in head RMSE is even seen when

increasing the ensemble size from 50 to 100, suggesting that

50 ensemble members are sufficient in this case. Using two

or no head observations also results in improvement when in-

creasing the ensemble size to 200. Using localization results

in improvement in both scenarios but, even with localization

applied, an ensemble size of 200 may not be sufficient.

The results show that the ensemble size needed depends

strongly on the number of observations available. With fewer

observations, the information from the observations needs to

be spread further spatially, and the small correlation that ex-

ists relatively far from an observation needs to be estimated

well, which requires more ensemble members. With a more

extensive spatial coverage of observations, the small corre-

lation of an observation and a distant model grid point be-

comes less important, as there is more likely to be another

observation closer with a higher correlation which is better

estimated with fewer ensemble members to estimate. As a

result, a larger ensemble size is required when the spatial

coverage of observations is poor. Localization removes the

spurious correlation and thus improves the performance at

lower ensemble sizes or lower observation numbers but does

not affect the sampling error itself. As a result, very large en-

semble sizes are necessary when very few observations are

available, even if localization is applied.

In terms of discharge RMSE (the lower graph in Fig. 6),

the relationship between ensemble size and RMSE is a bit

more unclear, due to spurious correlation being significant in

most cases except “35 obs”. The presence of spurious corre-

lations depends strongly on the sampling of both parameters

and model forcing noise and is by nature random. As such,

a clear trend in RMSE as a function of ensemble size cannot

always be expected when spurious correlation is a significant

source of error. However, a general improvement is observed

when using localization in most cases, with a significant im-

provement observed in the “0 obs” case, where spurious cor-

relations are also most apparent.

As Fig. 7 shows, the performance of parameter estimation

is related to the ensemble size and the number of observa-

tions as well as to the application of localization. When as-

similating eight observations, a slight improvement in the es-

timation of the drain level and drain constant is observed,

while little or no improvement is observed when estimating

the remaining parameters. The improvement with localiza-

tion is more pronounced when only two or no head obser-

vations are assimilated, where an improvement can also be

observed when the ensemble size is increased.

3.3 InclParNoQ

The head RMSE as a function of ensemble size for the sce-

nario InclParNoQ can be seen in the leftmost graphs in Fig. 8.

Figure 7. Spread of estimated parameters at the final update. Thin

blue lines show the total spread of the ensemble and thick blue lines

show the 25th and 75th percentiles. Dots show the mean of the en-

semble. The horizontal lines show the true parameter value (black

line) and the base parameter value (magenta line).

Whether using eight observations or two observations, the

use of localization and the increase in ensemble size has a

much smaller effect on the performance in terms of head

RMSE compared to the scenario in which discharge observa-

tions are assimilated. This suggests that the issue of spurious

correlation is most dominant in the cross-process correlation,

as is also suggested by the localization weights seen in Fig. 5.

Generally, an improvement in terms of head RMSE is seen

compared to the scenario in which discharge observations are

assimilated (InclParInclQ), but the convergence of the two

scenarios with increasing ensemble size suggests that this is

due to spurious correlation in the InclParInclQ scenario. This

means that if one is only interested in optimizing the filter
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Figure 8. Head RMSE (top) and discharge RMSE (bottom) as a function of ensemble size for three of the scenarios. For comparison, the

dashed lines indicate the head and discharge RMSE of the InclParInclQ scenario (without localization).

for groundwater head updating, discharge observations could

be left out, as they result in little or no improvement in the

groundwater domain and requires a larger ensemble size.

The discharge RMSE in Fig. 8 shows that clear improve-

ments in the discharge RMSE is achieved with the assim-

ilation of discharge observations. Both the scenarios with

eight observations and with two observations show increas-

ing trends with respect to discharge RMSE versus ensemble

size, which seems to be related to the estimation of parame-

ters, particularly the leakage coefficient which was estimated

worse with increasing ensemble size (i.e., the mean of the en-

semble of parameter values was offset from the true value).

This is presumably done by the filter to optimize the ground-

water state but leads to significant biases in the estimated pa-

rameter values.

The estimated parameter values can be seen in Fig. 7,

which shows that little or no improvement in the estimation

of parameters is obtained by increasing the ensemble size

or by adding localization. When comparing to the parameter

estimation of the InclParInclQ scenario, the estimation of all

parameters is clearly worse in InclParNoQ, both in terms of

the mean and the spread of the ensemble, underlining the ne-

cessity of assimilating discharge observations in integrated

hydrological models, if the aim is to estimate parameters.

3.4 NoParInclQ

For the scenario NoParInclQ, the head and discharge RMSE

as a function of ensemble size can be seen in the two mid-

dle graphs in Fig. 8. In the case of two head observations,

a significant reduction in head RMSE is observed when in-

creasing the ensemble size from 25 to 50, followed by an

increase in head RMSE with increasing ensemble size. The

decrease in head RMSE is followed by a corresponding in-

crease in discharge RMSE, indicating that the trade-off be-

tween groundwater and streamflow has shifted. Due to bias

in the parameters that control the groundwater–streamflow

interaction which is not being sequentially reduced due to the

exclusion of parameter estimation, a more correct determina-

tion of the groundwater head will inevitably result in larger

errors in the discharge. A visual study of the head RMSE as a

function of time shows that while the update is approximately

equally effective when using 25- or 50-ensemble members

(in terms of discharge RMSE at the updating time), the in-

crease in discharge RMSE between updates is larger for the

50-ensemble scenario, suggesting that the error in the inter-

action with the groundwater is more pronounced. It seems

that the combination of parameter noise and stream discharge

present in the 50-ensemble member case favors the correct

description of groundwater head over discharge, even if all

other factors (observation noise, uncertainty, and inflation)

are the same in all scenarios. The increase in discharge and

head RMSE observed from 100- to 200-ensemble members

is due to an increase in spurious correlation. It seems coun-

terintuitive that an increase in ensemble size would increase

spurious correlation, but an increase in ensemble size also in-

creases the parameter space spanned by the ensemble, which

may lead to spurious correlation appearing. This increase is
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not observed in InclParInclQ, as the parameter spread there

is sequentially reduced.

When using eight observations, a general decrease in head

and discharge RMSE is observed with increasing ensemble

size. There is a significant difference when using localiza-

tion, with localization increasing the head RMSE and de-

creasing the discharge RMSE substantially. The decrease in

discharge RMSE is explained by the removal of spurious cor-

relation, which can cause significant problems for the dis-

charge in particular (see Sect. 3.1). The general increase in

head RMSE may be explained by the trade-off effect shifting

between the groundwater and the discharge observations.

In both cases when using either eight or two observations,

the effect on the head RMSE is relatively small. This is most

likely due to the slow changing dynamics of groundwater,

which means that the groundwater head is well constrained

and does not deviate significantly from the “true” ground-

water head in between updates. The discharge, on the other

hand, changes very rapidly, and the effect of updating the

discharge at a specific time will quickly disappear after the

model is started again. Adding to this is the problem with

spurious correlation and its relevance to discharge model-

ing (see Sect. 3.1) which often results in very high discharge

RMSE and makes direct comparison of the discharge RMSE

between scenarios difficult.

3.5 NoParNoQ

The head and discharge RMSE when parameter estimation

and discharge observations are omitted can be seen in the

two rightmost graphs of Fig. 8. Both when using two obser-

vations and eight observations, the resulting changes in head

and discharge RMSE with increasing ensemble size are very

small. Likewise, the benefit of using localization is negligi-

ble. This may be explained by the updating being much more

linear than in any of the other scenarios, thus reducing the

need for a large ensemble size.

When comparing the NoParNoQ results with the NoParIn-

clQ results, it becomes clear that the impact of assimilating

discharge (without estimating parameters) is small with re-

spect to both head RMSE and discharge RMSE both in the

case of using eight observations and two observations. How-

ever, the trade-off issue does not exist in the NoParNoQ sce-

nario, causing this scenario to perform better with respect to

head RMSE when two observations are used.

4 Conclusions

This study investigated the impact of localization and en-

semble size when applying data assimilation to a coupled

surface–subsurface model, considering different types and

varying amount of observation data and parameter estima-

tion.

The adaptive localization method used in this study was in

many cases able to reduce the required ensemble size signif-

icantly. The method resulted in a complex distribution of lo-

calization weights in both domains of the model (groundwa-

ter and streamflow) that depended heavily on the geology and

the position of the observation relative to the stream network.

This distribution could not be obtained using the common

distance-based methods, and direct comparison of the adap-

tive localization and distance-based localization also showed

that adaptive localization outperformed distance-based local-

ization with respect to head RMSE. Adaptive localization is

not only easily implemented in the ETKF, it also automat-

ically ensures that the cross-process correlation is localized

differently than the intra-process correlation, making it par-

ticularly suitable for data assimilation in coupled surface–

subsurface models. Others have encountered the problem

with cross-process correlation, notably Zupanski (2013), Li

et al. (2013) and Wanders et al. (2014), although no definitive

solution to the problem has been presented. Adaptive local-

ization, such as the method applied in this study, may be one

possible solution.

When assimilating both groundwater head observations

and estimating parameters, localization and large ensemble

sizes are important due to the nonlinearity of the state and

parameter updates. This tendency is increasingly pronounced

with decreasing number of observations assimilated due to

the small correlations between observations and model states

being more important when the spatial distribution of ob-

servations is poor. Excluding discharge observations reduces

the benefits of localization and increasing ensemble size, as

does the exclusion of parameter estimation. When excluding

both discharge observation assimilation and parameter esti-

mation applying localization or increasing the ensemble size

from 25 to 50, 100 or 200 has almost no effect on the filter

performance. The effects of increasing ensemble size in hy-

drological modeling has previously been studied (Chen et al,

2013; Xie and Zhang, 2010), with findings similar to the ones

of this study. Both studies found that increases in ensemble

size improved filter performance, e.g., Xie and Zhang (2010)

increased the ensemble size to 1000 and still observed im-

provements. However, neither of the studies related the en-

semble size to the amount of observations assimilated or to

the estimation of parameters.

Like with state updating, estimation of parameters was pri-

marily improved by an increasing ensemble size when dis-

charge observations were assimilated. With discharge obser-

vations assimilated, clear improvements in parameter estima-

tion were observed when applying localization, and to some

extent when increasing the ensemble size (depending on the

number of assimilated head observations). However, no im-

provement was observed when applying localization or in-

creasing the ensemble size when discharge observations were

not assimilated.

In conclusion, the required ensemble size depends heavily

on the assimilation of discharge observations and estimation
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of parameters, as well as on the available number of obser-

vations. A large ensemble size is necessary when discharge

observations are assimilated, parameters are estimated and

few observations are available, while a significantly smaller

ensemble size is sufficient when only groundwater head is

assimilated and updated. However, the best overall filter

performance (i.e., a combination of groundwater head and

streamflow modeling) is found when discharge observations

are assimilated and parameters are estimated. While the

findings of this study could to a certain extent be derived

intuitively, this is to our knowledge the first time that

they have been quantified and documented in integrated

hydrological modeling.

Edited by: V. Andréassian
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