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Abstract. The identification of unsubtracted foreground residuals in the cosmic microwave
background maps on large scales is of crucial importance for the analysis of polarization
signals. These residuals add a non-Gaussian contribution to the data. We propose the
Kullback-Leibler (KL) divergence as an effective, non-parametric test on the one-point prob-
ability distribution function of the data. With motivation in information theory, the KL
divergence takes into account the entire range of the distribution and is highly non-local. We
demonstrate its use by analyzing the large scales of the Planck 2013 SMICA temperature
fluctuation map and find it consistent with the expected distribution at a level of 6%. Com-
paring the results to those obtained using the more popular Kolmogorov-Smirnov test, we
find the two methods to be in general agreement.
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1 Introduction

The Planck 2013 and 2015 data releases open new directions in precision cosmology with
regard to a more advanced investigation of the statistical isotropy and non-Gaussianity of
the cosmic microwave background (CMB) [1–4]. While generally confirming the Gaussianity
and the statistical isotropy of the CMB (for the relevant multipole domain ℓ ≥ 50), the
Planck science team confirmed the existence of a variety of anomalies in the temperature
anisotropy on large angular scales (ℓ ≤ 50) previously seen in WMAP data [3, 4]. Among
these are the lack of power in the quadrupole component [5] (see, however, [6] and [3]), the
alignment of the quadrupole and octupole components [3, 6, 7], the unusual symmetry of
the octupole [8], anisotropies in the temperature angular power spectrum [3, 9–11], preferred
directions [3, 4, 12–15], asymmetry in the power of even and odd modes [3, 4, 6, 16, 17]
and the Cold Spot [3, 4, 18, 19]. Some of these anomalies are probably a consequence of
the residuals of foreground effects that could be a major source of contamination in the
primordial E- and B-modes of polarization (in this connection see [20]).

The statistics of B-mode polarization that can be derived from ongoing and planned
CMB experiments will be crucial for the determination of the cosmological gravitational
waves associated with inflation [21–28] at the range of multipoles 50 ≤ ℓ ≤ 150, closer to the
domain of interest for BICEP2 and Planck [20, 29]. It seems likely that B-mode polarization
in this range is affected by Galactic dust emission, the statistical properties of which are very
poorly known. (For ℓ > 150 we expect contamination of the B-modes due to lensing effects
the precise nature of which is also not fully understood.) In the absence of such knowledge it
is difficult to make a priori proposals for the best estimator of non-Gaussianity and statistical
anisotropies in the derived B-modes due to possible contamination by foreground residuals.
Thus, we believe that it is of value to propose additional model-independent tests aimed at
providing an improved quantitative understanding of the magnitude of non-Gaussianity in
current CMB data. Such tests would also be useful for the analysis of forthcoming CMB
data sets. In this paper we propose use of the Kullback-Leibler (KL) divergence as such a
test. The goal of this paper is to illustrate the utility of the KL divergence in studying the
properties of the CMB signal — a Gaussian or almost Gaussian signal. The KL divergence
is likely to be even more useful for very non-Gaussian cases such as the statistical behaviour
of the Minkowski functionals for a single map or the pixel-pixel cross-correlation coefficient
between two maps, when calculated in small areas. We will consider such issues in a separate
publication.
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The one-point probability distribution function (PDF) would seem to be a reasonable
starting point for the investigation of non-Gaussianity. Such tests have been applied by the
Planck team to a variety of derived CMB temperature maps including the SMICA, NILC,
SEVEM and Commander maps [3, 4]. In practice, these tests involve comparison of the
various temperature fluctuation maps with an ensemble of simulated maps. The CMB tem-
perature is characterized by a power spectrum, CPlanck

ℓ , which corresponds to the Planck
2013 concordance ΛCDM model with the cosmological parameters listed in [30]. The sim-
ulated maps are obtained as Monte Carlo (MC) Gaussian draws on this power spectrum
(in harmonic space). When processed with the Planck component separation tool, the re-
sulting simulation maps contain both CMB information as well as various residuals from
foregrounds, the uncertainties of instrumental effects, etc. For the Planck 2013 data release,
the corresponding 103 full focal plane simulations are referred to as the FFP7 simulations.
They reflect the intrinsic properties of the SMICA, NILC, SEVEM and Commander maps.
Differences between the FFP7 maps and the various empirical maps can provide useful in-
formation regarding non-Gaussianity. In the following, we shall restrict our attention to the
SMICA map.

In practice, the non-parametric Kolmogorov-Smirnov (KS) test is often used to assess
the similarity of two distributions. The KS test characterizes the difference between the
two cumulative distribution functions (CDF) in terms of the maximum absolute deviation
between them. The KS estimator, κ, is defined as

κ =
√
nmax[|F (x)− Fn(x)|] , (1.1)

where F (x) is the theoretical expectation of the CDF and Fn(x) is obtained from a data
sample with n elements. Here, both F (x) and Fn(x) must be normalized to the range [0, 1].
Note that F (x) is normally a continuous function or should at least be defined for all possible
values of the data sample Fn(x). It is clear from eq. (1.1) that the KS estimator κ is local
in the sense that its value will be determined at a point, x, where the PDFs corresponding
to F (x) and Fn(x) cross. We note that the use of PDFs in eq. (1.1) instead of CDFs would
result in a maximal sensitivity to the largest local anomaly.

Unlike the case of vectors (where the scalar product provides a standard measure),
there is no generic “best” measure for quantifying the similarity of two distributions. Thus,
we believe that it is also useful to consider the Kullback-Leibler divergence for two discrete
probability distributions, P and Q. The KL divergence on the set of points i is defined [31] as

K(P‖Q) =
∑

i

Pi log

(

Pi

Qi

)

. (1.2)

In other words, the KL divergence is the expectation value of the logarithmic difference
between the two probability distributions as computed with weights of Pi. Typically, P
represents the distribution of the data, while Q represents a theoretical expectation of the
data. Unlike the KS test, the KL divergence is non-local. Indeed, we shall indicate below
that it is in a sense “maximally” non-local. It is familiar in information theory, where it
represents the difference between the intrinsic entropy, HP , of the distribution P and the
cross-entropy, HPQ, between P and Q,

K(P‖Q) = HPQ −HP , HP = −
∑

i

Pi logPi, HPQ = −
∑

i

Pi logQi . (1.3)

– 2 –
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In more practical terms, consider the most probable result of N independent random draws
on the distribution P . When N is large, the number of draws at point i is simply ni = NPi.
Now construct the probabilities, ΠP and ΠQ, that this most probable result was drawn
at random on distribution P or Q, respectively. The KL divergence of eq. (1.2) is simply
N−1 log (ΠP /ΠQ). We note that simulations of the CMB map, drawn independently in
harmonic space, have correlations in pixel space. Nevertheless we regard this argument as
motivation for applying the KL divergence to CMB pixels.

The main goal of this paper is to illustrate the implementation of the KL divergence
for the analysis of the statistical properties of the derived CMB maps in the low multipole
domain as a complementary test to the methods listed in [3, 4]. The structure of the pa-
per is as follows. In section 2 we present some properties of the KL divergence. We also
use it to analyze the Planck SMICA map and compare it to both the FFP7 set and to a
purely Gaussian ensemble. In addition, we compare the two ensembles and compare the KL
divergence to the KS test in the low multipole domain of the CMB map. In section 3 we
discuss the results. Note that the Planck papers [3, 4] test the Gaussianity of the one-point
PDF by analyzing its variance, skewness and kurtosis. In this sense, the KL divergence is
simply another test on the global shape of the PDF. Here, we restrict our analysis by using
the SMICA map and the corresponding simulations. The extension of the method to E- and
B-modes of polarization does not require any modification.

2 KL divergence and Planck data

2.1 Preliminary remarks: properties of the KL divergence

As noted above, the KL divergence provides a measure of the similarity of two known dis-
tributions. In many cases, however, one of these distributions is not known and must rather
be approximated by the average PDF for a statistical ensemble of realizations of the random
field. The question then arises of how closely the resulting proxy reflects the properties of the
true underlying distribution. To offer some insight in this matter, we consider a toy model
based on a discrete Gaussian distribution, Pk, with

Pk ∼ exp
[

−k2/25
]

, (2.1)

and k an integer between −10 and +10 subject to the obvious normalization condition. The
mean value of k is 0 and the variance is approximately 25/2. Suppose for simplicity that we
define an individual data set as N random draws on this distribution. Each such data set
can be regarded as a proxy, Qi for the underlying distribution, and can be used to calculate
the KL divergence K(P‖Q) defined in eq. (1.2). For a given value of N , we repeat this
process M times and compute the average KL divergence, K, and the root-mean-square

(RMS) deviation of the KL divergence, ∆K =
√

K2 −K2. The results of this exercise are
shown in table 1, where we have used the common value of M = 1000. Several things seem
clear. Both the average value of the KL divergence and the RMS deviation from this average
value vanish like 1/N for large N . From general arguments, the KL divergence cannot be
negative. Figure 1 shows a histogram of the distribution of KL divergences obtained with
M = 20000 for the cases N = 100 and N = 1000. The KL divergences here are measured
in units of the corresponding value of K. The fact that these distributions scale like 1/N is
obvious. These histograms suggest power law suppression near zero and Gaussian behaviour
for large values of the KL divergence.

– 3 –
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N K ∆K NK N∆K

4000 0.002540 0.000796 10.160 3.18

8000 0.001253 0.000413 10.024 3.30

16000 0.000636 0.000200 10.176 3.20

Table 1. Mean and RMS values of the KL divergence for a discrete Gaussian distribution.

Figure 1. Histogram of KL divergences with M = 20000 for N = 100 (black) and N = 1000 (red).
Note that the horizontal axis is measured in units of the corresponding value of K.

The results shown in figure 1 are not specific to the KL divergence, and qualitatively
similar results would be obtained for any measure chosen to describe the similarity of two
distributions. All that is required is that the measure chosen is always positive and vanishes
when the distributions being compared are identical. When drawn as here, each individual
data set can be thought of as a combination of the “exact” distribution plus the amplitudes
of (N −1) “fluctuations”.1 Obviously, the amplitudes of every one of these fluctuations must
be exactly zero if the measure is to be K = 0. Of course, there are many combinations of
the fluctuation amplitudes that will give any fixed non-zero value of the measure, and their
number increases as K grows from zero. In contrast, for the case of only two options (e.g.,
“heads” and “tails”) subject to a constraint on the total number of draws, there is only a
single degree of freedom. In this case K = 0 is actually the most probable value.

A few additional remarks can help clarify the properties of the KL divergence. Consider
that each individual data set is sufficiently large that Qi = Pi+δPi where δPi is small. Under
these conditions, terms linear in δPi vanish as a consequence of normalization, and the KL
divergence is given simply as

K =
1

2

∑

i

δP 2
i

Pi

. (2.2)

We see that the distributions P and Q are now treated symmetrically in spite of the asymme-
try that is apparent in eq. (1.2). Elementary arguments suggest that the average number of
draws on bin i will be NPi±

√
NPi. The corresponding proxy for the underlying distribution

will be Pi ±
√

Pi/N . Given this result, eq. (2.2) suggests that, for fixed bin sizes and in
the limit N → ∞, each bin will make a contribution to the KL divergence of roughly equal

1Due to the fact that each data set contains exactly N draws.
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size. It is hard to imagine a greater degree of non-locality. Moreover, in this limit the KL
divergence is expected to be of order Nb/N , where Nb is the number of bins. In other words,
if we define

α =
N

Nb

K , (2.3)

we expect that α ∼ O(1). This realization allows us to assign a rough scale for the expected
KL divergence. If two given distributions yield a much larger value of α, we can conclude that
they differ significantly from each other without resorting to comparisons with an ensemble.
In the example shown in table 1 we are using Nb = 30, meaning α is small. This is to be
expected since we are indeed using the true distribution to draw the data under examination.

2.2 Preliminary remarks: Planck data

We have performed the KL divergence test on the CMB map obtained by the Planck collab-
oration [30] using the SMICA method. Since we are interested in the statistical properties
of the CMB map on large scales, we first degrade the map from its native HEALPix [32]
resolution of Nside = 2048 to Nside = 32. We then construct the convolution of this map
with a Gaussian smoothing kernel of 5◦ FWHM and retain only the harmonic coefficients
with ℓ ≤ ℓmax = 96. The SMICA map provides a useful estimation of the CMB tempera-
ture fluctuations for a very large fraction — but not all — of the sky. We use the SMICA
inpainting mask to exclude heavily contaminated regions, mainly the Galactic plane. At the
resolution considered here, the mask removes about 6% of the pixels, leaving the number of
pixels under consideration to be N = 11565. Since the analysis is performed in pixel space,
application of the mask is trivial.

In order to estimate the statistical significance of our results, we compare them to
ensembles of realizations. In this work we use two different ensembles. This is done in order
to cross-check the significance estimations and also allows us to compare the two ensembles.
The first of these ensembles is the FFP7 set described above. We degrade and smooth the
FFP7 maps in the same manner as we did the SMICA map. We expect that the effects of
detector noise will be minor on the large scales considered here. To test this expectation we
therefore also make use of the best-fit power spectrum, CPlanck

ℓ [30], to generate an ensemble
of 103 Gaussian random realizations free of residuals. As in the case of the FFP7 ensemble,
we restrict the multipole domain to ℓmax = 96 and smooth the harmonic coefficients with a
Gaussian filter of 5◦ FWHM. We also multiply the coefficients with the pixel window function
associated with an Nside = 32 pixelization before converting them to an Nside = 32 map.

In our analysis we calculate the KL divergence for the SMICA map in pixel space. We
calculate a histogram of the temperature fluctuations in the unmasked pixels by taking bins
of width 8 µK in the range [−200, 200] µK, meaning that the number of bins is Nb = 51.
Values outside this range are attributed to the edge bins. This histogram is taken as the P
probability distribution of eq. (1.2). ForQ, the expected distribution, we turn to the ensemble
of simulations, either FFP7 or the Gaussian realizations. We calculate the histogram for
each simulation (using the same range and binning), and take Q to be the mean of all
histograms. These histograms are shown in figure 2(a) together with error bars showing the
5–95% range for the FFP7 set. It appears that the histogram of the SMICAmap deviates from
the reference histograms by ≈ 2σ primarily in the vicinity of the peak of the distribution.
However, this estimation relies on a local feature. The KL divergence provides us with a
recipe to sum all the deviations from the entire range of the distribution with appropriate
weights.

– 5 –
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(a) (b)

Figure 2. (a) Number of counts versus amplitude of the SMICA map (red), the FFP7 (black) and the
Gaussian (blue) ensembles. The error bars show the 5–95% range for the FFP7 set. (b) Histograms
of normalized KL divergence values for the FFP7 ensemble (black) and the Gaussian ensemble (blue).
The values for the SMICA map are shown as red vertical lines, compared to the FFP7 mean distri-
bution (solid) and to the Gaussian mean distribution (dotted).

Before using eq. (1.2) to calculate the KL divergence, it is necessary to pay particular
attention to bins in which either P or Q has small values. The case in which Pi = 0 is not
problematic since Pi logPi → 0 in this limit. Bins for which Qi = 0, however, should not be
included since the KL divergence is logarithmically divergent as Qi → 0. Such a result is not
unreasonable since it is impossible to draw to a bin if its probability is strictly 0. In practice,
however, small values of Qi are merely a consequence of the size of our ensemble. We have
chosen to ignore bins for which Qi < 5 pixels in order to minimize the sensitivity to small
non-statistical fluctuations in the extreme tails of the Q distribution.

2.3 The basic results

We have calculated the KL divergences between the SMICA histogram and the histograms
made from the FFP7 and the Gaussian ensembles. After normalization using the number of
valid pixels, N , and the number of bins, Nb, in eq. (2.3), we have obtained α = 6.47 and 6.28,
respectively. If these values were significantly larger than the expected order of magnitude,
we would conclude that the distributions were in disagreement. Since this is not the case,
we must compare the results to ensembles of values of α. In order to calculate the p-values,
we repeat the calculation of the KL divergence, replacing the distribution of the map, P ,
with that of each of the random simulations. This results in two histograms of normalized
K values, i.e. α values, for FFP7 (Gaussian) maps compared to the FFP7 (Gaussian) mean
distribution, shown in figure 2(b). It is evident that, as expected, α . 10 for most simulations.
We find that 5.6% of the FFP7 simulations and 6.3% of the Gaussian simulations get a higher
KL divergence than the SMICA map. We see that the KL divergence of the SMICA map
from the expected distribution is not significant. As expected, differences between the two
reference ensembles, the FFP7 simulations and the pure Gaussian realizations, are quite
small. In order to demonstrate explicitly the similarity between the two ensembles with
respect to the KL divergence, we have also tested each of the FFP7 simulations against the
mean distribution of the Gaussian ensemble and vice versa. The results of this calculation

– 6 –
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Figure 3. Histograms of KS test values for the FFP7 ensemble (black) and the Gaussian ensemble
(blue). The values for the SMICA map are shown as red vertical lines, compared to the FFP7 mean
distribution (solid) and to the Gaussian mean distribution (dotted).

are extremely similar to those shown in figure 2(b), and we can conclude that the added
complexity of the FFP7 simulations relative to that of simple Gaussian realizations plays a
minor role at this resolution.

In addition to the KL divergence, and as a basis for comparison, we also use the KS
test to compare between the histogram of the SMICA map and the mean histogram for each
of the ensembles. The KS test, defined in eq. (1.1), requires the use of the CDF. For the
SMICA map, the CDF is calculated from the data without any binning. The reference CDF,
however, is calculated by first fitting the mean histogram of the ensemble (either FFP7 or the
Gaussian realizations) to a Gaussian, and then using the fitted parameters in the expression
for a Gaussian CDF. As in the case of the KL divergence, for each ensemble, we compare the
SMICA map to the mean histogram of the ensemble and also create a histogram of KS test
values by taking each realization separately and comparing it to the mean. The results are
shown in figure 3. The KS test values we get when comparing the SMICA map to the FFP7
and Gaussian simulations are κ = 8.32 and 8.21, respectively. The corresponding p-values are
3.0% and 2.6%. Again we see that the results for the two ensembles are in good agreement.
Moreover, while the p-values of the KS test are lower than those of the KL divergence, the
SMICA map still appears to be consistent with the reference ensembles and not anomalous.

As we can see from figure 2(a), there are well-defined temperature ranges in which the
SMICA histogram is above or below the reference. Thus, in figure 4 we plot the SMICA map,
showing only the temperature range |T | ≤ 50 µK where the SMICA histogram is above the
reference and the temperature range 50 µK ≤ |T | ≤ 120 µK where it is below. We see that
there is no apparent tendency for the contributions from either of these temperature ranges to
be localized in specific regions of the sky. We do, however, pay special attention to the region
of the ecliptic plane. As is apparent from figure 3 of [33], the SMICA map is susceptible to
contamination from foreground residuals in the region of the ecliptic. We therefore include
in figure 4(b) curves showing the location of the ecliptic plane and suggest that the number
of cold spots in the ecliptic band might be unexpected. As it is not the focus of this work,
we have not performed any quantitative analysis regarding the spatial distribution of hot
or cold regions of the map. The maps in figure 4 provide an additional general indication
that the SMICA temperature map is not anomalous. Nevertheless, we again emphasize that

– 7 –
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(a) (b)

Figure 4. The SMICA map, showing only those regions where (a) |T | ≤ 50 µK and (b) 50 µK ≤
|T | ≤ 120 µK. The small Galactic mask used in the analysis appears as a thin horizontal gray line in
the center of the maps, and the masked pixels are not included in any of the temperature ranges. In
panel (b), the black curves mark the location of the ecliptic plane.

small foreground residuals, like those suspected to lie in the area of the ecliptic plane, while
insignificant to the analysis of temperature fluctuations, can become extremely important
when analyzing the CMB polarization pattern, specifically B-mode polarization.

2.4 Interchangeability of P and Q

As has been noted above, the KL divergence is not symmetric with respect to the interchange
of the distributions P and Q except in the limit P → Q. This is a reminder of the fact that
the KL divergence is not a true metric of the distance between P and Q. So far, we have
followed the common practice of taking P to be the distribution of the data and Q the
expected distribution [31]. However, it is worth checking what happens when these roles are
reversed. We have performed two tests involving interchange of the two distributions. First,
we simply calculate the KL divergence K(Q‖P ), where P is again the SMICA histogram
and Q is the mean histogram of the FFP7 ensemble.2 This value is then compared to the
ensemble of values computed with P replaced by each of the FFP7 maps. The resulting
histogram, after normalization using eq. (2.3), is presented in figure 5(a) together with the
histogram of K(P‖Q) (presented above) as reference. We can see that the two histograms
and the corresponding p-values are similar. The value p = 6.5% was obtained for the reversed
test; the p-value for the normal test is 5.6% as stated above. It is apparent that, although
similar, the reversed histogram is slightly but consistently shifted towards smaller α values
than the normal histogram. The value for the SMICA map is also lower for the reversed
test. However, the SMICA is a single map, and the shift between histograms only indicates a
statistical shift for the whole ensemble. Therefore, the second test is to examine the difference
∆α = α(P‖Q)−α(Q‖P ) between the normal and reversed normalized KL divergences of the
same map. Figure 5(b) shows the resulting histogram for the FFP7 ensemble together with
the value for SMICA. The SMICA map shows a highly standard ∆α, yielding a p-value of
49.4%. A similar test performed versus the Gaussian ensemble gives very similar results.

The tendency of the KL divergences to become smaller when P and Q are interchanged
can be understood easily. Since P is calculated from a single map, it tends to fluctuate more
than Q, which is the mean of all ensemble distributions. Therefore, when P appears only

2Note that with the roles reversed, bins with Pi < 5 are now ignored and bins with small values of Qi are
all counted.

– 8 –
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(a) (b)

Figure 5. (a) Histograms for the usual KL divergenceK(P‖Q) (black) and for the reversed divergence
K(Q‖P ) (blue). The red and blue vertical lines are the values for the SMICA map for the normal
and reversed tests, respectively. All K values have been normalized using eq. (2.3). (b) Histogram
of the normalized difference α(P‖Q)− α(Q‖P ). The vertical line is the value for the SMICA map.

inside the logarithm, as is the case in the reversed K(Q‖P ), the fluctuations are suppressed
relative to the normal K(P‖Q). We see here that the SMICA map not only shows the
expected qualitative behavior upon interchanging P and Q, it is also quantitatively shifted
by the expected amount. While the KL divergence in general is not symmetric under the
interchange of P and Q, we conclude that when testing the one-dimensional temperature
distribution of the CMB on large scales, reversing the two makes little difference.

3 Discussion

We have discussed the applicability of the Kullback-Leibler divergence for the assessment of
departures form Gaussianity of CMB temperature maps on large scales. We have illustrated
this on the SMICA map, comparing it to both the set of FFP7 simulations and a set of 103

Gaussian draws. We have shown that it is consistent with each of these reference sets to
a level of about 6%. We have used the KL divergence to compare the FFP7 and Gaussian
reference sets and have shown that they are in good agreement. This suggests that the
additional instrumental effects and foreground residuals included in the FFP7 simulations
are unimportant on the scales considered here. Since the KL divergence is not symmetric
in P and Q, we have performed tests to demonstrate that their interchange has little effect
on these conclusions. Finally, we have repeated these calculations using the Kolmogorov-
Smirnov test. The resulting p-value of about 3% suggests that the differences between the
two tests are not large. We note that there is no guarantee that these tests will always give
similar results. For example, the KL divergence is likely to be far more sensitive than the
KS test for situations where there are large relative differences in the small amplitude tails
of the distributions. We have also repeated all the tests on the CMB data of the 2015 release
from Planck, which recently became publicly available.3 The results on the 2015 data set are
in very good agreement with those reported here.

3See the Planck Legacy Archive http://pla.esac.esa.int/pla/.
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The difficulty in devising tests for the assessment of non-Gaussianity of the temperature
and polarization maps of the CMB lies in our ignorance of the nature of the non-Gaussian
residuals from foregrounds and systematic effects that could propagate to the maps. In such
circumstances, it seems advisable to adopt a procedure that uses as much information in the
maps as possible. With its connection to the intrinsic and cross-entropy of the distributions
P and Q, the KL divergence would appear to be the natural choice. Given the correlations
between the pixels of the CMB, a consequence of a random draw in harmonic space, this is
not necessarily the case. However, the non-locality of the KL divergence and its sensitivity
to the tails of the distributions still suggest that it is a valuable complement to the KS test
and might be a useful alternative. Indeed, one should utilize a variety of methods and tests
to identify possible contamination of the cosmological product. Obviously, any suggestion
of an anomalous result would indicate the need for more sophisticated analyses to assess the
quality of the CMB maps.
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