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Abstract
Recognition and binding of anions in water is difficult due to the ability of water molecules to

form strong hydrogen bonds and to solvate the anions. The complexation of two different

carboxylates with 1-(4-carbomethoxypyrrolidone)-terminated PAMAM dendrimers was

studied in aqueous solution using NMR and ITC binding models. Sodium 2-naphthoate and

sodium 3-hydroxy-2-naphthoate were chosen as carboxylate model compounds, since they

carry structural similarities to many non-steroidal anti-inflammatory drugs and they possess

only a limited number of functional groups, making them ideal to study the carboxylate-den-

drimer interaction selectively. The binding stoichiometry for 3-hydroxy-2-naphthoate was

found to be two strongly bound guest molecules per dendrimer and an additional 40 mole-

cules with weak binding affinity. The NOESY NMR showed a clear binding correlation of

sodium 3-hydroxy-2-naphthoate with the lyophilic dendrimer core, possibly with the two

high affinity guest molecules. In comparison, sodium 2-naphthoate showed a weaker bind-

ing strength and had a stoichiometry of two guests per dendrimer with no additional weakly

bound guests. This stronger dendrimer interaction with sodium 3-hydroxy-2-naphthoate is

possibly a result of the additional interactions of the dendrimer with the extra hydroxyl group

and an internal stabilization of the negative charge due to the hydroxyl group. These find-

ings illustrate the potential of the G4 1-(4-carbomethoxy) pyrrolidone dendrimer to complex

carboxylate guests in water and act as a possible carrier of such molecules.

Introduction
Dendrimers are well-defined nano-scale macromolecules formed by repetitive branching from
a core. Depending on the branch-cell unit, dendrimers can have cavities capable of hosting
smaller molecules. Guest-host chemistry in dendrimers is divided into endo- or exo-complexa-
tion which is determined by whether the guest molecule is bound in the interior or to the
surface of the dendrimer. Both types of guest-host chemistry have been a popular topic due to
the potential applications in drug-delivery.[1–4] 1-(4-Carbomethoxy) pyrrolidone coated
PAMAM dendrimers are especially promising candidates for the complexation and release of
drug molecules, since they have unique and favorable solubility properties in both organic sol-
vents and aqueous solutions[5] and have a benign toxicity profile.[6–8]
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We recently reported a study of endo-complexation of the γ-lactam antibiotic oxacillin in a
G4 1,4-diaminobutane-core 1-(4-carbomethoxy) pyrrolidone functionalized PAMAM-dendri-
mer, where it was found that the stoichiometry of the guest-host complexes showed solvent
dependency.[9]

However, oxacillin and the other penicillins are sold as alkali metal salts due to the low sta-
bility of the free carboxylic acids; this raised the question of whether it could be possible to
have binding of carboxylate anions to the pyrrolidone-terminated dendrimer in water.

Recognition and binding of anions in water is difficult because of waters ability to form
strong hydrogen bonds and to solvate the anions. Many of the best examples of anion receptors
are pre-organized macromolecules with suitable cavities such as cryptands,[10] calixarenes,
[11] or curcubiturils.[12] Guest-host chemistry with dendrimers in water is much less investi-
gated, but there are examples of binding of pharmaceutically interesting compounds such as
cis-Platin,[13] Nadifloxacine[14] and Prulifloxacine,[15] Campthotecin,[16] Dexamethasone
phosphate,[17] anti-inflammatoric drugs (NSAIDs)[18,19] and of course DNA and siRNA.
[20–23]

Initially, we tried the sodium salt of oxacillin, but because the results were inconclusive, we
decided to look at the more simple molecules such as sodium 2-naphthoate and sodium
3-hydroxy-2-napthoate. These two carboxylates were chosen as model guests, since they pos-
sess similar structural features and water solubility as many antibiotics and non-steroidal anti-
inflammatory drugs. The G4 1-(4-carbomethoxy) pyrrolidone dendrimer and the two encapsu-
lated guest molecules are illustrated in Fig 1.

Materials and Methods
Unless otherwise stated, all starting materials were obtained from commercial suppliers and
used as received. Solvents were HPLC grade and used as received. 1H-NMR spectra were
recorded on a 500 MHz NMR (Bruker) apparatus. Chemical shifts are reported in ppm down-
field of TMS (tetramethylsilane) using the resonance of the deuterated solvent as internal stan-
dard (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet). 1H-NMR titration data
were fitted with Origin 9.0. The employed ITC apparatus was a NanoITC Model 5300, TA
Instruments, Lindon, UT, USA, with a cell volume of 1038 μl. All ITC data were fitted in
NanoAnalyze.

Preparation of dendrimers
The PAMAM dendrimer of the generation 4 was synthesized by published procedures,[24]
starting from 1,4-diaminobutane as the core. The 1-(4-carbomethoxy-pyrrolidone) surface
functionalization was done by reacting the amino terminated dendrimers with dimethyl itaco-
nate (S1 Fig and S1 Text).[6,25] The reaction was monitored by performing Kaiser-tests until
completion.

Preparation of the corresponding sodium salt of the naphthoic acids
Sodium 3-hydroxy-2-naphthoate and sodium 2-naphthoate were prepared by the slow addi-
tion of the corresponding carboxylic acid (2.9 mmol) to an aqueous solution (10 mL) contain-
ing an equivalent amount of NaOH (2.9 mmol). Excess water was removed by freeze drying
and the carboxylates were gained in a quantitative yield (2.9 mmol).

Sodium 3-hydroxy-2-naphthoate: 1H-NMR: δ = 8.33 (s, 1H); 7.85–7.88 (m, 1H); 7.69–7.72
(m, 1H); 7.50–7.53 (m, 1H); 7.35–7.38 (m, 1H); 7.18 (s, 1H). Sodium 2-naphthoate: 1H-NMR:
δ = 7.97–8.02 (m, 1H); 7.74–7.80 (m, 2 H); 7.32–7.44 (m, 4 H).

Aqueous Carboxylate Complexation by Dendrimer
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Preparation of NMR-Titration samples and dissociation constant
determination
5 ml stock solutions in D2O were prepared, containing 1 mM G4 1-(4-carbomethoxy pyrroli-
done) dendrimer and (2) containing 1 mM of G4 1-(4-carbomethoxy pyrrolidone) dendrimer
and 150 mM of the respective carboxylate. The dendrimer concentration was kept constant,
while the carboxylate concentration was varied from 0 to 100 mM. For the determination of

Fig 1. The twomodel guests illustrated within a G4 1-(4-carbomethoxy) pyrrolidone dendrimer.

doi:10.1371/journal.pone.0138706.g001
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the dissociation constant of sodium 2-naphthoate, a NMR fitting model was used as described
in an earlier paper.4 Binding saturation curves were fitted employing Origin 9.0.

Preparation of samples for 2D-NOESY-experiments
NOESY experiments were conducted on a 500 MHz NMR (Bruker) apparatus that was
equipped with a cryo-probe. The concentration of G4 1-(4-carbomethoxypyrrolidone)
PAMAM-dendrimer was 5.2 mM and the concentration of sodium 3-hydroxy-2-naphthoate
was 35.7 mM in D2O. The dendrimer sample was incubated at room temperature with sodium
3-hydroxy-2-naphthoate for 2 hours prior to starting the experiment. The concentration of
sodium 2-naphthoate incubated with dendrimer in D2O was the same. The experiments were
performed at 25°C with a 2 s relaxation delay, 205 ms acquisition time, 300 ms mixing time
and a 8.2 μs 1H 90° pulse width. Eight transients were averaged for 1024 t1 increments.

Preparation of NMR-samples for Job-plot
5 ml stock solutions in D2O were prepared with 10 mM of G4 1-(4-carbomethoxy pyrrolidone)
dendrimer, and 10 mM of the respective carboxylate. The samples were prepared by injecting a
total volume of 500 μl in 12 NMR tubes for each Job-plot, keeping a constant total concentra-
tion of 10 mM ([den] + [carboxylate]), where the ratio [den]/[carboxylate] was varied.

ITC-titration experiments. ITC measurements have been performed following an ITC
best practice guideline by Freyer and Lewis [26]. For each compound there have been 42 indi-
vidual heat signals collected. The computational fitting of the data was performed using the
NanoAnalyze standard software for ITC measurements by TA Instruments (manufacturing
company of the NanoITC Model 5300). Before and after the measurements the accuracy of the
instrument was tested by standardized blank titration of water into water. Control experiments
for baseline determination were performed (blank titration of the carboxylate into water and a
blank titration of water into the dendrimer solution). The error values of the obtained values
(fitting by the NanoAnalyze standard instrument software) are reported after each value.

Titration of G4 4-carbomethoxy pyrrolidone terminated PAMAM-
dendrimer with sodium 3-hydroxy-2-naphthoate
A stock solution of 0.1 mM G4 4-carbomethoxy pyrrolidone terminated PAMAM-dendrimer
in MQ water was prepared (2 ml), A. 40 mM sodium 3-hydroxy-2-naphthoate was prepared
(5 ml), B. Both solutions A and B were carefully degassed by ultra sonification in order to
remove the air content. The pH of the aqueous carboxylate solutions was adjusted to match the
pH of the 0.1 mM dendrimer solution (pH 7.8). The ITC cell was filled with solution A
(1038 μl). The ITC syringe (250 μl) was filled with solution B. The temperature was maintained
at 25°C throughout the experiment. Addition of solution B into solution A was carried out by
injection of 6 μl for each titration increment, giving rise to 42 heat signals.

Baseline Subtraction Blank ITC-titration experiments
The ITC cell was filled with solution A (1038 μl). The ITC syringe (250 μl) was filled with MQ
water, which was carefully degassed by ultra sonification. Addition of MQ water into solution
A was carried out by injection of 6 μl for each titration increment, giving rise to 42 heat signals.

Blank titration of solution B into MQ water was performed by filling the ITC cell with 1038 μl
of degassed MQ water followed by the addition of 250 μl of solution B. 6 μl of solution B was
added for each titration increment, giving rise to 42 heat signals. The same blank titration experi-
ment was conducted with sodium 2-naphthoate as described for sodium 3-hydroxy-2-naphthoate.

Aqueous Carboxylate Complexation by Dendrimer
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Another blank experiment was conducted by addition of water to the dendrimer solution. This
did not result in a significant heat signal and was thus neglected.

Results and Discussion
The complexation of the two carboxylate compounds was studied by means of 1H-NMR- and
ITC-titrations, these two techniques have been applied previously in similar studies.[27–30]
Both analytical techniques showed guest encapsulation in aqueous solution. The dissociation
constants were calculated from the obtained ITC data and a recently used 1H-NMR binding
model was also applied to study the binding strength.[9]

The complex formation of these carboxylates within the dendrimer was elucidated by a
titration series of different concentrations of sodium 3-hydroxy-2-naphthoate and sodium
2-naphthoate incubated with a 1 mM aqueous solution of G4 1-(4-carbomethoxy) pyrrolidone
dendrimer. The dendrimer signals underwent a significant change in chemical shift and line
broadening as a consequence of guest encapsulation, as illustrated in Fig 2. The full titration
series for both carboxylates, where the change in chemical shift for the host and guest mole-
cules are shown, can be found in the supporting information (S4 and S5 Figs).

The inner dendrimer signals, d and e, experience a particularly large shift (0.1 ppm and
0.25 ppm respectively) due to the possible close proximity of the corresponding guest molecule.
At increased guest concentration, the surface protonsm and n also show a change in chemical
shift. This binding mode is most likely caused by a combination of lipophilic and electrostatic
interactions between the carboxylate and the dendrimer. The electrostatic interaction presum-
ably occurs between the negatively charged carboxylate and the partially protonated interior of
the dendrimer, i.e. the tertiary amine focal points.

Job´s method was used to calculate the respective binding stoichiometries,[9] where sodium
2-naphthoate and sodium 3-hydroxy-2-naphthoate were both calculated to form 1:2 dendri-
mer-carboxylate ratios. The Job-plot experiments are shown in the supporting information
(S6 Fig). It should be noted that the maxima calculated from the Job-plots only provide the
stoichiometry that contributes most to the observed chemical shift. The found ratio is thus the
predominant host-guest interaction, even though there might be different guest-host stoichi-
ometries present in low concentrations. Two dimensional NOE experiments were conducted
to obtain a deeper understanding of the binding phenomenon within the dendrimer cavity.
The 3-hydroxy-2-naphthoate interacts with the core and interior branching of the dendrimer,
as can be seen in Fig 3. In particular, the dendrimer proton signal a correlates with the aromatic
guest protons, presumably due to a favorable lipophilic interaction with the butyl core. The
dendrimer surface protonsm and n did not give NOE correlations to the complexed carboxyl-
ate guests, this observation indicates that the binding motif is situated in the interior of the den-
drimer. The full spectra for both carboxylates and a graphic illustration of the presumed
binding site can be found in the supporting information (S7, S8 and S9 Figs).

The association constants and binding enthalpies by complexation of the two carboxylates
within the dendrimer were determined by ITC-experiments. Titration of a 40 mM solution of
the respective carboxylate guest to a 0.1 mM solution of G4 1-(4-carbomethoxy) pyrrolidone
dendrimer in water was performed in order to obtain the titration series (S10 and S11 Figs). A
blank experiment for baseline subtraction was performed by gradual addition of the guest mol-
ecule solution into a dendrimer free aqueous solution (S12 and S13 Figs). Another blank exper-
iment was conducted adding water to a dendrimer solution (S14 Fig). This did not result in a
significant heat signal and was thus neglected in the determination methodology. The best fits
for the binding curves are shown in Fig 4 and Fig 5.

Aqueous Carboxylate Complexation by Dendrimer
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The ITC-results (Table 1) show a difference in binding behavior of the two model guests.
The sodium 2-naphthoate exhibits a weak binding interaction (Ka = 88.2 ± 8.4 M-1) with the
dendrimer, showing a 2:1 stoichiometry. This ratio is in accordance with the determined ratio
from the 1H-NMR Job-plot experiment. In comparison, the sodium 3-hydroxy-2-naphthoate
exhibits a more complex binding interaction. The dendrimer shows a strong binding (Ka1 =
2369 ± 927 M-1) with a ratio of 2:1 carboxylate to dendrimer. Again, this number of strong
bound guest molecules is in accordance with the 1H-NMR determined stoichiometry.

Fig 2. Stacked 1H-NMR spectra of different ratios of 3-hydroxy-2-naphthoate incubated with a 1 mM
G4 1-(4-carbomethoxy) pyrrolidone dendrimer in D2O.

doi:10.1371/journal.pone.0138706.g002

Fig 3. 2D-NOE-spectrum showing a significant correlation between sodium 3-hydroxy-2-naphthoate and the G4 1-(4-carbomethoxypyrrolidone)
PAMAM-dendrimer.

doi:10.1371/journal.pone.0138706.g003
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Additionally to this very strong binding interaction of two guest molecules, presumably at the
lipophilic dendrimer core, an additional weak binding contribution was found during the ITC
studies. Fitting of the heat signal indicated that two guest molecules alone were not the only
contribution to the system; besides these two strongly bound guests, a larger number (app. 40)
of guest molecules showed an additional low affinity binding (Ka2 = 259 ± 101 M-1) to the den-
drimer. This weak binding is visible in the long tailing of the heat signals over a broad range of
high concentration ratios of guest to dendrimer. While the high affinity binding side is quickly

Fig 4. ITC-binding curve of 2-naphthoate, showing the best fit. The ITC raw data was treated by blank
subtraction (titration of guest into water).

doi:10.1371/journal.pone.0138706.g004

Fig 5. ITC-binding curve of 3-hydroxy-2-naphthoate, showing the best fit. The ITC raw data was treated by blank subtraction (titration of guest into
water).

doi:10.1371/journal.pone.0138706.g005
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occupied with 2 guest molecules, the weak binding takes places over a very broad range of con-
centration; and even at a dendrimer to guest ratio of 1:100, the dendrimer binding sites were
not fully occupied, which indicates a very low binding affinity of the second guest molecule.
Due to the low Ka2 value, compared to the Ka1, which is around 10 times stronger, it can be jus-
tified why the 1H-NMR Job plot only resulted in a 1:2 ratio of dendrimer to guest, since the
Job-plot gives an out-read of the most dominant contribution to the system, which is in this
case the strong Ka1. This demonstrated, how important it is to apply multiple analytical tech-
niques to get a full understanding of the binding behavior to a complex system like a dendri-
mer. Due to the more complex binding scenario in the case of the 3-hydroxy-2-naphthoate, the
error bars for the association constants and enthalpies are larger compared to the 2-naphtho-
ate. This is a consequence of the additional equation parameters, which are necessary when
having an additional binding site and thus more variables that need to be fitted (see supporting
information S1 Text and literature reference[26,31] for more details about the ITC equations).

The stronger binding of 3-hydroxy-2-naphthoate compared to 2-naphthoate may be
explained by the higher lipophilicity of 3-hydroxy-2-naphthoate. The carboxylate unit in
3-hydroxy-2-naphthoate is capable of forming an intramolecular hydrogen bond with the adja-
cent hydroxyl group, resulting in a higher degree of negative charge delocalization and thus
decreasing the overall hydrophilicity of the carboxylate. This intramolecular stabilization cor-
relates well to the association of 3-hydroxy-2-naphthoate to the lipophilic interior of the den-
drimer at low guest concentration, as illustrated by the conducted NOE experiments. At higher
carboxylate concentration these preferred binding sites are already occupied, forcing additional
carboxylate guests to associate with the more hydrophilic branches of the outer parts of the
dendrimer.

Recently, we applied a binding model for 1H-NMR titrations in order to determine associa-
tion constants between guest molecules and dendrimers.[9] In this binding model it is assumed
that each dendrimer has a defined number of equal and independent binding sites in order for
the algorithm to be applied to the system. For further information about this correlation of
chemical shifts to the association constant we refer to this previously published study. Due to
the requirement of equal binding sites this model could not be applied to the 3-hydroxy-
2-naphthoate study, since the assumption of equal binding sites is not coherent with the previ-
ously discussed results.

However, the fitting algorithm could successfully be employed for the 2-naphthoate. The
obtained association constant Ka = 5.35±0.7 M-1 (for n = 2 carboxylate molecules) is approxi-
mately in the same order of magnitude as the one determined by the ITC experiment. The best
fit for the titration series is shown in Fig 6. The difference between the determined binding con-
stant by ITC and NMR is most likely due to the assumptions made in the NMRmodel, e.g.
equal contribution for first and second bound guest. In comparison, the ITC measures the
actual heat output of the complexation, which include all contributions, e.g. conformational

Table 1. The association constants obtained from fitting of the ITC-data, along with calculated
enthalpy increases.

3-hydroxy-2-naphthoate 2-naphthoate

Ka1 [M
-1] 2369 ± 927 88.2 ± 8.4

Ka2 [M
-1] 259 ± 101 -

ΔH1 [kJ/mol] -37 ± 8 -18.0 ± 1.7

ΔH2 [kJ/mol] -87 ± 17 -

n1 2 ± 1 2.1 ± 0.2

n2 41 ± 24 -

doi:10.1371/journal.pone.0138706.t001
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changes in the dendrimer structure, replacement of water with guest molecules etc. In contrast
the NMRmodel correlates the chemical shift to a ratio between bound and unbound guest
molecules, it neglects to take into account any structural changes incurred by the dendrimer
during the binding process. Both in the ITC and the NMR study, the 2-naphthoate was found
to exhibit weak binding to the G4 1-(4-carbomethoxy) pyrrolidone dendrimer.

Conclusion
The G4 1-(4-carbomethoxy) pyrrolidone terminated PAMAM-dendrimer was found to form
dendrimer-carboxylate complexes with both of the model compounds, sodium 2-naphthoate
and sodium 3-hydroxy-2-naphthoate, in water. This was elucidated by NMR- and ITC-experi-
ments. Complexation of the guest was found to occur in the interior of the dendrimer, possibly
attributed to favorable lipophilic interactions. A difference in binding stoichiometry and bind-
ing strength was found for the two different model compounds. Both carboxylates had a pri-
mary stoichiometry of two guest molecules per dendrimer, presumably in close proximity to
the dendrimer core. The 3-hydroxy-2-naphthoate derivative was found to associate more
tightly with this binding site than the 2-naphthoate compound. The conducted ITC-experi-
ments suggest an additional weak binding of app. 40 units of 3-hydroxy-2-naphthoate mole-
cules to the interior branching of the G4 1-(4-carbomethoxy) pyrrolidone dendrimer.

These findings illustrate the potential of the G4 1-(4-carbomethoxy) pyrrolidone dendrimer
to complex carboxylate guests and act as a possible nano-carrier of such molecules. Future
studies on the potential of this dendrimer family as hosts for biologically active carboxylates,

Fig 6. The best fit obtained for the 1H-NMR-titration of sodium 2-naphthoate into the PyrG4 dendrimer
in aqueous solution. The calculated binding constant corresponds to Ka = 5.35±0.7 M-1 for n = 2
carboxylates.

doi:10.1371/journal.pone.0138706.g006
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e.g. antibiotic and non-steroidal anti-inflammatory drugs, are currently in progress. This future
work will also focus on the role of the cationand whether it too is complexed within the dendri-
mer cavities. Finally, the release of the bound carboxylate guests is also being investigated. The
1-(4-carbomethoxy) pyrrolidone surface also has synthetic “handles”, which can be utilized to
link targeting units to the dendrimer.

Supporting Information
S1 Fig. The synthesis of a G4 1-(4-carbomethoxy-pyrrolidone) terminated PAMAM-den-
drimer with 64 surface groups.
(TIFF)

S2 Fig. The 1H-NMR Assignment of the G4 1-(4-carbomethoxy-pyrrolidone) terminated
PAMAM-dendrimer with 64 surface groups.
(TIFF)

S3 Fig. The 13C-NMR Assignment of the G4 1-(4-carbomethoxy-pyrrolidone) terminated
PAMAM-dendrimer with 64 surface groups.
(TIFF)

S4 Fig. Stacked 1H-NMR-spectra showing the spectral change upon titration of the G4
4-carbomethoxy pyrrolidone PAMAM-dendrimer with sodium 3-hydroxy-2-naphthoate in
D2O.
(TIFF)

S5 Fig. Stacked 1H-NMR-spectra showing the spectral change upon titration of the G4
4-carbomethoxy pyrrolidone PAMAM-dendrimer with sodium 2-naphthoate in D2O.
(TIF)

S6 Fig. The obtained Job plots for complex formation of sodium 3-hydroxy-2-naphthoate
(left) and sodium 2-naphthoate (right) with the G4 1-(4-carbomethoxy) pyrrolidone den-
drimer in water (D2O).
(TIF)

S7 Fig. 2D-NOE-spectrum showing correlation between sodium 3-hydroxy-2-naphthoate
and the G4 1-(4-carbomethoxypyrrolidone) PAMAM-dendrimer.
(TIF)

S8 Fig. Graphic illustration picturing the assumed binding of the two units of 3-hydroxy-
2-naphthoate within the dendrimer cavity in close proximity to the aliphatic butyl core.
(TIF)

S9 Fig. 2D-NOE-spectrum showing correlation between sodium 3-hydroxy-2-naphthoate
and the G4 1-(4-carbomethoxypyrrolidone) PAMAM-dendrimer.
(TIF)

S10 Fig. ITC-heat signals for titration of sodium 3-hydroxy-2-naphthoate into 0.1 mMG4
4-carbomethoxy pyrrolidone terminated PAMAM-dendrimer.
(TIF)

S11 Fig. ITC-heat spectrum for titration of sodium 2-naphthoate into 0.1 mMG4 4-carbo-
methoxy pyrrolidone terminated PAMAM-dendrimer.
(TIF)
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S12 Fig. ITC-heat spectrum for blank titration of sodium 2-naphthoate into MQ water.
(TIF)

S13 Fig. ITC-heat spectrum for blank titration of sodium 3-hydroxy-2-naphthoate into
MQ water.
(TIF)

S14 Fig. ITC-heat spectrum for blank titration of water into 0.1 mMG4 4-carbomethoxy
pyrrolidone terminated PAMAM-dendrimer.
(TIF)

S1 Text. Experimental details concerning dendrimer synthesis and characterization as well
as further ITC information.
(DOCX)
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