Molecular switches

Nielsen, Mogens Brøndsted

Published in: Handbook of single-molecule electronics

DOI: 10.1201/b18763-9

Publication date: 2016

Document version Publisher's PDF, also known as Version of record

Citation for published version (APA): Nielsen, M. B. (2016). Molecular switches. In K. Moth-Poulsen (Ed.), *Handbook of single-molecule electronics* (pp. 233-261). CRC Press. https://doi.org/10.1201/b18763-9

Handbook of SINGLE-MOLECULE ELECTRONICS

Downloaded by [Copenhagen University - The Royal Library] at 06:47 28 October 2015

Handbook of SINGLE-MOLECULE ELECTRONICS

edited by Kasper Moth-Poulsen CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20150714

International Standard Book Number-13: 978-981-4463-39-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

Pr	eface	?			xiii	
1	Introduction Kasper Moth-Poulsen					
2			tal Techn	-	5	
			th-Poulse	n	_	
			duction		5	
	2.2	-		Techniques	6	
		2.2.1		ical Techniques	7	
				Scanning tunneling microscope	8	
				Atomic force microscope	9	
			2.2.1.3	Mechanically controlled break		
				junction	11	
		2.2.2		brication Methods	13	
			2.2.2.1	Electromigration	13	
			2.2.2.2	Evaporation methods	14	
			2.2.2.3	Direct manipulation methods	15	
			2.2.2.4	Low-dimensional electrode materials	16	
		2.2.3	Self-Ass	sembled Devices	18	
	2.3	Identi	ifying Sin	gle Molecules in Devices	19	
			Statistic		19	
		2.3.2	Single-N	Molecule Signatures	20	
		2.3.3	Possible	e Artifacts	23	
	2.4	Sumn	nary and	Conclusion	24	
3	Basi	c Theo	ry of Elec	tron Transport Through Molecular		
	Con	tacts			31	
	And	ers Ber	gvall, Mik	ael Fogelström, Cecilia Holmqvist,		
	and	Tomas	Löfwand	er		
	3.1 Introduction					

	3.2						
		Dot					
	3.3	1					
		3.3.1 Local Properties	47				
	<u> </u>	3.3.2 Further Optimizations	49				
	3.4						
	~ -	Transport					
	3.5	Molecular Contact between Superconducting Leads	61				
		3.5.1 General Methods	63				
		3.5.2 One-Iteration Approximation	66				
	~	3.5.3 Results	67				
	3.6	Summary	72				
4	Eirct	-Principles Simulations of Electron Transport in					
4		nic-Scale Systems	79				
		mas Frederiksen	75				
		Introduction	79				
		The DFT+NEGF Approach	81				
	4.3 Application: Conductance of a Single C ₆₀ Molecule						
	Junction: Atom-by-Atom Engineering of the Electrode						
	Interface						
	4.4	Electron-Vibration Interactions	85 92				
	4.5	Inelastic Transport with DFT+NEGF	95				
	4.6	Lowest-Order Expansion Approach	98				
	4.7	Application: Inelastic Conductance Signals in Atomic	,0				
	,	Gold Chains	101				
	4.8	Inelastic Effects in Shot Noise	105				
	4.9	Application: Inelastic Shot Noise Signals in a Gold	200				
		Point Contact	107				
	4.10) Summary	110				
5	Con	trolling the Molecule–Electrode Contact in					
	Sing	le-Molecule Devices	117				
	Josh	ua Hihath					
	5.1	Introduction and Background	118				
	5.2 Contact Resistance of Molecular Wires						
	5.3 Molecular Linkers and Contact Geometry 1						

		5.3.1	-	unction Techniques for Single-Molecule		
			Junctior		128	
			Alkaneo		130	
				the Molecule–Electrode Contact	135	
	5.4			ntrol of Molecule–Electrode Coupling	138	
	5.5			ntrol of Molecular Energy Levels	142	
	5.6	Sumn	nary and	Conclusions	145	
6	Vibr	ational	Excitatio	ons in Single-Molecule Junctions	155	
	Joha	innes S	Seldenth	nuis, Herre S. J. van der Zant,		
			M. Thijss	en		
	6.1	5.1 Introduction				
	6.2	Vibra	tional Mo	odes	157	
		6.2.1	Born-O	ppenheimer Approximation	158	
				nic Oscillator	159	
			Morse F		161	
	6.3			n Principle	162	
				n–Phonon Coupling	164	
		6.3.2	Recursi	on Relations	165	
			6.3.2.1	Single harmonic oscillator	165	
				Multiple harmonic oscillators	167	
		6.3.3		cal Evaluation	170	
			6.3.3.1	Example: emission spectrum of		
				Pt(4,6-dFppy)(acac)	170	
	6.4	Vibra	tional Mo	odes in Transport: Weak-Coupling		
		Regin	ne		172	
		6.4.1		Equation	172	
				Transition rates	173	
				Calculating the properties of interest	175	
			6.4.1.3	Numerical evaluation	176	
		6.4.2	Selectio	n Rules	178	
			6.4.2.1	Single-level model	178	
			6.4.2.2	Example: weakly coupled OPV-5		
				junction	180	
	6.5	6.5 Vibrational Modes in Transport: Strong-Coupling				
		Regin			183	
		6.5.1		ilibrium Green's Function Formalism	184	
			6.5.1.1	Second quantization	184	

		6.5.1.2 E	lastic transport	185			
		6.5.1.3 Ir	elastic transport	187			
	6.5.2	Selection	Rules	190			
		6.5.2.1 E	xample: strongly coupled OPE-3				
		ju	inction	190			
	6.5.3	Franck-Co	ondon Factors Revisited	193			
Self-	Assem	bly at Inter	aces	205			
Tina A. Gschneidtner and Kasper Moth-Poulsen							
7.1 Introduction							
7.2	Self-A		-	209			
	7.2.1						
				209			
		-		214			
	7.2.3	0					
		Surface?		217			
	7.2.4	Adsorptio	n Sites on Gold [Au(111)]	219			
7.3	Gold and Other Materials			223			
	7.3.1	5	_				
			•	223			
				225			
		-		226 228			
7.4	Sumn	mmary and Conclusion					
Molecular Switches							
-							
				233			
8.2				234			
				235			
				236			
				236			
				240			
				241			
				242			
8.3	8			245			
				246			
	8.3.2	Dithienyle	thenes	247			
	8.3.3	Dihydroaz		249			
	Tina 7.1 7.2 7.3 7.4 Mol 8.1 8.2	6.5.3 Self-Assemi <i>Tina A. Gscl</i> 7.1 Introd 7.2 Self-A 7.2.1 7.2.2 7.2.3 7.2.4 7.3 Gold a 7.3.1 7.3.2 7.3.3 7.4 Summ Molecular S <i>Mogens Bra</i> 8.1 Introd 8.2 Redox 8.2.1 8.2.2 8.2.3 8.2.4 8.2.3 8.2.4 8.2.5 8.2.6 8.3 Light-	6.5.1.3 In 6.5.2 Selection I 6.5.2.1 E: ju 6.5.3 Franck-Co Self-Assembly at Interf Tina A. Gschneidtner an 7.1 Introduction 7.2 Self-Assembled M 7.2.1 Inter- and between t 7.2.2 Chemisory 7.2.3 How Do M Surface? 7.2.4 Adsorptio 7.3 Gold and Other M 7.3.1 Why is Go Self-Assen 7.3.2 Silicon Sur 7.3.3 Graphene 7.3.3 Graphene 7.3.3 Graphene 7.3.3 Graphene 7.4 Summary and Co Molecular Switches Mogens Brøndsted Niel 8.1 Introduction 8.2 Redox-Controlled 8.2.1 Redox-Act 8.2.2 Hydroquin 8.2.3 Tetrathiaft 8.2.4 Spin-Cross 8.2.5 Bipyridyl- 8.2.6 Mechanica 8.3 Light-Controlled 8.3.1 Diazobenz	 6.5.2 Selection Rules 6.5.2.1 Example: strongly coupled OPE-3 junction 6.5.3 Franck-Condon Factors Revisited Self-Assembly at Interfaces Tina A. Gschneidtner and Kasper Moth-Poulsen 7.1 Introduction 7.2 Self-Assembled Monolayers 7.2.1 Inter- and Intramolecular Interactions between the Molecule and the Surface 7.2.2 Chemisorption vs Physisorption 7.2.3 How Do Molecules Arrange on a Gold Surface? 7.2.4 Adsorption Sites on Gold [Au(111)] 7.3 Gold and Other Materials 7.3.1 Why is Gold the Most Prominent Example for Self-Assembly? 7.3.2 Silicon Surfaces 7.3.3 Graphene for Self-Assembled Electrodes 7.4 Summary and Conclusion Molecular Switches Mogens Brøndsted Nielsen 8.1 Introduction 8.2 Redox-Controlled Switches 8.2.1 Redox-Active Molecules 8.2.2 Hydroquinone–Quinone and OPV Switches 8.2.3 Tetrathiafulvalene and Molecular Cruciforms 8.2.4 Spin-Crossover Metal Complexes 8.2.5 Bipyridyl-OPE Switch 8.2.6 Mechanically Interlocked Molecules 			

	8.4	Coordination-Induced Switches				
	8.5					
	8.6	Concl	uding Remarks	255		
9	Swit	tching I	Mechanisms in Molecular Switches	263		
	And	rey Dar	nilov and Sergey Kubatkin			
			luction	264		
	9.2		hing Behavior: Stochastic or Deterministic?	265		
	9.3		Bianthrone Switch			
		9.3.1	Experimental Data	267		
		9.3.2	General Model for Switching	268		
		9.3.3	Data Analysis	272		
	9.4	C ₆₀ Ju	nction	275		
		9.4.1	Experimental Data	275		
		9.4.2	Switching Rates: Forward Switching	277		
		9.4.3	Switching Rates: Reverse Switching	279		
		9.4.4	Potential Landscape and On-Off Hysteresis	280		
		9.4.5	What are the On and Off states?	282		
		9.4.6	Switching by Tunneling: Approaching the			
			Classical Limit	284		
	9.5	Switc	hing Behavior of OPV3 Junction	285		
		9.5.1	Experimental Data	285		
		9.5.2	Data Analysis	286		
		9.5.3	The On and Off States of the OPV3 Junction	290		
	9.6	Sumn	nary	291		
10	Th	ermoel	ectricity in Molecular Junctions	299		
	Shi	ubhadit	tya Majumdar, Won Ho Jeong, Pramod S. Reddy,			
	an	d Jonat	han A. Malen			
	10	.1 Int	roduction	299		
	10	.2 Ele	ctronic Conductance	304		
	10	10.3 Thermal Conductance				
	10.4 Molecular Junctions		307			
		10.	4.1 Thermoelectricity	309		
	10	.5 Tra	insmission Functions and ZT	311		
		10.	5.1 Electronic Transmission Functions	311		
	10.5.2 Phonon Transmission Functions					

x Contents

		10.5.3	Computational Studies of Thermal	
			Transport in Molecular Junctions	316
		10.5.4	ZT and Thermoelectric Efficiency	317
	10.6	Experi	mental Techniques for Probing Transport	
		-	ties of Molecular Junctions	319
		10.6.1	-	
			Junction	319
		10.6.2	Scanning Tunneling Microscope Break	
			Junction (STM-BJ) Technique	320
		10.6.3	Contact Probe Atomic Force Microscope	
			Technique	328
	10.7	Experi	mental Techniques for Probing the Heat	
		Dissipa	ition and Heat Transport Properties of	
		Single-	Molecule Junctions	330
	10.8	Summa	ary	331
11	Interf	erence E	ffects in Single-Molecule Transport	341
	Gemn	na C. Sol	omon	
	11.1	Introdu	iction	341
			terference?	343
	11.3	Interes	t in Interference Effects	346
	11.4	Signatı	ares of Interference	348
			In a Model-System Calculation	348
			In a More Realistic Calculation	348
			In Experimental Measurements	351
	11.5		of Chemical Systems	355
			Predicting Interference Effects	355
	11.6		s Interfering with What?	359
	11.7	. ,	Can We Use Interference Effects?	361
			Switching	361
			Chemical Control	363
	11.8	Conclu	sion	364
12			ssembly Strategies toward Multiple	
	-		le Electronic Devices	371
		-	ard and Titoo Jain	_
	12.1	Introdu		372
		12.1.1	Self-Assembly of Nanomaterials	373

	12.2	Self-Assembly on Surfaces	374
		12.2.1 Self-Assembly at the Air–Water Interface	377
	12.3	Solution Assembly of Molecular Nanogaps	380
	12.4	Conclusion	389
13	Towa	rd Circuit Design in Single-Molecule Electronics	397
	Jaap	Hoekstra	
	13.1	Tunneling, Coulomb Blockade, and Addition Energy	398
	13.2	Island Excited by an Ideal Current Source and Zero	
		Tunneling Time	402
	13.3	Island Excited by an Ideal Voltage Source and Zero	
		Tunneling Time	404
	13.4	Single-Electron Tunneling Transistor	407
	13.5	Including Nonzero Tunneling Times	412
	13.6	Circuit Perspectives	416
	13.7	Summary	417
Ind	lex		423

Downloaded by [Copenhagen University - The Royal Library] at 06:47 28 October 2015

Preface

Since the first visionary publications about the concepts of singlemolecule electronics came out about 40 years ago, the research field has evolved into a truly interdisciplinary effort attracting contributors from various disciplines such as synthetic chemistry, theoretical chemistry and physics, experimental physics, and electronic engineering. Although great progress in both experimental realizations and theoretical understanding of single-molecule devices has been made, making it possible (to some extent) to predict and design molecular electronic components with tailored properties is still a challenge and still many steps are to be taken to overcome them before we will see widespread use of computing devices based on single molecules.

The aim of this book is to introduce a new generation of scientists to the fascinating research field of single-molecule electronics. The book consists of an introduction plus 12 chapters seeking to give a balanced view of the research field as it is seen through the eyes of experts coming from different areas of research-from synthetic chemistry, through modeling to experimental approaches and systems view. Needles to say, this book could not have come about without the contributions of the authors, and I would like to take this opportunity to thank specifically Anders Bergvall, Andrey Danilov, Mikael Fogelström, Thomas Frederiksen, Tina A. Gschneidtner, Joshua Hihath, Jaap Hoekstra, Cecilia Holmqvist, Won H. Jeong, Tomas Löfwander, Titoo Jain, Sergey Kubatkin, Shubhaditya Majumdar, Jonathan A. Malen, Mogens B. Nielsen, Kasper Nørgaard, Pramod S. Reddy, Jos S. Seldenthuis, Gemma C. Solomon, Jos M. Thijssen, and Herre S. J. van der Zant. I would also like to thank Pan Stanford Publishing for this opportunity, my collaborators and coworkers at Chalmers University of Technology and abroad, and all

scientists who have and are currently contributing to bring singlemolecule electronics research forward by creating a stimulating and creative world community. Finally, I would like to thank my family for their love and support.

This is the beginning!

Kasper Moth-Poulsen

Chalmers University of Technology Sweden Summer 2015