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RESEARCH ARTICLE

SSEA-4 and YKL-40 Positive Progenitor
Subtypes in the Subventricular Zone

of Developing Human Neocortex

Christian B. Brøchner and Kjeld Møllgård

The glycosphingolipid SSEA-4 and the glycoprotein YKL-40 have both been associated with human embryonic and neural
stem cell differentiation. We investigated the distribution of SSEA-4 and YKL-40 positive cells in proliferative zones of human
fetal forebrain using immunohistochemistry and double-labeling immunofluorescence. A few small rounded SSEA-4 and YKL-
40 labeled cells were present in the radial glial BLBP positive proliferative zones adjacent to the lateral ganglionic eminence
from 12th week post conception. With increasing age, a similarly stained cell population appeared more widespread in the
subventricular zone. At midgestation, the entire subventricular zone showed patches of SSEA-4, YKL-40, and BLBP positive
cells. Co-labeling with markers for radial glial cells (RGCs) and neuronal, glial, and microglial markers tested the lineage iden-
tity of this subpopulation of radial glial descendants. Adjacent to the ventricular zone, a minor fraction showed overlap with
GFAP but not with nestin, Olig2, NG2, or S100. No co-localization was found with neuronal markers NeuN, calbindin, DCX or
with markers for microglial cells (Iba-1, CD68). Moreover, the SSEA-4 and YKL-40 positive cell population in subventricular
zone was largely devoid of Tbr2, a marker for intermediate neuronal progenitor cells descending from RGCs. YKL-40 has
recently been found in astrocytes in the neuron-free fimbria, and both SSEA-4 and YKL-40 are present in malignant astroglial
brain tumors. We suggest that the population of cells characterized by immunohistochemical combination of antibodies
against SSEA-4 and YKL-40 and devoid of neuronal and microglial markers represent a yet unexplored astrogenic lineage
illustrating the complexity of astroglial development.

GLIA 2016;64:90–104
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Introduction

The human cerebral cortex is generally considered the

most complex structure of the human body. The cortical

expansion and the enlarged surface area following the highly

organized folding into gyri and sulci (cf. Sun and Hevner,

2014), enable extraordinary human cognitive abilities.

Although the human brain is not the largest and not the

most convoluted brain in the animal kingdom, it has the

largest number of neurons. A detailed characterization of the

human embryonic and fetal proliferative ventricular and sub-

ventricular zones during corticogenesis may aid in defining

the properties of human cortical development. The neural

progenitor cells underlying the cortical expansion comprise

initially neuroepithelial cells, which transform into radial

glial cells (RGCs) at the onset of neurogenesis (G€otz and

Huttner, 2005; Kriegstein and Alvarez-Buylla, 2009). These

neural progenitors, often referred to as neural stem cells

(NSCs) (Kriegstein and Alvarez-Buylla, 2009), give rise to

the enormous diversity of neurons and glial cells in the cere-

bral cortex.

A thorough analysis of the developing monkey cortex

showed that the subventricular zone (SVZ) can be further

subdivided into an inner SVZ (ISVZ) and outer SVZ

(OSVZ) by an inner fibrous layer (Smart et al., 2002). The

seminal work of these authors also demonstrated a striking

rostral to caudal gradient in differentiation of the cytoarchi-

tectonic compartments of the primate subventricular zone

from frontal to occipital cortices (see Discussion). The neo-

cortical SVZ expands even more in the human developing

brain (Bayatti et al., 2008; Zecevic et al., 2005), but to a
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lesser extent in rodents and ferrets (Fietz et al., 2010; Lui

et al., 2011; Reillo et al., 2011). At the cellular level recent evi-

dence has shown intermediate progenitor cells (IPCs) and outer

radial glial cells (ORGs) in both compartments (Betizeau et al.,

2013; Fietz et al., 2010; Hansen et al., 2010; Reillo et al.,

2011). They share the expression of classical ventricular RG

(VRG) cell markers such as brain lipid-binding protein

(BLBP), glial fibrillary acidic protein (GFAP), vimentin, PAX6,

and SOX2, but not IPC markers such as Tbr2 (Fietz et al.,

2010; Fietz and Huttner, 2011; Hansen et al., 2010; Reillo

et al., 2011). The diversification of RGC progeny in both spa-

tial and temporal aspects is a matter of intense research, and

evidence from human and rodent studies point toward distinct

subpopulations of RGCs that may be purely gliogenic, purely

neurogenic or multipotent (Hartfuss et al., 2001; Howard

et al., 2006; Li et al., 2004; Pinto et al., 2008).

The globoseries glycosphingolipid stage-specific embry-

onic antigen 4 (SSEA-4) is widely used in characterization of

human embryonic stem cell (hESC) lines (Adewumi et al.,

2007), and has been shown in a population of differentiating

cells in an intermediate stage between pluripotent hESCs and

neural progenitor cells (Noisa et al., 2012). In a previous

study of human embryonic central nervous system, SSEA-4

was found in neural progenitor cells in forebrains of human

embryos and early fetuses (Barraud et al., 2007). In spontane-

ously differentiating hESCs, the highly conserved and secreted

glycoprotein YKL-40 (Bussink et al., 2007), also known as

chitinase 3-like 1 (CHI3L1) was shown to be upregulated

when undifferentiated ESCs differentiated, with particular

expression in neuroectodermal cells (Brøchner et al., 2012).

In the developing human forebrain, YKL-40 has recently

been associated with brain barrier sites such as the radial glial

end feet layer at the subpial marginal zone, pericytes of the

intermediate and subventricular zones and in the choroid

plexus (CHP) epithelium of the lateral ventricles. Further-

more, intriguing small rounded YKL-40 positive cells in close

relation to and occasionally overlapping with GFAP-positive

radial glial fibers in the SVZ was identified (Bjørnbak et al.,

2014). The overall distribution of YKL-40 in the developing

human forebrain was noted to be very similar to a study of

SSEA-4 based on the same material collection (Barraud et al.,

2007). A wide array of studies have shown overexpression of

YKL-40 in many and diverse pathological conditions. YKL-

40 is overexpressed in glioblastoma multiforme compared to

normal tissue, low-grade gliomas (Nigro et al., 2005; Rous-

seau et al., 2006; Tanwar et al., 2002) and high-grade oligo-

dendrogliomas (Nutt et al., 2005; Rousseau et al., 2006).

Furthermore, high YKL-40 expression in glioblastomas is an

independent negative prognostic factor (Iwamoto and Hor-

migo, 2014; Nigro et al., 2005; Pelloski et al., 2005). Many

neurological and neurodevelopmental diseases are associated

with YKL-40 (Bonneh-Barkay et al., 2010; Craig-Schapiro

et al., 2010), however, as to how YKL-40 mediates its biolog-

ical effects and its role in normal human developmental biol-

ogy still lacks some clarification.

In this study, we aimed to investigate the recently

described neural progenitor cell marker SSEA-4 in relation to

the newly discovered YKL-40 positive cell population in the

SVZ of developing human forebrain, and examine its proposed

astrogenic lineage potential. To this end, we studied human

forebrain samples from human embryos and fetuses (8th–21st

weeks post conception) by immunohistochemistry and confocal

microscopy, with antibodies against SSEA-4, YKL-40, and

against specific cell types known to reside within the develop-

ing human forebrain, for example, RGCs, IPCs, neurons,

interneurons, and glial cells including microglial cells.

Materials and Methods

Tissue Samples
Forebrains from one late human embryo, 31 mm crown-rump

length (CRL) and 12 fetuses (38–200 mm CRL) corresponding to

8th–21st weeks post conception (wpc) were examined. The embryo

and fetuses were obtained from legal abortions. According to the

Helsinki declaration II oral and written information was given and

informed consent was obtained from all contributing women,

according to and approved by the Research Ethics Committee of the

Capital Region (KF–V.100.1735/90). Immediately following opera-

tion, the samples were dissected into blocks and fixed for 12–24 h at

48C in either 10% neutral buffered formalin, 4% Formol-Calcium,

Lillie’s or Bouin’s fixatives. The specimens were dehydrated with

graded alcohols, cleared in xylene and paraffin embedded. Serial sec-

tions, 3–10 mm thick, were cut in transverse, sagittal, or horizontal

planes, placed on silanized glass slides, and used for single and dou-

ble immunohistochemical experiments.

Immunohistochemistry
For bright field light microscopy analysis, sections were deparaffinized

and rehydrated in xylene following standard protocols. Endogenous

peroxidase was quenched using a 0.5% solution of hydrogen peroxide

in methanol for 15 min. Following rinses with TRIS buffered saline

(TBS, 5 mM Tris-HCl, 146 mM NaCl, pH 7.6), nonspecific binding

was inhibited by incubation for 30 min with blocking buffer (Chem-

Mate antibody diluent S2022, DakoCytomation, Glostrup, Denmark)

or 0.2% casein (Sigma, C-7078) at room temperature. The sections

were incubated overnight at 48C with primary antibodies diluted in

blocking buffer and washed with TBS. The REAL EnVision Detec-

tion System (Peroxidase/DAB1 rabbit/mouse, code K5007, DakoCy-

tomation, Glostrup, Denmark) was used for detecting mouse and

rabbit primaries. The sections were washed with TBS, followed by

incubation for 10 min with 3,30-diamino-benzidine chromogen solu-

tion. Positive staining was recognized as a brown color. The sections

were counterstained with Mayers hematoxylin and dehydrated in

graded alcohols followed by xylene and coverslipped with DPX

mounting media. For immunofluorescence, sections were prepared as

for bright field light microscopy including incubation of the first
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primary antibody overnight at 48C. Sections were then incubated for

30 min at room temperature with Labeled Polymer –HRP anti-mouse

(DakoCytomation, EnVisionTM1 System/HRP K4007) followed by

Tyramid Signal Amplification (TSA) with Alexa Fluor 488 Tyramide

(Invitrogen, Molecular Probes, T20912) for 7 min at room tempera-

ture. Subsequently, the sections were incubated for 30 min at room

temperature with biotin-SP-conjugated F(ab’)2 fragment donkey anti-

rabbit antibodies (Jackson ImmunoResearch, 711-066-152, 1:200) fol-

lowed by streptavidin-conjugated DyLight 594 (Vector Laboratories,

SA5594, 1:200). Finally, a nuclear counterstain with DAPI (40,6-dia-

midino-2-phenylindole, Invitrogen, Molecular Probes, D1306,

1:1,000) was added for 3 min, before sections were coverslipped. For

double labeling of YKL-40 and SSEA-4, nonspecific binding was

inhibited by incubation in blocking reagent (Invitrogen, Molecular

Probes, T20912) for 1 h at room temperature. The sections were then

incubated with YKL-40 diluted in blocking reagent for 48 h at 48C

and washed with TBS. Following this, the secondary antibody was

added (Jackson biotin anti-rabbit 1:100), then HRP-conjugated strep-

tavidin (Perkin Elmer, NEL 700, 711-066-152, 1:100) followed by

Tyramid Signal Amplification for 10 min at room temperature.

Endogenous peroxidase was quenched with hydrogen peroxide for 30

min prior to the second primary antibody, SSEA-4, overnight at 48C

followed by Labeled Polymer –HRP anti-mouse (DakoCytomation,

EnVisionTM1 System/HRP K4007) followed by Tyramid Signal

Amplification (TSA) with Dylight 594 for 7 min at room

temperature.

Monoclonal antibodies against YKL-40 and SSEA-4 were used

for identification and characterization of the cell population in ques-

tion; a polyclonal anti-YKL-40/anti-CHI3L1 antibody was used for

double labeling with SSEA-4. RGCs were labeled with GFAP, nestin

and BLBP antibodies. IPCs, neurons, and interneurons were identi-

fied using antibodies against Tbr2, the neuronal-specific NeuN and

doublecortin (DCX) and the calcium-binding protein calbindin,

respectively. Glial cells were labeled with GFAP, S100, Olig2, and

the proteoglycan NG2 antibodies, and microglial cells were distin-

guished with antibodies against Iba1 and CD68. Details of the pri-

mary antibodies including dilutions and suppliers are listed in Table

1. Staining specificity of YKL-40 was tested on the same material in

a recent study (see Fig. 1 in Bjørnbak et al., 2014), and further con-

trols were performed by omitting primary antibodies. For laser scan-

ning confocal microscopy a Carl Zeiss LSM 780 was used. During

image acquisition, a sequential scan procedure through the z-axis of

the double-labeled sections was performed when appropriate, cover-

ing in total 9–11 mm in depth. Confocal images were acquired and

analyzed, and individual optical sections were stored as TIFF files

using Zeiss ZEN Vision v10. Representative images for figure edit-

ing were chosen from the analyzed samples and processed in Adobe

Photoshop CS6.

Cell Counts/Quantification and Qualification
A total of 16 different sections from occipital cortices of 21 wpc

fetuses were doublelabeled with fluorophore-labeled antibodies

against SSEA-4 or YKL-40 and BLBP or Tbr2, respectively, and

used for counting total and labeled cells of the subventricular zone

from occipital cortex. The images were captured with a Carl Zeiss

LSM 780 confocal microscope with a 203 objective and imported

into the open source software Fiji. The Cell Counter plugin was

used for counting SSEA-4 and YKL-40 immunopositive cells out of

total number of nuclear counterstained DAPI-positive cells, BLBP-

immunoreactive cells in relation to doublelabeled BLBP and SSEA-4

or YKL-40 immunopositive cells and the number of YKL-40 or

SSEA-4 positive cells that were also Tbr2-immunolabeled. The dif-

ferent proportions were then calculated.

Results

The characterization of the recently described YKL-40 posi-

tive cell population within the SVZ of developing human

forebrain was based on immunohistochemistry and confocal

microscopy. We used antibodies against known cell types,

which have been associated with the SVZ, such as RGCs

(BLBP, GFAP, nestin), IPCs (Tbr2), neurons and migrating

interneurons and neurons (DCX, calbindin, NeuN), glial cells

(GFAP, S100, NG2, Olig2), and microglial cells (CD68,

Iba1). By immunostaining and doublelabeling adjacent sec-

tions with antibodies against SSEA-4 and YKL-40 we investi-

gated the apparently similar distribution of YKL-40 and

SSEA-4 in the developing human forebrain, supplied by

counting SSEA-4 and YKL-40 immunolabeled cells in adja-

cent sections.

The choroid plexus showed a uniform strong SSEA-4

reactivity toward the end of 8th wpc and the subpial layer of

radial glial end feet was clearly immunoreactive with the

strongest reactivity corresponding to the outer surface of the

hippocampal anlage and the lateral part of the dorsolateral wall

(Fig. 1). Leptomeningeal cells in the pia-arachnoid and many

of the small vessels in the meninges also showed a strong

SSEA-4 immunostaining. These brain barrier-related recently

published findings (Brøchner et al., 2015) will not be dealt

with here where the focus is on the subpopulation of SSEA-4

and YKL-40 positive cells in SVZ. No positive staining reac-

tions were seen corresponding to the ganglionic eminence, the

antihem or the early developing subventricular zone (SVZ).

The first indication of cell bodies immunoreactive for SSEA-4

and YKL-40 were found in the antihem adjacent to the lateral

ganglionic eminence in 12th wpc fetuses. At 15th wpc there

was a pronounced reactivity in the antihem (Fig. 2) but scat-

tered positive cells particularly in more rostral parts of the SVZ

were also observed. The SSEA-4 and YKL-40 positive cell pop-

ulations in the antihem were not stained with markers for

NG2 or calbindin (Fig. 2). Immunoreactivity for the inter-

neuron marker calbindin was particularly prominent in the lat-

eral ganglionic eminence (LGE) adjacent to the antihem,

whereas BLBP staining was characteristic for RGCs. Many of

the small SSEA-4 positive cells in the intermediate zone (IZ)

were pericytes and thus not a part of the proposed astrogenic

subpopulation. The entire end feet layer which was strongly
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SSEA-4 and BLBP positive was indicative of all RGCs, which

terminate at the subpial basement membrane, and therefore

not specifically associated with any subgroup of RGCs (not

shown).

Through thorough examination of embryos and fetuses

up until midgestation, it was evident that the population of

cells in question was most prominent at later stages. To avoid

the major interneuron-producing parts of the SVZ—the gan-

glionic eminences—we chose to focus our investigations from

this point onward to midterm occipital cortices, also a major

focus for many developmental studies (see e.g., Smart et al.,

2002). In a 21st wpc fetus, the YKL-40 positive cells were dis-

tributed within the inner subventricular zone, and few had

migrated through the inner fibrous layer to the outer subven-

tricular zone (Fig. 3). No reactivity was seen in corresponding

cells in intermediate zone or cortical plate, apart from pericytic

reactivity. The many unstained cells in the SVZ probably

belonged to groups of other progenitor cells, interneurons or

microglia, harbored in the subventricular zone.

Several previous studies have shown that no antibody

specifically labels all RGCs throughout development (Noctor

et al., 2002; Pinto and G€otz, 2007). The population is very

heterogeneous, and may change expression profile in a spatio-

temporal manner. To further characterize the cell population,

we used the radial glial cell marker BLBP double labeled with

SSEA-4 or YKL-40. In all midterm cases investigated, there

was no ventricular SSEA-4 or YKL-40 immunoreactivity (Fig.

4). Both SSEA-4 and YKL-40 positive cells were present in

the SVZ often distributed in small clusters along with or in

close vicinity to radial glial cell fibers, rendering the impres-

sion that they were migrating along these fibers. The distribu-

tion of SSEA-4 and YKL-40 positive cells was strikingly

similar. Some cells in the innermost part of the SVZ seemed

to be only BLBP-positive and others seemingly only SSEA-4

TABLE 1: List of Primary Antibodies

Primary antibodies Host IgG Dilution HIER Producer Code number

Stem Cells and Progenitors

BLBP Rabbit IgG 1:4,000 – Millipore ABN14

Nestin Rabbit IgG 1:1,500 – Millipore A5922

GFAP Rabbit IgG 1:1,000 – Dako Z0334

GFAP Rabbit IgG 1:2,000 – Abcam Ab7260

Tbr2 Rabbit IgG 1:200 – Millipore AB2283

Neurons and interneurons

NeuN Mouse IgG1 1:500 TEG, pH9 Millipore MAB377

Calbindin Rabbit IgG 1:400 Citrate, pH6 Abcam ab25085

DCX Rabbit IgG 1:3,000 – Cell signaling 4604

Glial cells

NG2 Rabbit IgG 1:200 – Millipore AB5320

S100 Rabbit IgG 1:800 Citrate, pH6 Dako Z0311

Olig2 Rabbit IgG 1:500 Citrate, pH6 Abcam ab81093

Microglial cells

CD68 Mouse IgG1 1:400 – Dako M0814

Iba1 Rabbit IgG 1:250 – Wako 019-19741

Other

SSEA-4 Mouse IgG3 1:50/1:100 – Millipore MAB4304

YKL-40 Mouse IgG2kb 1:50/1:100 – * 201.F9

CHI3L1 Rabbit IgG 1:10 – Proteintech 12036-1-AP

HIER: Heat Induced Epitope Retrival. TEG: TRIS 1 ethylene glycol tetraacetic acid buffer. Producers: Abcam, Cambridge, United King-
dom. Cell Signaling, Danvers, MA. Dako, Glostrup, Denmark. Millipore, Merck Life Science, Hellerup, Denmark. Proteintech, Manchester,
United Kingdom. Wako, Richmond, VA. *Kind gift from Prof. Paul A. Price, UCSD.
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or YKL-40-positive. A proportion of BLBP immunoreactive

cells co-localized with SSEA-4 or YKL-40 immunopositive

cells (ranging from 11.6 to 49.6%, averaging 30.8%) and the

co-localization of SSEA-4 and BLBP was accordingly similar

to that of YKL-40 and BLBP (Fig. 4). The proportion of

SSEA-4 or YKL-40 positive cells that were not BLBP positive

out of all SSEA-4 or YKL-40 labeled cells were ranging from

36.3 to 93.2%, averaging 61.1%.

To examine the distribution in the SVZ of SSEA-4 and

YKL-40 immunoreactive cells, sections were counted with

respect to either SSEA-4 or YKL-40 and DAPI as a denomina-

tor of all cell nuclei or total cells. Within the given area of

occipital cortex at 21 wpc, the proportions were strikingly sim-

ilar with an average of 11.99% of YKL-40 immunopositive

cells out of all nuclei compared to an average of 10.68% of

SSEA-4 immunopositive cells out of all nuclei (Fig. 5). Using

a different, polyclonal antibody against YKL-40/CHI3L1 we

performed double immunolabeling of the same occipital corti-

cal area of a 21st wpc fetus, and found co-localization of

SSEA-4 and YKL-40 in the SVZ cell population (Fig. 6).

The previously briefly described relation between this

YKL-40 positive population and GFAP (Bjørnbak et al.,

2014) led us to a closer examination of GFAP and YKL-40.

It has been stated, that only a fraction of RGCs express

GFAP in humans (and none in mice during development). In

occipital cortex, in a 21st wpc fetus, GFAP positive processes

from RGCs were situated apically, as a ventricular surface lin-

ing much like BLBP (Fig. 7). In contrast, however, hardly

any cells were coexpressing GFAP and YKL-40, and when

they did the cells were situated in the apical part of the inner

subventricular zone.

In an attempt to narrow down the lineage of these

SSEA-4/YKL-40 and BLBP positive cells, we used antibodies

against astrocytes (S100) and the pan-neuronal marker

NeuN. IPCs were examined with Tbr2 (Fig. 8). The S100

positive astrocytes were scattered through the entire cortical

wall although somewhat more abundant in the lower cortical

plate/upper subplate and in the inner subventricular zone.

The density and distribution of the S100 positive cells were

clearly different from those of YKL-40 stained cells. Double

immunolabeling of NeuN together with YKL-40 demon-

strated a lack of colocalization in the SVZ and in the cortical

plate. To elucidate whether the cell population was related to

IPCs, we used the IPC-marker Tbr2, and double-labeled

sections for SSEA-4 and YKL-40 with Tbr2, respectively. In

general the Tbr2 immunoreactive cells were not SSEA-4 or

YKL-40 positive. However, in a very few cases, SSEA-4 and

YKL-40 did evidently co-localize with Tbr2. In four counted

sections of 21st wpc occipital cortex, we found 171 SSEA-4

or YKL-40 positive cells and only 13 of these were co-labeled

with Tbr2. These cells might be involved in the transition

from newborn IPC to fully mature IPC in the subventricular

zone. SSEA-4 and YKL-40 positive cells possessed a basal

process, and we noted that most cells appeared to migrate in

the same radial direction, though a minor fraction appeared

to be migrating tangentially. Apart from their role in phago-

cytosis, microglial cells also function as important modulators

of neurogenesis (Cunningham et al., 2013). As expected,

abundant CD68 and Iba1 positive cells were found in the

SVZ. We showed, however, that Iba1 positive cells did not

co-localize with YKL-40 in the proliferative subventricular

zone (Fig. 8).

Finally we performed double immunolabeling and com-

pared the distribution of the co-localized SSEA-4 and YKL-

40 immunoreactive cell population in basal VZ and SVZ

with cell populations immunostained for the progenitor

marker nestin, the oligodendrocyte progenitor marker Olig2

and the marker for migrating neuronal precursors DCX.

These markers have all been described in human midgesta-

tion ventricular and subventricular zones (e.g., Messam et al.,

2002; Jakovcevski and Zecevic, 2005a,b; Meyer et al., 2002).

Most of the VZ cells but very few cells in ISVZ at midgesta-

tion of occipital cortex showed immunoreactivity for nestin

FIGURE 1: Distribution of SSEA-4 immunoreactivity in a coronal
section of developing forebrain at the level of foramen interven-
triculare (FI) from a late 8th wpc human embryo (CRL: 31 mm).
Note the reactivity of leptomeninges and in particular the cho-
roid plexus (CHP) epithelium compared with that of the telence-
phalic wall. Immunoreactivity was absent from the ganglionic
eminence (GE), antihem (AH) and ventricular zone at this stage.
A strikingly similar pattern of YKL-40 immunoreactivity in a paral-
lel section from the same embryo has recently been demon-
strated (Fig.2B in Bjørnbak et al. 2014). Abbreviations: AH:
antihem; CHP: choroid plexus; CP: cortical plate; FI: foramen
interventriculare; GE: ganglionic eminence; HA: hippocampal
anlage; H: hem; IZ: intermediate zone; LV: lateral ventricle; VZ:
ventricular zone; 3V: third ventricle. Scale bar: 1,000 mm. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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in marked contrast to the abundant SSEA-4 immunopositive

cells in ISVZ and lack of SSEA-4 staining in the VZ (Fig.

9A). Olig2 and YKL-40 immunoreactivity in midgestation

parietal cortex showed a pattern of distribution similar to

that of nestin and SSEA-4 double immunolabeling. Very few

cell bodies in the outer VZ were positively stained for YKL-

40 and the merged images showed no overlap (Fig. 9B).

Double immunolabeling of medial temporal cortex with anti-

bodies against DCX and SSEA-4 demonstrated many SSEA-

4 immunopositive cell bodies in ISVZ and many DCX posi-

tive fibers in both VZ and ISVZ but without overlap in

merged images (Fig. 9C). Nestin, Olig2 and DCX positive

cells were as expected present in many developmental regions

where we found no trace of SSEA-4/YKL-40 reactivity.

Discussion

So far YKL-40 has been associated with various pathological

conditions and promoted as a factor with profound implica-

tions for both diagnostic and therapeutic applications (Prakash

et al., 2013), whereas the general role of YKL-40 in develop-

mental biology has been largely ignored with a few exceptions

(Brøchner et al., 2012; Johansen et al., 2007). A very recent

investigation of YKL-40 in the developing human forebrain

showed marked YKL-40 immunoreactivity in neuroepithelial

cells, radial glial end feet, leptomeninges and choroid plexus

epithelial cells in early stages of development. Later develop-

mental features included strong YKL-40 immunoreactivity in

astrocyte-resembling cells in the developing hippocampus, and

a so far unknown population of small rounded YKL-40

FIGURE 2: SSEA-4 (A), NG2 (B), BLBP (C), YKL-40 (D), and calbindin (E) immunoreactivity in coronal sections of frontal cortex from a
15th wpc human fetus (CRL: 111 mm). A distinct population of small rounded cells in the antihem (AH) is stained for SSEA-4 (A) and
YKL-40 (D). NG2 positive cells are not associated with the proliferative zones but predominantly found in the lower part of the subplate
(SP) indicated by arrows in (B). Immunoreactivity for the interneuron marker calbindin is particularly prominent in the lateral ganglionic
eminence (LGE) adjacent to the antihem, whereas BLBP staining is characteristic for all RGCs (C). Many of the small SSEA-4 positive cells
in the intermediate zone (IZ) in (A) are pericytes and thus not a part of the proposed astrogenic subpopulation, and the entire end feet
layer (EFL) which is also strongly SSEA-4 positive and BLBP positive (not shown) is indicative of all RGCs which terminate at the subpial
basement membrane and therefore not specifically associated with the astrogenic subpopulation. Abbreviations: AH: antihem; CP: corti-
cal plate; EFL: end feet layer; LGE: lateral ganglionic eminence; IZ: intermediate zone; SP: subplate. Scale bar: 500 mm. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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positive cells in close relation to and occasionally overlapping

with GFAP-positive radial glial fibers in the SVZ at midgesta-

tion (Bjørnbak et al., 2014). In an earlier study partly based

on the same material, SSEA-4 was depicted as a marker for

some NSCs and showed immunoreactivity very similar to

YKL-40 in the early human forebrain (Barraud et al., 2007).

Furthermore SSEA-4 has been proposed as a potential thera-

peutic target in glioblastoma multiforme (Lou et al., 2014),

much in the same way as YKL-40 has. An important part of

the present study is a novel characterization of SSEA-4 in the

late embryonic human forebrain where we found a marked

SSEA-4 immunoreactivity in radial glial end feet, leptomenin-

ges, and choroid plexus epithelial cells in early stages of devel-

opment. Later developmental features included a population of

small rounded SSEA-4 positive cells, first in the antihem and

later scattered in different parts of the SVZ, with the same spa-

tiotemporal distribution as the YKL-40 positive cells.

RGCs show a characteristic apicobasal polarity, with an

apical process lining the ventricle and a basal process span-

ning the neuroepithelium and anchoring at the pial border.

The cell bodies occupy the ventricular zone (VZ), and

through rounds of asymmetric divisions, they give rise to

IPCs, which in turn produce two post-mitotic neurons or in

some cases an additional pair of progenitors (Englund et al.,

2005; Moln�ar et al., 2014; Noctor et al., 2004; Pontious

et al., 2008; Vasistha et al., 2014).

The IPCs create the second proliferative layer just basal

to the VZ, namely the subventricular zone (SVZ) (Bystron

et al., 2008; Møllgård and Jacobsen, 1984), which subdivides

into an inner and outer subventricular zone, separated by a

fibrous layer (Bayatti et al., 2008; Smart et al., 2002; Zecevic

et al., 2005) as mentioned in the Introduction. Based on coro-

nal and sagittal sections through the developing monkey neo-

cortex Smart et al. (2002) clearly distinguished between

FIGURE 3: YKL-40 immunoreactivity in a coronal section of visual cortex from a 21st wpc fetus (CRL: 200 mm). A low power overview is
shown in (A) where the calcarine sulcus (CS) is indicated with an arrow. The boxed area is shown in higher magnification in (B) which pro-
vides an overview of the distribution of the YKL-40 positive cells in the inner and outer subventricular zones separated by the inner fibrous
layer with migrating positive cells. The boxed area in (B) is shown in higher magnification in (C) where it is obvious that the YKL-40-
immunoreactive population is not present in the ventricular zone whereas immunostained cells occupy a substantial part of the inner subven-
tricular zone of the visual cortex. The many unstained cells might belong to groups of other progenitor cells, interneurons or microglia.
Scale bars: A: 2,000 mm; B: 500 mm; C: 100 mm. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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cytoarchitectonic compartments (VZ, ISVZ, and OSVZ) and

their rostrocaudal gradient of histogenesis showing a decreasing

depth of all layers except the VZ from prefrontal to occipital

cortex. The ISVZ is composed of cells oriented in various

directions whereas the OSVZ exhibits a columnar structure

composed of radially oriented nuclei (Smart et al., 2002).

Although the OSVZ cells (or outer radial glial-like cells—

ORGCs) were first thought to be a unique cell type in fetal

primate neocortex, counterparts have also been observed in spe-

cies such as ferrets (Fietz et al., 2010) and mice (Shitamukai

et al., 2011; Wang et al., 2011). Thus, although mice do not

possess the same cytoarchitectonic compartments as primates

they have the same progenitor populations but in different pro-

portions. As summarized very recently by Hoerder-Suabedissen

and Moln�ar (2015): To date, all proliferative regions and

modes of cell division identified in primate brains have also

been documented in rodent brains and other large and small,

lissencephalic and gyrencephalic brains (Garcia-Moreno et al.,

2012), although the SVZ is disproportionately smaller in mice

than in large primates (Cheung et al., 2010). Thus, not only

are ORGs not primate specific, but their presence in large

numbers is not the cause of brain folding as it was originally

suggested (Garcia-Moreno et al., 2012).

The recent seminal work by several groups that led to

the identification of ORGCs within the OSVZ has primarily

focused on the neurogenic potential of these cells (Betizeau

et al., 2013; Fietz et al., 2010; Hansen et al., 2010; Kelava

et al., 2012; Reillo et al., 2011). The diversification of RGC

FIGURE 4: Adjacent sections to that shown in Fig. 3 from the same fetus (21st wpc, CRL: 200 mm) double immunostained for the radial
glial cell marker BLBP and YKL-40 or SSEA-4. The ventricular zone is lined with BLBP-reactivity, but shows no YKL-40 or SSEA-4 staining.
Both YKL-40 and SSEA-4 positive cells are apparently migrating along radial glial cell fibers [arrowheads in (A) and (C)]. Some cells in the
innermost part of the SVZ seem to be only BLBP-positive and others seemingly only YKL-40-positive. The YKL-40 and SSEA-4 positive cells
are found in small clusters close to their sites of migration (arrows in (A) and (C)). The distribution of SSEA-4 positive cells is apparently
similar to that of YKL-40 described in (A), and the co-localization of SSEA-4 and BLBP is similar to that of YKL-40 and BLBP. Higher magnifi-
cation through the z-axis of the sections are shown in (B) and (D). (B) A three-dimensional view of the SVZ, stained for BLBP and YKL-40,
shows overlap between a subset of BLBP positive RGC fibers and YKL-40 throughout the z-axis of the section. (D) A maximum projection
intensity image of the z-axis of the ISVZ shows SSEA-4 positive cells co-localized with BLBP-positive cells (arrows). However, some BLBP-
positive cells do not express SSEA-4 (arrowheads). Abbreviations: ISVZ: inner subventricular zone; VZ: ventricular zone. Scale bars: A, C: 50
mm; B: 10 mm; D: 20 mm. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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progeny in both spatial and temporal aspects is a matter of

intense research, and evidence from human and rodent stud-

ies point toward distinct subpopulations of RGCs that may

be purely gliogenic, purely neurogenic or multipotent (Hart-

fuss et al., 2001; Howard et al., 2006; Li et al., 2004; Pinto

et al., 2008). This suggestion is very much supported by our

findings that Tbr2 is not expressed in the majority of these

SSEA-4/YKL-40 immunopositive progenitors. A Tbr2

expressing lineage has been recently studied in the developing

mouse brain by Vasistha et al. (2014) who found no glial cell

lineage arising from Tbr2-positive intermediate progenitors

using the CLoNe method. In humans, so far no solid setup

exists, that enables the segregation of ORGCs into neuronal,

multipotent, or gliogenic subpopulations. The ORGCs differ

in morphology from ventricular RGCs in that they are

delaminated from the adherens junctions of the RGC epithe-

lium, and they lack an apical process, but, however, retain a

basal anchor (Betizeau et al., 2013; Fietz et al., 2010; Hansen

et al., 2010).

When examining for RGC markers (BLBP, GFAP, nes-

tin), neuronal and known glial markers, a subgroup of SSEA-

4 and YKL-40 positive cells only co-localize with BLBP

within the ISVZ and not with the other markers used. This

indicates that the SSEA-4 YKL-40 cell population is non-

neuronal descendants from RGCs. Interestingly, cell culture

studies of human midgestation dissociated VZ/SVZ showed

many diverse subtypes of RGCs among which a subtype of

dividing cells not labeled with 4A4 or neuronal markers were

suggested to represent a multipotent precursor or restricted

progenitor line identified by a another yet unused antibody

(Howard et al., 2006). The microtubule-associated protein

DCX, that is expressed by migrating neuronal precursors

show no overlap with the investigated cell population. Based

on cell counts of immunoreactive SSEA-4 and YKL-40 posi-

tive cells in adjacent sections and in equal regions of a 21

wpc occipital cortical area, we show that cell numbers

between these two are strikingly equivalent within the SVZ.

On a morphological basis, the cells express the same charac-

teristics, with approximately the same nuclear size and a

migrating profile, and co-localization from double labeling

studies of SSEA-4 and YKL-40 confirms that the cell popula-

tions marked by SSEA-4 or YKL-40 do correspond to one

another.

Both GFAP and nestin are structural filaments found in

various cell types, and also in subsets of glial cells and RGCs.

Double labeling with GFAP and YKL-40 and with nestin and

SSEA-4 revealed that hardly any cells co-labeled in the basal

part of the ISVZ. A very recent analysis of the clonal

FIGURE 5: Adjacent sections of occipital cortex subventricular zone from a 21st wpc human fetus stained for SSEA-4 or YKL-40 and
processed with z-stacks of equivalent representative areas. Maximum intensity projections are applied, and using Fiji Cell Counter,
SSEA-4, YKL-40, and DAPI-positive cells are manually counted on 8 adjacent representative sections. A total of 4,584 and 4,121 DAPI-
positive nuclei are counted from 4 YKL-40 and 4 SSEA-4 labeled sections, respectively. A total of 554 YKL-40 and 442 SSEA-4 positive
cells are counted. Of all the counted cells, in the four YKL-40 stained sections 11,99% of total cells are YKL-40 immunopositive and in
the other four SSEA-4-stained sections 10,68% are SSEA-4 positive. Mean total values of YKL-40 and SSEA-4 out of total cells are shown
in A and B, respectively.
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FIGURE 6: The inner subventricular zone (ISVZ) of occipital cortex from a 21st wpc human fetus (CRL: 200 mm). Double immunolabeling
with antibodies against SSEA-4 (red) and YKL-40 (green), with nuclei labeled with DAPI (blue). (A) The SSEA-4 and YKL-40 positive cells
are oriented in the same direction on a migratory trajectory. Merged images of double-immunolabeled cells are boxed in (A) and shown
at higher magnification in (D) and (G), with individual channels in (B), (C) and (E), (F), respectively. The double-labeled cells show immuno-
reactivity within the same cell compartments (ER/Golgi apparatus) in close apposition to the nucleus [(D), (G)]. Abbreviations: ISVZ: inner
subventricular zone. Scale bar: 10 mm. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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dispersion of astrocytes in mouse cerebral cortex indicates

that heterogeneous astroglial populations arise from special-

ized progenitor cells (Garc�ıa-Marqu�es and L�opez-Mascaraque,

2013). In a study by Singh et al. (Singh et al., 2011), the

expression of YKL-40 during in vitro differentiation of

human neural progenitors into astrocytes was dramatically

increased during astrocyte differentiation. Moreover, YKL-40

was easily detected in primary cultures of human embryonic

astrocytes. In mice, the stem cell marker SSEA-1, the SSEA-4

counterpart in hESC lines, has interestingly been associated

with a subpopulation of astrocytes in the adult SVZ progeni-

tor cells and developmental studies of rat brain showed

SSEA-1 in telencephalic germinal zones (Capela and Temple,

2002). It should be noted that SSEA-4 is associated with

human pluripotent stem cells of the inner cell mass, while the

murine counterpart associated with pluripotent stem cells is

SSEA-1 (Henderson et al., 2002).

The nonpolarized IPCs of the ISVZ are neuronal

descendants of ventricular RGCs. A commonly used IPC

marker is the T-box transcription factor Tbr2, and in our study

we found that the majority of Tbr2-positive IPCs did not co-

localize with either SSEA-4 or YKL-40. However, a few SSEA-

4 or YKL-40 positive cells did co-express Tbr2, and these

double-labeled cells possessed a leading process uncharacteristic

for IPCs. They might depict an intermediate differentiated

stage, as the IPCs migrate to the final location in the ISVZ and

OSVZ. As gliogenesis progresses particularly from midgestation,

appearing astrocytes are appreciated as an ultimately very heter-

ogeneous population of cells, with distinct progenitors and

diverse important functions in both normal and diseased brain.

We examined glial markers such as S100 (astrocytes) and NG2

and Olig2 (oligodendrocytes). The sequence of oligodendrocyte

development in human fetal forebrain from early oligodendro-

cyte progenitor cells to mature oligodendrocytes was described

by Jakovcevski and Zecevic (2005a) and the distribution of

Olig2 from second trimester (15th gestational week) was eluci-

dated in a following paper (Jakovcevski and Zecevic, 2005b).

At midgestation Olig2 positive nuclei were mainly positioned

close to the VZ surface, see also Fig. 1 in Mo and Zecevic

(2009). No cells were found to express these glial markers in

combination with SSEA-4 or YKL-40. However, this does not

rule out that the identified population is in fact part of the

astroglial lineage, as the panel of astrocyte markers is by now

not sufficiently extensive. YKL-40 and SSEA-4 may prove to be

functionally relevant in this matter.

Another important cell type within the subventricular

zone is the microglial cell. Blood monocytes are known to

enter the early human forebrain via the cortical plate and

meninges to become amoeboid microglial cells (Aguzzi et al.,

2013). Microglial cells have been shown to be important

modulators of neurogenesis, and during early human develop-

ment they are localized to the ISVZ, subplate, lower cortical

plate, and restricted laminar bands at the axonal crossroads in

the white matter (Cunningham et al., 2013; Rezaie et al.,

2005; Verney et al., 2010). Studies indicate that microglia do

not show YKL-40 staining in vivo (Bonneh-Barkay et al.,

FIGURE 7: A different area of occipital cortex from a 21st wpc
human fetus (CRL: 200 mm) outside the calcarine sulcus. The
entire section stained for YKL-40 is shown in (A) at low magnifi-
cation. The subventricular zone contains a large pool of YKL-40-
immunoreactive cells. Reactivity is also observed in the subpial
layer, as described previously. The boxed area corresponds to a
similar area of a neighboring section used for double immuno-
labeling. (B) Examination of YKL-40 immunoreactivity with RGCs
labeled with antibodies against GFAP shows a GFAP-lined ven-
tricular zone and an YKL-40 positive population in the SVZ. The
boxed area, seen in (C) at higher magnification, shows a differen-
tial pattern of GFAP positive cells compared to YKL-40 positive
cells. This is highlighted in three compartments, marked I–III. The
ventricular zone (I) contains GFAP positive radial fibers anchoring
at the ventricular surface. No YKL-40 reactivity is observed in
this compartment. The basal part of the VZ (II) is a GFAP/YKL-40
positive zone with hardly any double-labeled cells, while the
deeper layer of the inner SVZ only contains YKL-40 positive and
GFAP negative cells (III). Abbreviations: ISVZ: inner subventricu-
lar zone; VZ: ventricular zone. Scale bars: A: 2,000 mm; B: 100
mm; C: 20 mm. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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2010; Craig-Schapiro et al., 2010). In concert with these

findings, the abundant population of Iba1 positive cells

within the ISVZ in 21st wpc fetuses did not co-localize with

YKL-40, indicating that the SSEA-4 and YKL-40 positive

population is not of microglial origin. We did not observe

any co-localization throughout the examined fetuses.

FIGURE 8: Distribution of S100 (A, B) and Iba1 (C) immunoreactivity in occipital cortex from a 21st wpc fetus (CRL: 200 mm), same fetus
as in Figs. 3 and 4. S100 positive astrocytes are scattered through the entire cortical wall although somewhat more abundant in the lower
cortical plate/upper subplate and in the inner subventricular zone (A) which is shown in higher magnification in (B). Note that the density
and distribution of the S100 positive cells in (B) is different from that of YKL-40 stained cells in (D). Iba1 stained microglial cells are present
in both ventricular and inner subventricular zones in (C) but do not co-localize with YKL-40 positive cells (see E). D–G show double immu-
nostainings. The pan-neuronal marker NeuN together with YKL-40 (D) demonstrate no YKL-40 immunoreactive neurons in the SVZ. The
YKL-40 positive population seems to cluster in small groups (arrows) prior to migration on a fiber scaffold (arrowheads). Note the simulta-
neous migration of NeuN-positive cells (open arrowheads) and YKL-40 positive cells on the same radial glial fiber (arrowheads). In (E), dou-
ble immunolabeling for regulatory microglia in the inner SVZ with the microglia marker Iba1 and YKL-40 (open arrow), showed no
crossreactivity, indicating that the YKL-40 positive cell population is not of microglial origin. In adjacent sections (F, G), staining for YKL-40
and SSEA-4 and intermediate progenitor cells with Tbr2, respectively, depicts distinct populations in the OSVZ. Virtually no co-localization
is observed, however in a very few cases, YKL-40 and SSEA-4 do co-localize with Tbr2 (dashed arrows). Solid arrows indicate monolabeled
YKL-40 and SSEA-4 positive cells with a basal process. Arrowheads indicate IPCs that are only immunoreactive to Tbr2. Note that most
cells appear to migrate in the same radial direction though tangential migration is also observed. Abbreviations: ISVZ: inner subventricular
zone; OSVZ: outer subventricular zone; VZ: ventricular zone. Scale bars: A: 500 mm; B, C: 100 mm; E: 10 mm; D, F, G: 50 mm. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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The NSCs and neural progenitor cells, that is, neuroepi-

thelial cells and RGCs, are as previously described character-

ized by a panel of molecular markers as well as ultrastructural

and morphological features. SSEA-4 and YKL-40 have so far

not been a part of this panel, but our results suggest that

these may be future important markers for a particular frac-

tion of RGCs with astrogenic potential.

In summary, we characterized this SSEA-4 and YKL-40

positive cell population, by means of a range of molecular

markers for cell types found within the subventricular zone.

Co-localization for both SSEA-4 and YKL-40 was only evi-

dent for a subset of BLBP positive RGCs, and not for the

other markers used. The late appearance of this intriguing

population of SSEA-4 and YKL-40 positive cells in the SVZ

corresponds to initiation of gliogenesis (Rakic, 1988), and

several studies have linked YKL-40 expression to astrocytes

in vitro and in vivo (Bonneh-Barkay et al., 2012; Singh

et al., 2011). The previous description based on the same

material, of late appearing YKL-40 positive astrocyte-

resembling cells within the fimbria, a neuron-free region of

the hippocampus, strongly supports this notion (see Fig. 10

in Bjørnbak et al., 2014). In line with these observations,

we suggest that our newly identified subgroup of SSEA-4

and YKL-40 positive cells constitute a fraction of astroglial

progenitors, and suggest the name SYPAP (SSEA-4 and

YKL-40 positive astroglial progenitors) for this particular

population. Immunoreactivity of SYPAPs depends critically

on the stage of development and the region of the forebrain

studied and follows the rostrocaudal gradient of histogenesis

described by Smart et al. (2002). We hypothesize that this

population has a developmental important role and may

prove to be important for understanding human cortical

development and glial functioning. Identification of an astro-

glial progenitor population based on the same molecular

markers including SSEA-4 and YKL-40 in a rodent model

has to our knowledge not yet been performed. The subven-

tricular zone at mid-gestation harbors many different cell

types including interneurons, microglia and combinations of

neurons, glial, and RGCs. Subclassification of SVZ progeni-

tors based on single cell gene analysis may be an ultimate

way to shed more light onto the diverse behavior of progeni-

tors within the germinal zones, and thus aiding our under-

standing of late corticogenesis. Whether these cells also play

a role in origin or maintenance of glioblastoma multiforme,

or if they contribute to the population of adult human

NSCs in the subependymal zone (Alvarez-Buylla et al.,

2002), warrants further examination.
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