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Abstract
Obesity is a complex condition that increases the risk of life threatening diseases such as

cardiovascular disease and diabetes. Studying the gene regulation of obesity is important

for understanding the molecular mechanisms behind the obesity derived diseases and may

lead to better intervention and treatment plans. MicroRNAs (miRNAs) are short non-coding

RNAs regulating target mRNA by binding to their 3’UTR. They are involved in numerous bio-

logical processes and diseases, including obesity. In this study we use a mixed breed pig

model designed for obesity studies to investigate differentially expressed miRNAs in subcu-

taneous adipose tissue by RNA sequencing (RNAseq). Both male and female pigs are

included to explore gender differences. The RNAseq study shows that the most highly

expressed miRNAs are in accordance with comparable studies in pigs and humans. A total

of six miRNAs are differentially expressed in subcutaneous adipose tissue between the

lean and obese group of pigs, and in addition gender specific significant differential expres-

sion is observed for a number of miRNAs. The differentially expressed miRNAs have been

verified using qPCR. The results of these studies in general confirm the trends found by

RNAseq. Mir-9 and mir-124a are significantly differentially expressed with large fold

changes in subcutaneous adipose tissue between lean and obese pigs. Mir-9 is more highly

expressed in the obese pigs with a fold change of 10 and a p-value < 0.001. Mir-124a is

more highly expressed in the obese pigs with a fold change of 114 and a p-value < 0.001. In

addition, mir-124a is significantly higher expressed in abdominal adipose tissue in male

pigs with a fold change of 119 and a p-value < 0.05. Both miRNAs are also significantly

higher expressed in the liver of obese male pigs where mir-124a has a fold change of 12

and mir-9 has a fold change of 1.6, both with p-values < 0.05.
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Introduction
Obesity is a risk factor for various complications and diseases such as hypertension, cardiovas-
cular disease, dyslipidemia, inflammation, insulin resistance and type II diabetes. The obese
state, characterized by excess fat accumulation, is in itself a burden to the affected subject with
minor complications such as back pain, respiratory symptoms and difficulties in physical activ-
ity, but the secondary complications such as type 2 diabetes and coronary heart disease are
expensive in terms of health-care costs as well as being life threatening [1].

The excess fat, in form of lipids, is stored in specialized cells (adipocytes) in the adipose tis-
sue. Apart from storing lipids for later use as an energy source, adipose tissue functions as an
endocrine organ secreting cytokines and interleukins involved in energy metabolism and
inflammation. The endocrine activity derives from the adipocytes, but also from immune cells
present in the adipose tissue. In obese subjects, macrophages are recruited to, and accumulate
in the adipose tissue where they contribute to the inflammation seen in these subjects [2].

Excess lipids can be stored in different adipose depots, which have different functions.
Abdominal or visceral adipose tissue (including retroperitoneal, omental and mesenteric fat)
has more endocrine activity than subcutaneous adipose tissue [3]. An example is IL-6, an
inflammatory mediator, which is secreted from both omental and subcutaneous adipose tis-
sues in culture with 3-fold higher levels in the omental samples compared to the subcutane-
ous samples [4].

In humans, large amounts of fat in the waist area (central or abdominal obesity) is a greater
risk predictor of obesity-derived complications than fat stored on the hip, thighs and buttocks
(gluteo-femoral obesity) [5,6]. A simple measure of the waist circumference alone can indicate
if there is a high risk of abdominal obesity related complications [7]. Gender greatly influences
where fat is stored, whereas men store fat in the abdomen as visceral fat, women tend to store
fat subcutaneously [8]. Men also have higher amounts of the deep subcutaneous adipose tissue,
which is considered to be more metabolically active than the superficial subcutaneous adipose
tissue, which is more thermo regulative. In contrast, women have equal amounts of deep sub-
cutaneous adipose tissue and superficial adipose tissue [9].

Generally, subcutaneous adipose tissue is considered to be a healthier adipose tissue depot
than visceral adipose tissue, but several studies have shown that the unhealthy state of the vis-
ceral adipose tissue is reflected in the subcutaneous adipose tissue, which in both pigs and
humans have distinct layers of different metabolic activity [9–11]. Other studies also link the
amount of subcutaneous tissue to insulin resistance regardless of the amount of visceral fat
[12] and link dyslipidemia to both excess subcutaneous fat and increased liver fat [13].

Traditionally mouse biomedical models such as the knock out ob/ob mouse and diet
induced obese mice have been used for obesity research, but results obtained in a rodent model
are not always directly comparable to humans [14,15]. The pig is a more suitable model for
human obesity due to its similarities in gastro-intestinal tract, organ-size, genetics, dietary hab-
its and metabolism [15,16].

Previous sequencing studies of adipose tissue miRNA expression in pigs have been limited
to comparison between a “lean” phenotype pig breed such as Landrace or Yorkshire, and an
“obese” phenotype pig breed such as the Meichan or Lantang, or merely a comparison
between adipose depots in a single pig [17–20]. In this study a well-characterized pig model
designed for obesity studies has been used [21]. Briefly, the model is the F2 generation of a
cross between lean production pigs, and Göttingen minipigs, which are prone to obesity. The
outcome is a diverse population of lean, intermediate and obese pigs. The animals included in
the present study have been selected to represent the most divergent phenotypes with respect
to obesity traits.
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MicroRNAs (miRNAs) are small (~21 nucleotides long) regulatory non-coding RNAs that
bind to the 3’UTR of the target mRNAs and suppress and/or degrade the mRNA thus inhibit-
ing translation. MiRNAs originate from hairpin precursors (~70 nucleotides) which are pro-
cessed into single stranded oligonucleotides which, when bound to a protein complex can base
pair with its target mRNA by its ~7 nt long seed region. Each miRNA can regulate multiple tar-
get mRNAs and mRNAs may have multiple miRNA target sites [22,23].

It is estimated that more than 60% of all mammalian mRNA have conserved miRNA target
sites in their 3’UTR making protein suppression by miRNAs an important regulatory function
in the cell [24].

MicroRNAs are involved in many obesity derived diseases including cardiovascular dis-
eases, diabetes, metabolic syndrome and inflammation. Their expression has been found to
correlate with different obesity relevant phenotypes such as body mass index (BMI), adipocyte
size and metabolic parameters, implying that miRNAs play an important regulatory role in
obesity [25–28].

In this study we performed next generation sequencing (NGS) of microRNA isolated from
subcutaneous adipose tissue of lean and obese male and female pigs. To verify the sequencing
results, qPCR was performed on the same samples. To increase functional information of the
differentially expressed microRNAs qPCR was also performed on samples from abdominal
adipose tissue, skeletal muscle and liver from the same animals.

Methods

Animal material
Fourteen pigs from the UNIK obesity resource population [21] were selected among the low
and high extreme animals based on the physical obesity traits: BMI, abdominal circumference
and amount of retroperitoneal fat measured at slaughter. Briefly, the population is the F2 gen-
eration of an intercross of Göttingen minipigs, which are naturally obesity prone, and Duroc
and Yorkshire production pigs, which have been selected for leanness for decades. The F2 gen-
eration is phenotypically diverse showing various degrees of obesity when fed regular pig chow
ad libitum. In this study F2 pigs originating from the intercross between Göttingen minipigs
and Duroc were used. Of the 14 pigs, 7 had a lean phenotype (4 males + 3 females) and 7 had
an obese phenotype (4 males + 3 females).

In Table 1 some of the key anthropometric and metabolic measures characterizing the phe-
notype of the selected pigs are provided. Details on the conformation traits are described in
[21]. Briefly, retroperitoneal fat was bluntly excised at slaughter and the weight of it was cor-
rected for body length; Body Mass Index (BMI) was calculated as weight (kg)/(length (cm))2;
Body Adiposity Index (BAI) was calculated as abdominal circumference divided by length1.5;
the abdominal circumference (ABC) was measured around the largest circumference of the
body. With respect to the metabolic traits total cholesterol (ct) and triglycerides were measured
in plasma collected at slaughter using commercial kits from Roche Diagnostics (Roche Diag-
nostics, USA) and ThermoElectron (Thermo Fisher Scientific Inc. France) respectively. ASAT
and ALAT were measured on serum collected at slaughter using Advia 1800 Chemistry System
(Siemens, Denmark). Fasting glucose was measured after 24 hours of fasting with a Freestyle
Mini glucometer (Hermedico, Brøndby, Denmark) using a drop of blood from the ear vein.

The project was approved by the Danish Animal Experimentation Board, Animal care and
maintenance have been conducted according to the Danish “Animal Maintenance Act” (Act
432 dated 09/06/2004). The animals were housed at a regular pig farm, and slaughtered at a
commercial slaughterhouse by stunning and bleeding under veterinary supervision as required
by the Danish authorities. Tissue and blood samples were collected at slaughter.
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RNA purification
Subcutaneous adipose tissue, abdominal adipose tissue, muscle and liver (among other tissues)
were collected from all animals at slaughter, snap frozen in liquid nitrogen and stored at -80°C
until RNA extraction.

RNA from adipose tissues was extracted using an in house protocol combining Tri Reagent
and the Qiagen miRNeasy kit [29]. Briefly, 100 mg adipose tissue were homogenized in Tri
Reagent on a gentleMACS Octo Dissociator (Miltenyi Biotec, Germany) following manufactur-
er’s instructions. The homogenate was centrifuged and visible fat and cell debris were removed.
Chloroform was added and the sample was centrifuged to separate the nucleic acid and protein
phases. The RNA phase was mixed with ethanol and transferred to a Qiagen miRNeasy spin
column and RNA was purified according to the miRNeasy protocol. Finally RNA was eluted
with RNase-free water.

RNA from muscle and liver was extracted using the Tri Reagent protocol (MRCgene,
Molecular Research Center, Inc, US).

RNA concentration and purity was measured using a Nanodrop ND-1000 spectrophotome-
ter (NanoDrop technologies, Wilmington, USA). RNA integrity was assessed in an Experion
machine (Biorad) and samples with RQI� 7 were accepted for further analysis (Subcutaneous
adipose tissue: RQI: 7.99 ± 0.47, A260/280: 2.07 ± 0.05; Abdominal adipose tissue: RQI:
8.44 ± 0.5 A260/280: 1.96 ± 0.16; Liver: RQI: 9.73 ± 0.22 A260/280: 1.96 ± 0.05; Muscle: RQI:
9.05 ± 0.44 A260/280: 1.87 ± 0.05. All values represent the mean ± SD).

Illumina sequencing
Small RNA libraries were prepared from 1 μg total RNA from subcutaneous adipose tissue by
the standard TruSeq small RNA sample preparation protocol (Part # 15004197 Rev. E) follow-
ing manufacturer’s instructions. Briefly, RNA was ligated to a 3’ adaptor followed by ligation to

Table 1. Mean values of the phenotypic measures of the lean and obese pigs calculated on all pigs, and the male and female pigs respectively.

All Males Females

Lean Obese p-val Lean Obese p-val Lean Obese p-val

Number 7 7 4 4 3 3

Age (months) 8.77 ± 3 8.59 ± 1.4 0.890 10.77 ± 2.4 8.15 ± 1.7 0.120 6.1 ± 0.5 9.2 ± 0.5 0.002

RP_Fat (kg/cm) 1.67 ± 1 4.24 ± 1.36 <0.005 0.95 ± 0.65 3.41 ± 0.93 0.005 2.64 ± 0.29 5.36 ± 0.97 0.010

BMI (kg/m2) 111 ± 7.6 152 ± 10.2 <0.005 106 ± 7.9 151 ± 11.9 <0.005 116 ± 4.6 154 ± 12 0.007

BAI (cm/cm1.5) 0.14 ± 0.01 0.16 ± 0.019 0.026 0.13 ± 0.01 0.16 ± 0.02 0.063 0.15 ± 0.02 0.16 ± 0.01 0.268

ABC (cm) 112 ± 10.6 134 ± 11 <0.005 105 ± 7 131 ± 9 <0.005 120 ± 8 138 ± 14 0.127

Weight (kg) 85 ± 14 120 ± 26 0.008 82 ± 10 117 ± 26 0.046 88.5 ± 19 124 ± 31 0.166

Ct (mM) 2.34 ± 0.65 2.64 ± 0.53 0.370 2.10 ± 0.6 2.2 ± 0.4 0.400 2.66 ± 0.7 2.93 ± 0.6 0.650

TG (mM) 0.49 ± 0.2 0.51 ± 0.32 0.877 0.38 ± 0.1 0.40 ± 0.07 0.754 0.64 ± 0.21 0.67 ± 0.49 0.930

Fasting_glu (mM) 3.22 ± 0.76 3.48 ± 0.82 0.570 3.15 ± 1 3.36 ± 0.8 0.780 3.33 ± 0.15 3.6 ± 0.98 0.670

ASAT 51 ± 14 83 ± 36 0.050 54 ± 17.5 96 ± 35 0.074 47 ± 7.4 65 ± 36 0.445

ALAT 43 ± 7 57 ± 38 0.315 40 ± 6.5 43 ± 7.3 0.504 46 ± 6,6 77 ± 57 0.403

ASAT/ALAT 1.21 ± 0.21 1.66 ± 0.73 0.012 1.34 ± 0.2 2.2 ± 0.55 0.026 1.04 ± 0.14 0.95 ± 0.26 0.63

RP_Fat: weight of the retroperitoneal fat corrected for length of the pig; BMI: Body Mass Index calculated as weight (kg)/(length (m))2; BAI: Body Adiposity

Index calculated as abdominal circumference divided by length1.5; ABC: the abdominal circumference; TG: triglycerides; Ct: total cholesterol; Fasting_glu

is the glucose level measured after 24H of fasting. ASAT: aspartate amino transferase (U/L). ALAT: alanine amino transferase (U/L). ASAT/ALAT: ratio of

ASAT and ALAT. All values are displayed as mean ± SD.

doi:10.1371/journal.pone.0131650.t001
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a 5’ adaptor. RNA was reversely transcribed and amplified using TruSeq indexes to barcode the
samples. The libraries were size-selected by 3%MetaPhor agarose gel (Cambrex Bio Science,
Rockland) for the small RNA fraction including miRNAs and sequenced on two lanes on an
Illumina Genome Analyzer IIx.

Sequence data analysis
Sequencing of miRNAs from 14 samples produced 52,883,376 reads. Fastq files were trimmed
for adaptors and for bases with a quality score below 20 by the trimming program Cutadapt
[30]. Sequences were filtered for length using a custom Perl script and sequences with a length
of 18–25 nucleotides (representing miRNAs) were used for further analysis. This left
44,606,110 reads.

The miRDeep2 package [31] was used for mapping the reads to the genome and to quantify
all known porcine miRNAs (Mirbase v 20 [32]) in the dataset. 37,529,528 reads mapped to the
porcine genome sequence [16]. The mirDeep2 output with miRNA counts can be found in S1
Dataset.

The DESeq2 package in the statistics software R (Version 3.0.1) was used for differential
expression analysis with standard parameters [33]. The result of the DESeq2 analysis for all
animals, males and females can be found in S2–S4 Datasets.

cDNA synthesis
Total RNA was used for cDNA synthesis as previously described [34,35]. For subcutaneous adi-
pose tissue the same RNA samples used for sequencing were used for qPCR. Briefly, for miRNA
analysis, two cDNA replicates per sample were made from 100 ng of RNA in a final volume of
10 μl including 1 μl of 10x poly(A) polymerase buffer, 0.1 mM of ATP, 1 μM of RT-primer, 0.1
mM of each deoxynucleotide (dATP, dCTP, dGTP and dTTP), 100 units of MuLV reverse tran-
scriptase (New England Biolabs, USA) and 1 unit of poly(A) polymerase (New England Biolabs,
USA) were incubated at 42°C for 1 hour followed by enzyme inactivation at 95°C for 5 minutes.
The sequence of the RT-primer was 5’-CAGGTCCAGTTTT TTTTTTTTTTTVN, where V is A, C
and G and N is A, C, G and T. The primer was purchased from TAG Copenhagen (Denmark).

For mRNA analysis two cDNA replicates were made from 100 ng RNA for each sample in a
final volume of 10 μl including 0.25 μg 3:1 mixture of random hexamers/OligodT, 2 μl
Improm-II buffer, 2 mM dNTP mix, 10 units RNasin Ribonuclease inhibitor, 1.25 mMMgCl2
and 0.5 μl Improm-II reverse transcriptase (Promega), which were incubated for 42°C for 1
hour and 15 min at 70°C following manufacturer’s instructions.

Primer design
All miRNA qPCR primers were designed according to the miRprimer design rules as previ-
ously described [34–36]. Briefly, Tm of both forward and reverse primer was optimized to
59°C by adjusting the tail length of the primers. Melting temperature (Tm) was calculated
according to the nearest-neighbor model [37]. The primers were designed using the publicly
available software miRprimer [36]. Sequences of primers and templates are given in Table 2.

Quantitative PCRMessenger RNA primers were designed using PRIMER 3 software
(http://bioinfo.ut.ee/primer3-0.4.0/). If possible, primers were designed over introns. Primer
sequences are listed in Table 2. Primer sequences for NFKB1 and NFKB1a were as described in
[38] and TGFB1 from [39]. Primers were purchased from Sigma (UK).

Quantitative PCR for miRNAs and mRNAs was performed on a MX3005P machine (Strata-
gene, USA). 1 μl of cDNA diluted 8 times, 5 μl of 2x QuantiFast SYBR Green PCR master mix
(Qiagen, Germany), 250 nM of each primer (Table 2) were mixed in a final volume of 10 μl.
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Standard curves with 5-fold dilutions (made with a pool of equal amounts of cDNA from the
14 samples included in the study) were made for all primer sets to calculate qPCR efficiency.
Cycling conditions were 95°C for 5 min followed by 40 cycles of 95°C for 10 sec and 60°C 30
sec. A melting curve analysis (60°C to 99°C) was performed after the thermal profile to ensure
specificity of the assays.

qPCR data analysis
Quantification was based on determination of the quantification cycle (Cq). Data was analyzed
using Genex5 Pro (MultiD, Göteborg, Sweden). Cq values were corrected using the PCR effi-
ciency, which was calculated from the log-linear portion of the standard curves [40]. Potential
reference genes (let-7a, mir-17 and mir-26a for subcutaneous adipose tissue and mir-17 and

Table 2. Primer sequences for qPCR detection of miRNA.

miRNA mirbase ID forward primer reverse primer

ssc-let-7a MIMAT0013865 GCAGTGAGGTAGTAGGTTGT GGTCCAGTTTTTTTTTTTTTTTAACTATAC

ssc-mir-1 MIMAT0010187 CGCAGTGGAATGTAAAGAAGT GGTCCAGTTTTTTTTTTTTTTTACATAC

ssc-mir-9-1 MIMAT0002168 GCAGTCTTTGGTTATCTAGCTGT GGTCCAGTTTTTTTTTTTTTTTCATAC

ssc-mir-10b MIMAT0013885 CAGTACCCTGTAGAACCGA GGTCCAGTTTTTTTTTTTTTTTACAAATTC

ssc-miR-16 MIMAT0007754 GCTGTAGCAGCACGTA CAGTTTTTTTTTTTTTTTCGCCAAT

ssc-miR-17-5p MIMAT0007755 CAAAGTGCTTACAGTGCAG GGTCCAGTTTTTTTTTTTTTTTCTAC

ssc-miR-20a MIMAT0002129 ACAGTAAAGTGCTTATAGTGCA GTCCAGTTTTTTTTTTTTTTTCTACCT

ssc-mir-24-3p MIMAT0002134 GGCTCAGTTCAGCAGGA GGTCCAGTTTTTTTTTTTTTTTCTG

ssc-miR-26a MIMAT0002135 GCAGTTCAAGTAATCCAGGATAG GTCCAGTTTTTTTTTTTTTTTAGCCT

ssc-miR-27b-3p MIMAT0013890 CAGTTCACAGTGGCTAAGTTC TCCAGTTTTTTTTTTTTTTTGCAGA

ssc-miR-99a MIMAT0013896 CAGAACCCGTAGATCCGA GGTCCAGTTTTTTTTTTTTTTTCAC

ssc-miR-99b MIMAT0006018 CCCGTAGAACCGACCT TCCAGTTTTTTTTTTTTTTTCGCA

ssc-miR-100 MIMAT0013911 GAACCCGTAGATCCGAAC GGTCCAGTTTTTTTTTTTTTTTCAC

ssc-miR-103 MIMAT0002154 AGAGCAGCATTGTACAGG GGTCCAGTTTTTTTTTTTTTTTCATAG

ssc-mir-107 MIMAT0002155 GCAGAGCAGCATTGTACAG GGTCCAGTTTTTTTTTTTTTTTGATAG

ssc-mir-124a MIMAT0002156 AGGCACGCGGTGA CCAGTTTTTTTTTTTTTTTGGCATTC

ssc-miR-133a-3p MIMAT0010186 TGGTCCCCTTCAACCAG GGTCCAGTTTTTTTTTTTTTTTCAG

ssc-miR-133b MIMAT0013869 TGGTCCCCTTCAACCAG GTCCAGTTTTTTTTTTTTTTTATAGCTG

ssc-mir-143-3p MIMAT0013879 CAGTGAGATGAAGCACTGT TCCAGTTTTTTTTTTTTTTTGAGC

ssc-miR-148a-3p MIMAT0002124 CAGTCAGTGCACTACAGAAC GGTCCAGTTTTTTTTTTTTTTTACAAAG

ssc-miR-191 MIMAT0013876 AACGGAATCCCAAAAGCA TCCAGTTTTTTTTTTTTTTTCAGC

ssc-miR-199a-5p MIMAT0013874 CCCAGTGTTCAGACTACCTG GTCCAGTTTTTTTTTTTTTTTGAACAG

ssc-mir-215 MIMAT0010192 CGCAGATGACCTATGAATTGAC GGTCCAGTTTTTTTTTTTTTTTGTCT

ssc-miR-221-3p MIMAT0007762 CAGAGCTACATTGTCTGCTG TCCAGTTTTTTTTTTTTTTTAAACCCA

TGFB1 CGAGCCCTGGATACCAACT GCAGAAATTGGCATGGTAG

ITGB1 GGTGAATGGGAACAATGAGG GCAAGGCCAATGAGAACAAT

NFKBIA GAGGATGAGCTGCCCTATGAC CCATGGTCTTTTAGACACTTTCC

NFKB1 CTCGCACAAGGAGACATGAA GGGTAGCCCAGTTTTTGTCA

IL6R GTGCAGCTCAGTGACTCTGG TCCACTCACAGCCCACATT

ETS1 CAGGAGATGGCTGGGAATTCA CGTTTACCCGCCGTCTTGT

ADIPOR2 ATGGCCAGCCTCTACATCAC GCCATGGAAGTGAACGAAAG

SIRT1 ACCAGAGCAGTTTCATAGAGCC CAGGTGAGGCAAAGGTTCCC

MiRNA name, mirbase ID and forward and reverse primers for qPCR detection.

doi:10.1371/journal.pone.0131650.t002
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mir-20 for abdominal adipose tissue, liver and skeletal muscle) were tested for stability using
GeNorm [41] and NormFinder [42] algorithms and were all used as reference genes to normal-
ize the expression of the individual samples in the qPCR experiment. GeNorm and NormFin-
der values for the reference genes and boxplots for the raw Ct expression of reference genes in
obese and lean animals are available in S9 Dataset. Technical replicates were averaged and rela-
tive quantities where calculated by setting the lowest expressed sample in each primer assay to
1. Data was log2 transformed to achieve normality before using parametric methods (Student’s
t-test). All graphs were made in Prism 6 (GraphPad Software, Inc. CA, USA) as column scatter
plots where individual values within the groups are plotted together with indication of the
mean and standard deviation. QPCR data is available in S5, S6, S8 and S9 Datasets.

Target gene search
MiRWalk [43] and miRTarBase [44] databases were searched for experimentally verified
miRNA targets. In addition MiRWalk was also searched for predicted targets using 8 different
algorithms. DAVID tools [45,46] were used for mining the target genes for genes relevant for
obesity-derived diseases, such as diabetes type II and heart disease. A list of verified target
genes is included in S7 Dataset.

Results
The pig population used in this study consists of 14 pigs (6 females and 8 males). The pigs were
selected from the population of F2 pigs to form two groups (7 + 7 pigs, with 3 females and 4
males in each group) with a lean and an obese phenotype respectively. Anthropomorphic and
metabolic measures of the selected pigs are presented in Table 1. The groups differ significantly
in several of the physical parameters measured in the F2 population such as amount of abdom-
inal (retroperitoneal) fat, Body Mass Index, Body Adiposity index and weight.

Sequencing of the small RNA fraction isolated from subcutaneous adipose tissue from the
14 samples produced 52,883,376 reads. After filtering the quality of the sequence, adaptors and
read length 43,697,000 reads remained and of those 37,529,528 reads mapped to the porcine
genome. The read counts for all the analyzed miRNAs can be seen in S1 Dataset.

The sequences were mapped to known porcine miRNAs by mirDeep2. The top 10 most abun-
dant miRNAs found in the subcutaneous adipose tissue are illustrated by total read count in Fig
1. As seen in other miRNA sequencing studies [17,20,47] the highest expressed miRNAs accounts
for a large percentage of the total read count. In the present study the top 10 most abundant miR-
NAs represent 74% of the read counts, and one miRNA (mir-10b) account for more than 32% of
the reads. These highly expressed miRNAs are also found in other adipose tissue miRNA
sequencing studies and may have important housekeeping functions in adipose tissue [17,20,47].

Subsequently, analysis for differentially expressed miRNAs between the obese and lean
group was performed using DESeq2 in R. A total of 6 miRNAs were significantly differently
expressed between the two groups with an adjusted p-value (adjusted for multiple testing using
the Benjamini and Hochberg method in DESeq2) cutoff of 0.05 (Table 3).

The analysis was also performed on only lean versus obese male pigs (Table 4) and lean ver-
sus obese female pigs (Table 5). For the males we found 7 differentially expressed miRNAs, two
of which (mir-9-1-3p and mir-199a-5p) overlap with the analysis of the combined dataset.

In the analysis of the female pigs 35 miRNAs were differentially expressed between the lean
and obese animals (Table 5). Among these the expression profiles of mir-124a-3p and mir-9-
3p overlapped with the results for the analysis of the combined dataset. All p-values for the
DESeq2 analysis for the combined dataset as well as the male and female analysis can be found
in S2–S4 Datasets.
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The most differentially expressed miRNAs found in the sequencing study together with a
selection of potential obesity relevant miRNAs selected from the literature were verified by
qPCR (Table 6). Generally the expression pattern followed what was seen in the NGS sequenc-
ing data, i.e. a miRNA up regulated in obese pigs in the RNAseq study was also up regulated
when analyzed by qPCR. An exception from this general trend was mir-199-5p which was not

Fig 1. Top 10 expressedmiRNAs in the sequencing study. The read count represents the total, un-
normalized, read count for each miRNA from a pool of all the 14 animals in the study. % of Total Read Count
is the percentage of the total reads of 37,529,528 that map to the porcine genome. The top 10 most
expressed miRNAs account for more than 74% of the total read count.

doi:10.1371/journal.pone.0131650.g001

Table 3. Top 10 differentially expressed genes for the combined dataset of lean versus obese pigs as analyzed by DESeq2.

miRNA baseMean log2FC FC p-value padj

ssc-mir-9-1-5p 299 3.20 9.19 5.57E-13 1.56E-11

ssc-mir-124a-1-3p 31.3 3.38 10.40 4.21E-11 1.06E-09

ssc-mir-9-1-3p 6.4 2.21 4.61 4.27E-06 9.36E-05

ssc-mir-199a-1-5p 6333 -1.16 -2.24 2.56E-05 0.0004

ssc-mir-489-3p 3.9 1.74 3.33 0.0009 0.013

ssc-mir-34c-1-3p 5 1.69 3.23 0.0019 0.027

ssc-mir-4332-3p 16 0.89 1.85 0.0052 0.069

ssc-mir-148a-3p 30708 -0.38 -1.30 0.0054 0.070

ssc-mir-145-3p 497 -0.56 -1.47 0.0062 0.077

ssc-mir-153-3p 2.6 1.41 2.66 0.0064 0.077

BaseMean: normalized mean read count for all animals; Log2FC: log2 fold change. FC: fold change; Padj: p-value adjusted for multiple testing (Benjamini

and Hochberg as default by DESeq2). A positive fold change indicates that the miRNA is up regulated in obesity and a negative indicate down regulation.

doi:10.1371/journal.pone.0131650.t003
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significantly differentially expressed in the qPCR study. Also mir-489 and mir-34c could not
be detected in all animals due to very low expression, and were therefore excluded from the
qPCR analysis. Two of the 6 miRNAs found to be differentially expressed in the sequencing
study, mir-9 and mir-124a, were significantly differentially expressed between the two groups
(Table 6, Fig 2). Both the 3’ and 5’mature miRNAs of mir-9 were significantly differentially
expressed in the sequencing analysis, but only mir-9-5p was tested in qPCR due to low expres-
sion of mir-9-3p.

When the qPCR results were analyzed for male pigs only, mir-99a was differentially
expressed in addition to mir-124a and mir-9 (Table 6). In the female pigs mir-9, mir-124a,
mir-103, mir-10b and mir-99a were differentially expressed (Table 6). Interestingly, in the
male pigs mir-99a was down regulated in the obese subjects, while for the females mir-99a was
up regulated in the obese subjects.

In Fig 2 the expression of mir-9 and mir-124a in lean and obese subcutaneous adipose tissue
is illustrated in a Column scatter plot as the relative mean of log2 fold change were the lowest
expressed sample of each miRNA assay is set to 1. Mir-9 and mir-124a are both significantly
up regulated in obese animals with even higher fold changes than found in the sequencing
study. Fold changes and p-values for qPCR in subcutaneous adipose tissue can be found in
Table 6.

To further study the expression of mir-9 and mir-124a, the two miRNAs with the largest
fold changes between the lean and obese group in the subcutaneous adipose tissue, qPCR was
also performed on cDNA from abdominal adipose tissue, liver and muscle from the same ani-
mals as in the study of subcutaneous adipose tissue. The data is presented as column scatter
plots in Fig 3. Mir-9 and mir-124a were expressed in all three tissues.

The expression patterns differ, however, between the two genders. In abdominal fat the
expression of both mir-9 and mir-124a was found to be more highly expressed in obese males
(mir-124a FC: 119.8; p-value = 0.0108, mir-9 FC: 7.8; p-value = 0.07) and both were signifi-
cantly more highly expressed in the liver of obese males (mir-124a FC: 12.3; p-value = 0.013,
mir-9 FC: 1.6; p.value = 0.036) while no difference in expression could be detected in the
females. In muscle no difference in expression was observed. All data is available in S6 Dataset.

Analysis of mir-9 and mir-124a target genes has not previously been performed in adipose
tissue. In the literature, many target genes for both miRNAs have been verified with methods
such as western blot, qPCR and luciferase transfer assay, and as described in materials and
methods all verified targets from miRTarBase are listed in S7 Dataset. A selection, based on tis-
sue expression and obesity relevance, of the target genes from S7 Dataset, was analyzed using

Table 4. Significantly differentially expressed genes in for lean versus obesemale pigs as analyzed by DESeq2.

miRNA baseMean log2FC FC p-value padj

ssc-mir-199b-5p 3974 -0.87 -1.83 2.64E-08 6.22E-06

ssc-mir-199a-5p 7021 -1.28 -2.43 2.45E-05 1.15E-03

ssc-mir-130a-3p 530 -0.92 -1.89 3.89E-05 1.67E-03

ssc-mir-181c-5p 1323 -0.62 -1.54 3.27E-04 1.22E-02

ssc-mir-9-1-3p 5 1.94 3.83 3.89E-04 1.22E-02

ssc-mir-205-5p 21 -1.80 -3.47 6.10E-04 1.80E-02

ssc-mir-455-3p 211 0.81 1.76 8.43E-04 2.17E-02

BaseMean: normalized mean read count for all animals; Log2FC: log2 fold change. FC: fold change; Padj: p-value adjusted for multiple testing (Benjamini

and Hochberg as default by DESeq2) Significance cut off is padj = 0.05. A positive fold change indicates that the miRNA is up regulated in obesity and a

negative indicate down regulation.

doi:10.1371/journal.pone.0131650.t004
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qPCR. None of the selected targets were significantly down regulated in the obese group.
Results from analysis of the data in males and females separately yielded a similar pattern (see
S8 Dataset).

Discussion
The sample population in this study consists of 14 animals of which 8 were male and 6 were
females. It can be seen from the anthropomorphic measurements in Table 1, that the female

Table 5. Significantly differentially expressed genes for lean versus obese female pigs as analyzed by DESeq2.

miRNA baseMean log2FC FC p-value padj

ssc-mir-10b-5p 588019 -1.14 -2.21 4.08E-30 1.99E-27

ssc-mir-125a-5p 11407 -0.85 -1.80 7.51E-28 1.83E-25

ssc-mir-10a-5p 72498 -1.42 -2.68 8.43E-15 1.37E-12

ssc-mir-124a-3p 32 3.05 8.30 1.19E-11 1.16E-09

ssc-mir-340-5p 194 0.90 1.86 6.52E-09 4.52E-07

ssc-mir-342-3p 118 -1.14 -2.20 7.41E-09 4.52E-07

ssc-mir-125b-5p 6582 -0.81 -1.76 1.06E-07 5.16E-06

ssc-mir-574-3p 584 -0.53 -1.44 3.08E-07 1.16E-05

ssc-mir-148a-3p 24953 -0.64 -1.56 3.75E-07 1.31E-05

ssc-mir-151-5p 8007 -0.57 -1.48 1.56E-06 5.09E-05

ssc-mir-30a-5p 18751 -0.49 -1.40 2.29E-06 6.99E-05

ssc-mir-191-5p 64358 -0.98 -1.97 2.82E-06 8.11E-05

ssc-mir-100-5p 10114 -1.45 -2.74 6.05E-06 1.64E-04

ssc-mir-128-3p 348 0.75 1.68 8.96E-06 2.06E-04

ssc-mir-150-5p 403 -0.74 -1.67 1.12E-05 2.27E-04

ssc-mir-22-3p 60767 0.34 1.27 5.11E-05 9.97E-04

ssc-mir-2320-5p 203 -0.90 -1.86 5.93E-05 1.11E-03

ssc-mir-99a-5p 5018 -1.03 -2.04 6.13E-05 1.11E-03

ssc-mir-365-3p 604 -0.68 -1.60 8.33E-05 1.40E-03

ssc-mir-127-3p 3944 -1.16 -2.24 1.51E-04 2.39E-03

ssc-mir-151-3p 8671 -0.59 -1.50 1.57E-04 2.39E-03

ssc-mir-26a-5p 65975 -0.30 -1.23 1.66E-04 2.46E-03

ssc-mir-769-5p 308 0.54 1.46 1.32E-03 1.85E-02

ssc-mir-182-5p 382 -1.43 -2.70 1.43E-03 1.93E-02

ssc-mir-23a-3p 2939 -0.39 -1.31 1.92E-03 2.29E-02

ssc-mir-30c-5p 2208 -0.38 -1.31 1.88E-03 2.29E-02

ssc-mir-103-3p 7213 0.67 1.60 3.24E-03 2.58E-02

ssc-mir-214-3p 652 -0.36 -1.28 3.11E-03 2.58E-02

ssc-mir-218-5p 141 0.82 1.77 3.38E-03 2.58E-02

ssc-mir-361-5p 300 -0.52 -1.44 3.80E-03 2.86E-02

ssc-mir-450a-5p 35 -0.94 -1.92 4.04E-03 2.99E-02

ssc-mir-450c-5p 57 -0.85 -1.81 4.35E-03 2.99E-02

ssc-mir-7134-5p 106 -0.58 -1.49 4.24E-03 2.99E-02

ssc-mir-9-1-3p 8 1.58 2.99 4.60E-03 2.99E-02

ssc-mir-99b-5p 10899 -1.06 -2.08 6.29E-03 4.04E-02

BaseMean: normalized mean read count for all animals; Log2FC: log2 fold change. FC: fold change; Padj: p-value adjusted for multiple testing (Benjamini

and Hochberg as default by DESeq2) Significance cut off is padj = 0.05. A positive fold change indicates that the miRNA is up regulated in obesity and a

negative indicate down regulation.

doi:10.1371/journal.pone.0131650.t005
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pigs appear to be more obese than the male pigs. This has been observed in another study
where female minipigs gain weight faster and get more obese than male minipigs. Both will
however, when fed unrestricted, become obese [48]. Since Göttingen minipigs are a part of the
genetic background for the pig model used in this study, this finding is not surprising. The
male pigs have significant differences in their ASAT/ALAT ratio, a measure of liver damage
[49]. Obesity is associated with nonalcoholic fatty liver disease (NAFLD), a condition where
the liver store excess amount of fat and thus contribute further to the complications of obesity
[50]. In human studies it has been observed that males have a higher tendency to NAFLD [51].
There is a significant difference in age between the lean female pigs and the obese female pigs,
i.e. the obese female pigs are older than the lean female pigs. Thus, it cannot be ruled out that
the obesity of the female pigs and the differential expression of miRNA are due to maturity of
the pigs. However, in the male pigs the picture is reversed, i.e. the lean pigs are older than the
obese pigs, however, this difference is non-significant.

In this study Illumina sequencing of the small RNA fraction was performed on RNA from
subcutaneous adipose tissue of all 14 pigs. The top 10 expression of miRNAs from all 14 pigs
(Fig 1) is consistent with previous studies of subcutaneous adipose tissue expression studies in
pigs [17,20] and humans [47].

Differential expression in the sequencing data from the lean and obese pigs was calculated
using the DESeq2 package in R and revealed six significantly differentially expressed miRNAs
between the two groups: mir-9-5p, mir-124a-3p, mir-9-3p, mir-199a-5p, mir-489-3p and mir-
34c-3p. (Table 3). qPCR validation of these results in general confirms the expression pattern,
however, statistical significant differential expression was only observed for two of the six miR-
NAs, mir-9 and mir-124a (Table 6, Fig 2). Both these miRNAs were up regulated in the obese
state, both in the population as a whole and if divided by gender. Both mature arms of mir-9
were significantly differentially expressed in the sequencing data, but only the mir-9-5p was
tested in qPCR.

This is, to our knowledge, the first study of subcutaneous adipose tissue of lean versus obese
subjects where mir-9 and mir-124a have been shown to be significantly up regulated in the obese
subjects with large fold changes compared to the lean subjects. However, both miRNAs have
been observed in other tissues and in cell lines in relation to inflammation and obesity-derived
diseases, with similar results pointing towards overexpression in high lipid or high inflammation
states, which correlates well with our findings. An example is that mir-9 and mir-124 are slightly
up regulated in the blood of diabetic patients compared to non-diabetic controls [52].

Obesity leads to increased inflammation involving macrophage infiltration of the adipose
tissue [2]. In a study of macrophages in lung inflammation, mir-124 expression was up

Table 6. qPCR results from lean and obese pigs in all pigs, and the male and female pigs respectively.

All Males Females

FC Log2FC p-value FC Log2FC p-value FC Log2FC p-value

Mir-124a 114.43 6.84 1.82E-06 110.66 6.79 0.0002 119.66 6.90 0.005

Mir-9 10.43 3.38 1.90E-04 9.31 3.22 0.016 12.15 3.60 0.003

Mir-103 1.35 0.43 0.08 1.12 0.16 0.60 1.73 0.79 0.03

Mir-99a -1.08 -0.11 0.45 -1.35 -0.43 0.03 1.24 0.31 0.04

Mir-10b -1.11 -0.15 0.40 -1.31 -0.39 0.18 1.13 0.17 0.04

FC: fold change; Log2FC: log2 of fold change; p-value calculated by Student’s t-test. A positive fold change indicates that the miRNA is up regulated in

obesity and a negative indicate down regulation.

doi:10.1371/journal.pone.0131650.t006
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regulated in macrophages by IL4 and IL13 stimulation as well as by allergy induced inflamma-
tion [53]. In the present study, where all cells in the adipose tissue have been included for the
extraction of RNA, it might be that the increased mir-124a expression in this tissue is due to
the presence of macrophages. On the other hand, adipocytes have also been proven to express
mir-124 [54].

Fig 2. Expression of mir-9 andmir-124a in Subcutaneous Adipose Tissue. qPCR expression of mir-9 (A)
and mir-124a (B) in Subcutaneous Adipose Tissue (SC AT). Column scatter plot of the groups Lean and
Obese, Lean Male and Obese Male and Lean Female and Obese Female is shown for each of the three
microRNAs. P-values calculated by Student’s t-test.

doi:10.1371/journal.pone.0131650.g002
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Mir-124 expression has previously been linked to weight gain. In a study of mice blastocysts
injected with mir-124, the injection resulted in a 30% weight increase of the mice pups com-
pared to control mice pups. This effect lasted for generations. The suspected target gene was
Sox9 and embryonic overexpression of mir-124 lead to overexpression of this target gene in the
adult mouse, presumably to compensate for the abnormal embryonic miRNA profile [55].
Sox9 is a transcription factor, which is highly expressed in adipose tissue derived stem cells and
its down regulation is essential for differentiation into adipocytes [56,57]. Mir-124 is also tar-
geting ADIPOR2 –a receptor for the protein hormone adiponectin, which is secreted in adipose

Fig 3. Expression of mir-9 andmir-124a in Abdominal Adipose Tissue and Liver. qPCR expression of mir-9 and mir-124a in Abdominal Adipose Tissue
(Abd AT) (A,B) and Liver (C,D). Column scatter plot of the groups Lean and Obese, Lean Male and Obese Male and Lean Female and Obese Female is
shown for each of the two microRNAs in all three tissues. P-values calculated by Student’s t-test.

doi:10.1371/journal.pone.0131650.g003
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tissue [58]. ADIPOR2 expression is negatively correlated with obesity traits as it is speculated
to have a protective role in insulin resistance, since expression increased when obese subjects
undergo physical exercise [59].

Mir-9 expression has also been linked to the obesity related diseases diabetes and inflamma-
tion. Mir-9 over-expression in β-cells induces exocytosis and thereby insulin release by target-
ing the transcription factor Onecut, which negatively regulates granuphilin. Granuphilin is
located on β-cell secretory vesicles and is involved in the secretory response of the insulin-pro-
ducing cells [60]. Mir-9 expression is also induced in monocytes and neutrophils upon activa-
tion of the immune receptors TLR4, TLR2 and TLR7/8 and by the pro-inflammatory cytokines
TNF-a and IL-1B. NFKB1, an inflammation relevant transcription factor, is identified as the
potential target gene [61].

The overexpression of mir-9 and mir-124 in the adipose tissue of obese pigs may also con-
tribute to the lipid accumulation in the adipocytes. As described in humans, obese pigs have
larger adipocytes, due to lipid accumulation, than lean pigs [62].

Hepatic stellate cells (HSCs) are specialized liver cells that, like adipocytes, accumulate lipid
droplets, which they lose upon activation caused by liver damage. Inactivated lipid carrying
HSCs have higher mir-9 and mir-124 expression than activated HSCs that carry no lipids [63].

The extraordinary high fold changes of mir-9 and mir-124a in the obese compared to the
lean subjects prompted us to perform qPCR in three additional obesity relevant tissues: abdom-
inal adipose tissue, liver and skeletal muscle (see Fig 3). While no differential expression was
observed in skeletal muscle, gender specific differential expression was observed in both
abdominal adipose tissue and liver. In abdominal adipose tissue both mir-9 and mir-124a was
expressed at a higher level in the obese male pigs, (p-value = 0.07 and 0.01 respectively). Mir-9
and mir-124a were both significantly differentially expressed in the liver of obese males, while
there was no significant difference in the females. The gender differences in expression
observed in abdominal adipose tissue and liver might be related to the differences in fat storage
observed between males and females [8].

A selection of target genes for mir-9 and mir-124 (list in S7 Dataset) were tested by qPCR but
none of them were significantly suppressed in the obese group (S8 Dataset). This illustrates the
difficulty in assessing miRNA:Target interactions experimentally on the RNA level. The changes
in mRNA level upon miRNA binding may be very subtle or even non-existent as the changes are
only measurable at the protein level, due to the mRNA being transcribed in normal levels, and
the miRNA regulation in mammals is often limited to suppression of translation [23].

Of the other six differentially expressed miRNAs in the sequencing experiment, mir-199a-
5p, which was significantly down regulated in obese subjects in the sequencing data, was also
down regulated when assessed by qPCR, but did not reach significance. Mir-199a-5p has been
identified as differentially expressed in subcutaneous adipose tissue from humans, where it was
up regulated in obesity [64]. The other mature arm of mir-199a, mir-199a-3p, has been identi-
fied as down regulated upon weight loss in morbidly obese human patients [65].

Two of the additional differentially expressed miRNAs from the sequencing data, mir-34c
and mir-489 could not be analyzed by qPCR due to very low expression in the majority of the
samples. In other studies mir-34c has been shown to be expressed during adipogenesis of
3T3-L1 adipocytes and in murine brown adipocytes. It has, however, not been found differen-
tially expressed in subcutaneous adipose tissue in humans [66,67]. Mir-489 is expressed in the
adipocyte precursor mesenchymal stem cells, where its expression inhibits differentiation into
osteoblasts [68]. It has also been linked to maintaining cell quiescence in muscle stem cells [69].

Apart from the miRNAs differentially expressed in the sequencing study, a couple of other
miRNAs were also assessed in subcutaneous adipose tissue by qPCR. Mir-99a was significantly
down regulated in obese female pigs in the sequencing study, but it is significantly up regulated
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in obese females and significantly down regulated in obese males in the qPCR study. The up
regulation of mir-99a in qPCR of the obese female pigs is consistent with a study in subcutane-
ous adipose tissue of obese women where mir-99a also was significantly up regulated in the
obese state [64]. Mir-99a is also up regulated during adipocyte differentiation into mature adi-
pocytes [64,67]. Interestingly, in the sequencing results mir-99a was significantly down regu-
lated in obese females. This result, together with the results on mir-10b are examples of
inconsistent results between NGS and qPCR as has also reported by others [19].

Mir-10b is, apart from being the most expressed miRNA with more than 32% of the total
read count in the sequencing study (Fig 1), also differentially expressed in the obese female pigs
(Tables 5 and 6) where it is down regulated in female obesity according to the sequencing
study and up regulated in the qPCR study. However, the fold changes are small, and this small
differential expression may only have minor biological significance. Mir-10b is up regulated in
adipocyte differentiation [67], which together with the high expression in adipose tissue sug-
gests a housekeeping regulatory function in this tissue. Mir-103 is up regulated in the obese
female pigs in both the sequencing study and the qPCR study (Tables 5 and 6). With a fold
change of 1.73 the differential expression might have a moderate impact on protein expression
in adipose tissue of the female pigs. Mir-103 has previously been found to be expressed during
adipocyte differentiation and to accelerate adipogenesis [70,71].

In conclusion, sequencing the small RNA fraction of subcutaneous adipose tissue reveals
differences in miRNA expression between lean and obese pigs with some gender specific dif-
ferences. QPCR studies confirm some of these differences, in particular for mir-9 and mir-
124a which are significantly differentially expressed with large fold changes. Mir-9 and mir-
124a are significantly up regulated in subcutaneous adipose tissue of obese pigs, indepen-
dently of gender. Additionally, only mir-124 is significantly up regulated in abdominal adi-
pose tissue of male obese pigs and both mir-9 and mir-124a are up regulated in the liver of
obese male pigs. These results indicate that gender differences in fat storage are potentially
regulated by miRNAs.
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