UNIVERSITY OF COPENHAGEN

An insect-tapeworm model as a proxy for anthelminthic effects in the mammalian host

Woolsey, Ian David; Fredensborg, Brian Lund; Jensen, Per Moestrup; Kapel, Christian Moliin Outzen; Meyling, Nicolai Vitt

Published in: Parasitology Research

DOI: 10.1007/s00436-015-4477-0

Publication date: 2015

Document version Peer reviewed version

Citation for published version (APA): Woolsey, I. D., Fredensborg, B. L., Jensen, P. M., Kapel, C. M. O., & Meyling, N. V. (2015). An insect-tapeworm model as a proxy for anthelminthic effects in the mammalian host. *Parasitology Research*, 114(7), 2777-2780. https://doi.org/10.1007/s00436-015-4477-0

Parasitology Research

An insect-tapeworm model as a proxy for anthelminthic effects in the mammalian host. --Manuscript Draft--

Manuscript Number:	PARE-D-15-00225R1
Full Title:	An insect-tapeworm model as a proxy for anthelminthic effects in the mammalian host.
Article Type:	Short Communication
Funding Information:	
Abstract:	Invertebrate models provide several important advantages over their vertebrate counterparts including fewer legislative stipulations and faster, more cost-effective experimental procedures. Furthermore, various similarities between insect and mammalian systems have been highlighted. To obtain maximum use of invertebrate models in pharmacology, their fidelity as analogues of vertebrate systems requires verification. We utilised a flour beetle (Tenebrio molitor) - tapeworm (Hymenolepis diminuta) model to evaluate the efficacy of known anthelmintic compounds, praziquantel, mebendazole and levamisole against H. diminuta cysticercoid larvae in vitro. Inhibition of cysticercoid activity during the excystation procedure was used as a proxy for worm removal. The effects of the three compounds mirrored their relative efficacy in treatment against adult worms in mammalian systems; however, further study is required to determine the fidelity of this model in relation to dose administered. The model precludes comparison of consecutive daily administration of pharmaceuticals in mammals due to cysticercoids not surviving outside of the host for multiple days. Treatment of beetles in vivo, followed by excystation of cysticercoids post dissection could potentially allow for such comparisons. Further model validation will include analysis of pharmaceutical efficacy in varying H. diminuta isolates and pharmaceutical dilution in solvents other than water. Notwithstanding, our results demonstrate that this model holds promise as a method to efficiently identify promising new cestocidal candidates.
Corresponding Author:	Ian David Woolsey, MSc DENMARK
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	
Corresponding Author's Secondary Institution:	
First Author:	Ian David Woolsey, MSc
First Author Secondary Information:	
Order of Authors:	Ian David Woolsey, MSc
	Brian L Fredensborg, Ph.D
	Per M Jensen, Ph.D
	Christian M. O. Kapel, Ph.D
	Nicolai V Meyling, Ph.D
Order of Authors Secondary Information:	
Author Comments:	

Dear Editor,

More details have now been added to the abstract. I have incorporated some of reviewer #1 comments into the discussion and have checked that all species and genus names are italicised.

The old name of the journal in the references has now been amended to Parasitol Res.

Regards,

Ian Woolsey.

1	1	An insect-tapeworm model as a proxy for anthelminthic effects in the
1 2 3	2	mammalian host.
4 5	3	
6 7 8	4	Ian David Woolsey, Brian L. Fredensborg, Per M. Jensen, Christian M.O. Kapel,
9 10	5	Nicolai V. Meyling
11 12 12	6	
13 14 15	7	Department of Plant and Environmental Sciences, University of Copenhagen,
16 17	8	Thorvaldsensvej 40, 1871 Frederiksberg C.
18 19 20	9	
21 22	10	Word count:
23 24 25	11	Abstract: 213
26 27	12	Article: 1587
28 29 30	13	
31 32	14	Corresponding author: Ian Woolsey, e-mail: <u>ianwoolsey@plen.ku.dk</u> ,
33 34 35	15	Phone: +45 26 70 60 96.
36 37		
38 39		
40 41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57		
58 59		
60 61		
62 63		
64		
65		

16 Abstract

17	Invertebrate models provide several important advantages over their vertebrate counterparts including
18	fewer legislative stipulations and faster, more cost-effective experimental procedures. Furthermore,
19	various similarities between insect and mammalian systems have been highlighted. To obtain
20	maximum use of invertebrate models in pharmacology, their fidelity as analogues of vertebrate systems
21	requires verification. We utilised a flour beetle (Tenebrio molitor) – tapeworm (Hymenolepis diminuta)
22	model to evaluate the efficacy of known anthelmintic compounds, praziquantel, mebendazole and
23	levamisole against H. diminuta cysticercoid larvae in vitro. Inhibition of cysticercoid activity during
24	the excystation procedure was used as a proxy for worm removal. The effects of the three compounds
25	mirrored their relative efficacy in treatment against adult worms in mammalian systems; however,
26	further study is required to determine the fidelity of this model in relation to dose administered. The
27	model precludes comparison of consecutive daily administration of pharmaceuticals in mammals due
28	to cysticercoids not surviving outside of the host for multiple days. Treatment of beetles in vivo,
29	followed by excystation of cysticercoids post dissection could potentially allow for such comparisons.
30	Further model validation will include analysis of pharmaceutical efficacy in varying H. diminuta
31	isolates and pharmaceutical dilution in solvents other than water. Notwithstanding, our results
32	demonstrate that this model holds promise as a method to efficiently identify promising new cestocidal
33	candidates.
34	
35	Key words
36	Cestode, anthelminthic, Hymenolepis diminuta, host-parasite model, Tenebrio molitor
37	
38	Introduction
39	Mammal testing remains the gold standard to screen potential drug compounds for various
40	toxicological and pharmacological effects in humans (Baumans 2004). The general public and the
41	scientific community have however increasingly opposed the use of experimental animals and sought
42	to Reduce, Refine and Replace (the 3R's) vertebrate experimentation (Schuppli et al. 2004). The use of
43	invertebrate models would constitute one method of Reduction or potentially Replacement (nc3rs
44	2014). The invertebrate innate immune response to infection resembles that in humans (Hoffmann et al.
45	1999; Kavanagh and Reeves 2007; Kimbrell and Beutler 2001), and insects have been used as

immunological research models (Pursall and Rolff 2011). As invertebrates are presently not subject to
experimental animal legislation that applies to vertebrates, less administrative efforts are required to
ensure appropriate standards of welfare (Kemp and Massey 2007). Furthermore, in many invertebrate
species, particularly insects, experimental processes are often quicker and their high rate of
reproduction means they can be produced in large quantities in a relatively short time resulting in faster
dissemination of results (Scully and Bidochka 2006). Finally, laboratory space required is minimal due
to much smaller housing stipulations involved in using insects (Steinert et al. 2003).

The cosmopolitan rat tapeworm Hymenolepis diminuta Rudolphi, 1819 has been used as an experimental model for decades. Whilst it very rarely infects humans and is easily treatable (Tanowitz et al. 2001), it is often used as a teaching model for two reasons: i) the ease of maintenance of both stages of the parasitic life cycle (cysticercoid larvae in flour beetles and adult worm in rats), and ii) the helminth represents the same basic sequence of development as most other cestodes. Thus, the study of H. diminuta has made substantial contributions to our understanding of cestodes in general including their survival, reproduction and development strategies (Mansur et al. 2014). The use of an invertebrate intermediate host of this parasite enables the possibility of anthelmintic screening with limited use of vertebrates. Indeed, cysticercoids of H. diminuta isolated from infected beetles have been used to deduce mechanisms of cestocidal activity of plant derived cysteine proteinases (found in papaya and pineapple etc.) (Mansur et al. 2014) and condensed tannins (Dhakal et al. 2015). In addition, Novak and Evans (1978) demonstrated that mebendazole can retard development of H. diminuta cysticercoids when fed to *Tribolium confusum* du Val, 1863 beetles suggesting a similar mode of action of the drug towards the cysticercoid stage inside insects to the adult worm inside the mammalian host.

69 If the pharmacologic and toxicological parameters of potential cestocidal compounds, including plant 70 extracts, can be achieved using an insect – tapeworm model it could significantly increase the speed at 71 which such compounds are available as alternatives to current anthelmintics as well as reducing the 72 amount of vertebrates necessary for experiments.

In this study, we assessed the usefulness of the *Tenebrio molitor* (Linneaus, 1758) -*H. diminuta* model
as a proxy for the mammalian system by evaluating: 1) if the effects of the three commonly used

anthelmintics, praziquantel, mebendazole, and levamisole on cysticercoids of *H. diminuta* resemble the effects known from adult worms in the rat host (qualitative similarity), and 2) if varying concentrations of the pharmaceutical alter the inhibition of larval cestodes from insects as they do in mammalian systems (quantitative similarity). We assessed anticestodal effects as the rate of inhibition of *in vitro* excystation of cysticercoids when exposed to the physico-chemical conditions mimicking the digestive processes in the gastrointestinal tract of the rat.

Praziquantel is a highly effective drug against adult cestodes in mammals (McKellar and Jackson 2004; Thomas and Grönnert 1977), and we therefore hypothesized a strong inhibitory effect of praziquantel on cysticercoid excystation. In contrast, mebendazole shows a moderate effect on adult cestodes (McCracken, Lipkowitz et al. 1992), but it is widely used to treat nematode infections in humans (Bennett and Guyatt 2000). Inhibitory effects of mebendazole on cysticercoid excystation are therefore only expected at relatively high concentrations. Levamisole is a nematicidal drug showing no effect on adult cestodes in mammals (Bennett, Behm et al. 1978), and it therefore served as a negative control in this study.

92 Materials and methods

93 Pharmaceutical formulation and application

Stock solutions of praziquantel (Droncit[®]), mebendazole (Vermox[®]) and levamisole hydrochloride
were mixed with Mill-Q[®] water in order to create the desired concentrations of 0.05, 0.005, 0.0005 and
0.00005%.

Infected T. molitor beetles (infection protocol as in Dhakal et al. 2015) were dissected with 0.9% physiological saline in a petri dish. Cysticercoid cysts were counted then removed with a Pasture Pipette and placed in watch glasses (33 mm diameter, 7 mm deep). Ten cysts were placed in each of 15 watch glasses containing either one of the 3 drugs at the 4 different concentrations or saline control. Three controls were prepared, one for each drug. No more than 4 cysticercoids from a single beetle were used per watch glass. Once all cysts had been positioned, saline was removed from the glass with a pipette and 0.5ml of the desired anthelmintic or saline was applied. Watch glasses were then placed on a Centromat[®] rotating table for 60 minutes at 50 rpm at room temperature. The experiment was

 repeated at three separate occasions, and these repeats were pooled for final analysis leading to 30observations for each pharmaceutical at each concentration.

109 Excystation

Cysticercoid excystation was achieved utilizing a modified existing protocol (Goodchild and Davis 1972). Briefly, anthelmintic was removed with a Pasteur Pipette and 2 ml HCl-Pepsin solution [2 ml 37 % HCl, 20 ml 37°C 0.9 % saline, 0.8 g pepsin powder from porcine gastric mucosa (1:2500, Sigma Life Science)] was added to each watch glass and placed in an incubator at 37°C for 10 minutes. The HCl-Pepsin solution was then removed by pipette and the cysticercoids were washed 3 times with saline (approx. 2 ml), to remove any remaining acid, after which 1 ml of trypsin-taurocholate solution [0.1 g sodium taurocholate hydrate powder, 0.1 g trypsin powder from porcine pancreas, (97 %, Sigma Life Science), 10 ml warm phosphate-buffered saline (PBS) was added. The cysticercoids were then placed in the incubator at 37°C for 180 minutes.

120 Cysticercoid observations

121 Cysticercoids were graded on a 2-point scale; 0 – no visible sign of activity; or 1 – movement within
122 the cysticercoid or full excystation, that is, protrusion of the scolex from the cysticercoid capsule. To
123 differentiate between type 0 and 1, each cysticercoid was observed at 100 × magnification for 10
124 seconds.

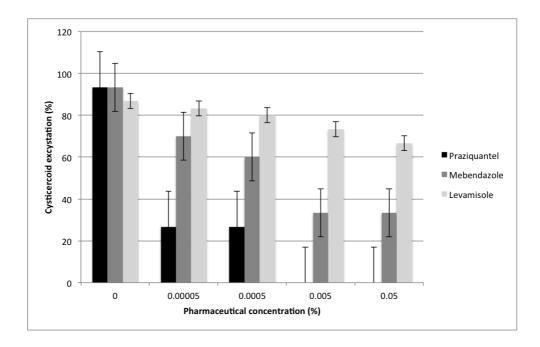
126 Statistical analysis

Paired comparisons, across all pharmaceuticals and concentrations (including their respective controls),
were executed under a generalised (binomial) linear model, which provided information on statistical
differences for each comparison (total pairs = 35, each having 30 observations). The analyses were
conducted under PROC GENMOD in SAS 9.1 for Windows (SAS Institute, Cary NC, USA), which
also provided information on the effect of concentrations for each pharmaceutical.

Results and Discussion

134Across all concentrations, praziquantel was significantly more inhibitory than mebendazole (0.05%135p=0.0128, 0.005%p=0.0128, 0.0005%p=0.0168 and 0.00005%p=0.0012) and levamisole (0.05%)

p=0.0002, 0.005% p=0.0001, 0.0005% p=0.0002, 0.00005% p=0.0001). Mebendazole was only137significantly more inhibitory against levamisole at the highest two concentrations (0.05% p=0.0114,1380.005% p=0.0026, 0.0005% p=0.0960 and 0.00005% p=0.2274). The inhibitory effect on excystation139was dose-dependent both for praziquantel (p=0.0001) and mebendazole (p=0.0001) but not for140levamisole where no significant reduction in excystation was observed (p=0.0633) (Fig. 1).141142142Thus, the greatest inhibitory effect of anthelmintic on cysticercoid activity was observed for143praziquantel, followed by mebendazole whereas no significant inhibition could be demonstrated for


levamisole. This trend was observed across all concentrations and indeed, qualitatively the drugs appear to be mirroring their comparative levels of efficacy in the mammalian system against adult cestodes (Bennett et al. 1978; Dayan 2003; McCracken et al. 1992; Thomas and Grönnert 1977). Furthermore, differing concentrations of the drugs in vitro have a significant affect on cysticercoid inhibition. This corresponds to mammalian models in which differing doses of pharmaceuticals administered result in varying worm expulsion efficacy. In rats, 100% reduction in H. diminuta worm burden has been demonstrated with 5 mg/kg praziquantel application, while 0.5 mg/kg resulted in a 53% worm burden reduction (Thomas and Gönnert 1977). In this study both praziguantel and mebendazole were observed to be significantly less inhibitory at lower concentrations. Due to this varying cysticercoid inhibition as a function of concentration, future studies could focus on calibrating concentrations in vitro with worm expulsion in mammals in an effort to enhance quantitative similarity of this model. Furthermore, the variability (or lack thereof) in pharmaceutical efficacy in different H. *diminuta* isolates should be considered as well as pharmaceutical dilutions in solvents other than water.

When utilizing mebendazole against cestode infections a number of studies employ consecutive daily treatment of the drug (Maki and Yanagisawa 1985; McCracken et al. 1992; Varma et al. 1989). As cysticercoids will not survive outside of the host for multiple days, comparisons of such studies with this model are precluded. Treatment of beetles *in vivo*, followed by excystation of cysticercoids post dissection could potentially allow for such comparisons.

Although the quantitative properties in relation to concentration administered need further explorationin the present model, our study demonstrates that the relative effects of the three anthelmintics in

	166	mammalian systems were mirrored by the cysticercoid excystation assay. Therefore, this model has the
1 2	167	potential to function as a rapid and cost-effective screening technique of anthelminthic candidates for
3 4	168	further testing. Additionally, the T. molitor - H. diminuta model may significantly reduce the number of
5 6	169	vertebrates needed for initial drug screening complying with the increasing demand for a reduction in
7 8	170	the number of vertebrates used in biomedical research.
9 10 11	171	
12 13	172	
14 15	173	Funding: This research was supported by a starting grant from the programme "Synergy in Human and
16 17	174	Animal Research (SHARE)" at the University of Copenhagen and a research grant (no. 00007457)
18 19	175	from the Villum Foundation.
20 21	176	
22 23	177	Conflict of interest: The authors declare that they have no conflict of interest.
24 25	178	
26 27	179	Ethical approval: All applicable international, national, and/or institutional guidelines for the care and
28 29	180	use of animals were followed. All procedures performed in studies involving animals were in
30 31	181	accordance with the ethical standards of the institution or practice at which the studies were conducted
32 33	182	(Danish Experimental Animal Inspectorate permission no. 2010/561-1914 –section C10).
34 35	183	
36 37 38	184	References
39	185	Baumans V (2004) Use of animals in experimental research: an ethical dilemma? Gene Ther 11 Suppl
40	186	
41	187 188	Bennett A, Guyatt H (2000) Reducing Intestinal Nematode Infection: Efficacy of Albendazole and
42	189	Mebendazole. Parasitol Today 16:71-74 Permett LIM Palme C. Permet C. (1078). Effects of makendazole and lavomicele on tatasthuridis of
43	190	Bennett HM,Behm C,Bryant C (1978) Effects of mebendazole and levamisole on tetrathyridia of <i>Mesocestoides corti</i> in the mouse. Int J Parasitol 8:463-466
44	190	Dayan AD (2003) Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and
45	192	pharmacokinetics Acta Trop. 86:141-159
46	193	Dhakal S,Meyling NV,Williams AR,Mueller-Harvey I,Fryganas C,Kapel CM,Fredensborg BL (2015)
47	194	Efficacy of condensed tannins against larval Hymenolepis diminuta (Cestoda) in vitro and in
48	195	the intermediate host Tenebrio molitor (Coleoptera) in vivo. Vet Parasitol 207:49-55
49	195	Goodchild CG,Davis BO (1972) <i>Hymenolepis microstoma</i> Cysticercoid Activation and Excystation In
50	190	
51	198	vitro (Cestoda) J. Parasitol. 58:735-741
52	199	Hoffmann JA,Kafatos FC,Janeway CA,Ezekoitz RAB (1999) Phylogenetic Perspectives in Innate Immunity. Science 284:1318
53	200	
54	200	Kavanagh K,Reeves EP (2007) Insect and mammalian innate immune responses are much alike. Microbe 2:596-599
55	201	Kemp MW,Massey RC (2007) The use of insect models to study human pathogens. Drug Discov
56	202	
57	203	Today: Dis Models 4:105-110 Kimbrall DA Pautlar P. (2001) The evolution and genetics of innets immunity. Nature 2:256-267
58	204	Kimbrell DA,Beutler B (2001) The evolution and genetics of innate immunity. Nature 2:256-267
59		
60		
61		
62		
63		7
64		,

	205	Maki J, Yanagisawa T (1985) Anthelmintic effects of bithionol, paromomycin sulphate, flubendazole
1	206	and mebendazole on mature and immature Hymenolepis nana in mice J. Helminthol 59:211-
2	207	216
3	208	Mansur F,Luoga W,Buttle DJ,Duce IR,Lowe A,Behnke JM (2014) The anthelmintic efficacy of natural
4	209	plant cysteine proteinases against two rodent cestodes Hymenolepis diminuta and
5	210	Hymenolepis microstoma in vitro. Vet Parasitol 201:48-58
6	211	McCracken RO, Lipkowitz KB, Dronen NO (1992) Efficacy of albendazole and mebendazole against
7	212	Hymenolepis microstoma and Hymenolepis diminuta. Parasitol Res 78:108-111
8	213	McKellar QA, Jackson F (2004) Veterinary anthelmintics: old and new trends. Parasitol
9	214	20:456-461
10	215	nc3rs (2014) What are the 3Rs? http://www.nc3rs.org.uk/the-3rs. Accessed 11/11/2014 2014
11	216	Novak M, Evans W (1978) The effect of mebendazole on different developmental stages of
12	217	Hymenolepis diminuta cysticercoids. Can. J. Zool 56:604-607
13	218	Pursall ER, Rolff J (2011) Immune Responses Accelerate Ageing: Proof-of-Principle in an Insect
14	219	Model. PLoS One 6:1-7
15	220	Schuppli CA, Fraser D, McDonald M (2004) Expanding the three Rs to meet new challenges in humane
16	221	animal experimentation. Altern Lab Anim 32:525-532
17	222	Scully LR,Bidochka MJ (2006) Developing insect models for the study of current and emerging human
18	223	pathogens. FEMS Microbiol Lett 263:1-9
19	224	Steinert M, Leippe M, Roeder T (2003) Surrogate hosts: protozoa and invertebrates as models for
20	225	studying pathogen-host interactions. Int J Med Microbiol 293:321-332
21	226	Tanowitz HB, Weiss LM, Wittner MD (2001) Tapeworms. Curr Infect Dis Rep 3:77-84
22	227	Thomas H,Gönnert R (1977) The efficacy of Praziquantel against cestodes in Animals. Parasitol Res
23	228	52:117-127
24	229	Varma T, Shinghal T, Saxena M, Ahluwalia S (1989) Studies on the comparative efficacy of
25	230	mebendazole, flubendazole and niclosamide against human tapeworm infections. Indian J
26	231	Public Health 34:163-168
27	232	
28		
29	233	Fig. 1.: The effect of three anthelmintics at each of four concentrations and controls (0%) on the in
30	200	1G 1 . The effect of three anticipations at each of four concentrations and controls (0.0) of the <i>m</i>
31	234	vitro activation of larval Hymenolepis diminuta. The data represent the mean percentage of activated
32	_01	
33	235	cysticercoids across three repeats. Error bars (S.E.M.).
34		
35	236	
36		
37	237	
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		
61		
62		
63		8
64		
65		

