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Abstract
Many hours of sunlight in the midnight sun period suggest that significant amounts of bio-

genic volatile organic compounds (BVOCs) may be released from arctic ecosystems during

night-time. However, the emissions from these ecosystems are rarely studied and limited to

point measurements during daytime. We measured BVOC emissions during 24-hour peri-

ods in the field using a push-pull chamber technique and collection of volatiles in adsorbent

cartridges followed by analysis with gas chromatography- mass spectrometry. Five different

arctic vegetation communities were examined: high arctic heaths dominated by Salix arctica
and Cassiope tetragona, low arctic heaths dominated by Salix glauca and Betula nana and
a subarctic peatland dominated by the mossWarnstorfia exannulata and the sedge Erio-
phorum russeolum. We also addressed how climate warming affects the 24-hour emission

and how the daytime emissions respond to sudden darkness. The emissions from the high

arctic sites were lowest and had a strong diel variation with almost no emissions during

night-time. The low arctic sites as well as the subarctic site had a more stable release of

BVOCs during the 24-hour period with night-time emissions in the same range as those dur-

ing the day. These results warn against overlooking the night period when considering arctic

emissions. During the day, the quantity of BVOCs and the number of different compounds

emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene,

α -phellandrene, 3-carene and α-terpinene as well as isoprene were absent in dark mea-

surements during the day. Warming by open top chambers increased the emission rates

both in the high and low arctic sites, forewarning higher emissions in a future warmer cli-

mate in the Arctic.
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Introduction
Biogenic volatile organic compounds (BVOCs) have been frequently studied in temperate and
boreal ecosystems (e.g. [1–5]). Arctic environments, however, are scarcely studied and have
been limited to point measurements during daytime [6].

The global emission of BVOCs from terrestrial ecosystems, estimated to be 700–1000 Tg C
yr-1 [7], contributes to physical and chemical properties in the atmosphere. BVOCs may pro-
long the lifetime of methane in the atmosphere, affect the concentration of near ground ozone
and play a role in cloud formation processes [8]. Thus, BVOCs are important due to their reac-
tivity and contribution to atmospheric chemistry and their unknown feedbacks to climate
change [9,10].

Terpenoids, a large group of BVOCs, include hemiterpenes (e.g. isoprene), monoterpenes
(MTs) and sesquiterpenes (SQTs). Isoprene, globally the most abundant individual BVOC [7],
is not stored in plants, but is emitted directly from de novo synthesis, which is dependent on
products from photosynthesis [11]. In contrast, emissions of MTs and SQTs can derive from
both de novo synthesis and storage pools, such as glandular trichomes and resin ducts [11,12].
The emission of de novo synthesized compounds is light and temperature dependent while that
of compounds released from storage pools is mainly dependent on leaf temperature [7]. Thus,
emission of BVOCs often peaks during midday and decreases with decreasing light and tem-
perature (see e.g. McKinney et al. [13]). The emission from arctic ecosystems, with low temper-
ature, low foliar density and low solar angle, has been previously estimated to be minimal [14].
However, Schollert et al. [6] reported significant BVOC emission rates for high arctic vegeta-
tion (20–60 μg m-2 h-1), up to the same order of magnitude as the emissions from subarctic
vegetation (45 μg m-2 h-1) [15].

Arctic plants are well adapted to the short growing season, and photosynthetic activity in
arctic evergreen species occurs even under the snow cover in spring time [16]. The capacity to
produce isoprene develops fast in these systems; the onset of isoprene emission has been
shown to occur already at 100°D (degree days; number of temperature degrees above a thresh-
old accumulated for each day) in a subarctic wetland [17] compared to boreal woody ecosys-
tems where the onset occurs at 200–600°D [18,19]. It is evident that plants in arctic biomes are
active and produce and emit BVOCs even though the mean air temperature is rather low.
However, there is great uncertainty about the amount of BVOCs released from arctic ecosys-
tems and the physiological and environmental parameters affecting the emission rate. The
amount and composition of BVOCs released from the Arctic, where climate change is more
rapid than in any other biomes in the world [9], needs greater attention as it is likely to be of in-
creasing importance to the global BVOC budget.

A diel variation in BVOC emissions has been reported for several different environments
and plant species, for example for a Mediterranean mixed oak forest [20], for Eucalyptus trees
in a greenhouse [21] and in a laboratory experiment [22] and for Scots pine in a boreal conifer
forest [23]. To date, no study has reported on the diel variation of BVOC emissions from eco-
systems in the Arctic, where there is solar radiation during night-time in the midnight sun peri-
od, the time of the year during which the sun never sets below the horizon. Rinne et al. [24]
have reported that sub-canopy isoprene concentrations in a boreal forest peak just before mid-
night, and suggested that the late peak is due to the more sunlight hours in the high compared
to mid-latitudes, where isoprene peaks at mid-day [25]. An unusual high particle growth rate
during the night above a subarctic wetland [26] may indicate that there are significant BVOC
emissions during night in this area, knowing that BVOCs contribute to particle formation [7].
It is likely that the unique light conditions in the Arctic have an effect on the diel variation of
BVOC emissions and the potential night-time emissions cannot be ignored in emission
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budgets and models. There is an urgent need for researchers to obtain reliable emission esti-
mates and to improve the models used today.

No studies have reported on the effect of warming on the diel variation of BVOC emissions
in the arctic ecosystems. It has been estimated that climate warming during the last 30 years
has increased global BVOC emissions by approximately 10% and a further temperature in-
crease of 2–3°C could increase emissions by an additional 30–45% [27]. Tiiva et al. [28] have
reported an increase in isoprene emission by as much as 83% due to experimental warming
and Faubert et al. [29] have shown that climate warming may have more impact on the day-
time BVOC emissions from subarctic dry heath than what has been suggested by commonly
used temperature dependency models [14,30].

Our aim was to elucidate the diel variations of BVOC emissions using field measurements
in five vegetation communities from the Subarctic, Low Arctic and High Arctic. We expected
significant BVOC emissions during the day but also during the night-time due to the midnight
sun. We also expected some nigh-time emissions of lipophilic BVOCs, such as non-oxygenated
MTs, from storage pools, because they can diffuse through the cuticle even if stomata close. We
also aimed to assess the importance of climate warming on the rates and diel variation of
BVOC emissions. The effect of warming by open top chambers (OTCs) during the snow free
period correlates with the amount of photosynthetic active radiation (PAR) and has been re-
ported to be larger during the daytime than night-time [31]. Thus, it was expected that the ef-
fect of OTC warming on the BVOC emissions would be more pronounced during the day
when the solar angle is higher than during the night. Finally, we aimed to address the immedi-
ate effect of light by comparing emissions sampled under ambient light and in complete dark-
ness. We hypothesized that darkness would decrease the emission rate of compounds that
derive directly from de novo synthesis due to a halt in production, as well as hydrophilic com-
pounds deriving from both de novo synthesis and storage pools, for example oxygenated MTs
which cannot diffuse through the cell membranes, due to stomatal closure. However, we did
not expect that the light manipulation would have an effect on emission from pools in special-
ized storage structures.

Materials and Methods

Site description and experimental design
The 24-hour measurements were performed in high arctic (Zackenberg valley, NE Greenland;
74°30’N / 21°00’W), low arctic (Disko Island, West Greenland; 69°14’N / 53°32’W) and subarc-
tic (Sodankylä, Northern Finland; 67°22’N / 26°38’E) study sites (Fig 1). Here the High Arctic
is defined as the northernmost part of the arctic area with open very low-statured vegetation
and a mean temperature for the warmest month of ~6°C [6,32]. The Low Arctic has more lush
vegetation and a mean temperature for the warmest month of ~8–9°C [32]. The Subarctic is an
area immediately south from the true Arctic with monthly mean temperature of more than
10°C for at least one and maximum three months [33].

The high arctic sampling sites were situated in a valley where the mean annual precipita-
tion was 261 mm (84% as snowfall) and the mean annual temperature was -7.8°C (1996–2005
period; [34]). This area experiences midnight sun during a 96-day period between 4 May and
8 August [35]. The sampling was performed in two different heath vegetation communities,
one dominated by Cassiope tetragona (L) D. Don and another dominated by Salix arctica L.
For detailed description of the vegetation see S1 Table. In each vegetation community, two
controls (C) and two plots warmed (W) by hexagon-shaped open top chambers (OTCs; diam-
eter 120 cm, the International Tundra Experiment, ITEX) acting as open greenhouses, in-
stalled in 2007 in a randomized block design, were sampled simultaneously. Another two
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plots from each treatment were sampled 45 min after the first set. This experimental design
with four replicates allowed us to compare the diel BVOC emission patterns between the two
vegetation communities and the treatments.

The low arctic site was a heath located close to the ocean with an average annual temperature
of -2.9°C and precipitation of 273 mm (1992–2013 period). Midnight sun occurs for a period of
52 days between 26May and 17 July [35]. The vegetation is overall low statured and dominated
by Salix glauca L., Betula nana L., Vaccinium uliginosum L. and Carex spp. (S2 Table).

The subarctic site, located in Sodankylä, Northern Finland, was a mesotrophic flark fen on
the larger peatland complex Halssiaapa (67°22’N, 26°38’E, 179 m a.s.l.; [36]). The mean annual
temperature was -0.4°C between 1981 and 2010, and the mean annual precipitation for the
same period was 527 mm [37]. This site has midnight sun for a period of 20 days between 11
June and 1 July [35].The dominant plant species were the mossWarnstorfia exannulata
(Schimo.) Loeske and the sedge Eriophorum russeolum Fr. Ex Hartm. (S3 Table). The measure-
ments took place in the control plots of an experiment assessing long-term effects of enhanced
UV-B radiation [36].

One measurement campaign, performed to study the effect of light vs. darkness, took place
on a low arctic heath a few kilometers in a westerly direction from the low arctic site described
above. The dominant plant species were V. uliginosum, Empetrum nigrum ssp. hermaphrodi-
tum L. and C. tetragona (S4 Table). Measurements took place in a one-year-old climate experi-
ment where samples were taken from controls (C) and plots warmed by OTCs (W) similar to
the high arctic site.

Fig 1. Map showing the three study sites in the Arctic area: the high arctic Zackenberg valley (NE Greenland; 74°30’N / 21°00’W), the low arctic
Disko Island (WGreenland; 69°14’N / 53°32’W) and the subarctic Sodankylä (N Finland 67°22’N / 26°38’E).

doi:10.1371/journal.pone.0123610.g001
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Ethics Statement
No endangered or protected species were sampled in this study. The Ecosystem Monitoring
Coordination Group at the National Environmental Research Institute, Aarhus University ap-
proved access and research activities in the Zackenberg national park, and the board of the Arc-
tic Station those in the protected area on Disko Island. No permits were needed for the
subarctic site as the area is not privately-owned or protected.

BVOC sampling and analysis
The sampling took place every three hours in high- and low arctic sites and every two hours in
the subarctic site giving a total of 8 and 12 sampling points during a 24-hour period, respective-
ly. In the High Arctic the Cassiope-heath was measured on 24–25 July and the Salix-heath on
25–26 July 2013. In the Low Arctic, measurements were conducted on 18–19 June 2013 in two
different communities dominated by S. glauca or B. nana. The subarctic site was measured on
23–24 July and 5–6 August 2008. Four replicate plots were measured each time for each vegeta-
tion community. To study the effect of light vs. darkness during the day BVOC emissions were
sampled from four control and four warming plots first under ambient light and then while
darkening the measurement chamber by a black cloth. The chamber was darkened for 10 min
prior to the start of sampling. The sampling under light and dark conditions was separated by
one hour to minimize the stress effect on the plants but to maintain environmental conditions
as similar as possible. It took place between 09:00 and 16:00 on 15 June 2013.

An enclosure technique was used to sample BVOCs emitted from the whole ecosystem plot
including both vegetation and the underlying soil (see Faubert et al. [36] for the method used in
the subarctic site and below for the method used in the high- and low arctic sites). Transparent
polycarbonate chambers (thickness 1.5 mm; size for the high and low arctic sites: 22 × 22 cm,
height 20 cm; size for the subarctic site: 60 × 60 cm, height 25 cm; Vink Finland, Kerava,
Finland) were placed on aluminum chamber bases that were permanently installed in the
ground. The chamber base had a groove that was filled with water to seal and ensure that the
chamber headspace was airtight. Inside the chambers a fan mixed the air. Incoming air, which
was purified by a charcoal filter to remove particles and BVOCs and by a manganese dioxide
scrubber to remove ozone, was first directed into the chamber at 1000 ml min-1 for 10 min
using battery operating pumps, to exchange the ambient air therein. Thereafter the inflow was
set to 200 ml min-1. This procedure implies that in the beginning of the sampling period, the
low BVOC concentration in the chamber may have induced release of BVOCs from storage
pools and soil due to the large concentration gradient. However, during the 30 min sampling
period, the concentration gradient is likely to diminish and possibly even reverse, suggesting
few net effects on release of BVOCs. A stainless steel adsorbent cartridge filled with 150 mg
Tenax TA and 200 mg Carbograph 1TD (Markes International Limited, Llantrisant, UK) was
attached to the outflow-connection and air was drawn out from the chamber through the car-
tridge for 30 min at 200 ml min-1. The temperature and relative humidity inside the chambers
were recorded with a shaded iButton (i-Wire Hygrochron, Maxim Intergrated, San Jose, USA)
and the PAR was recorded every minute during the sampling using a S-LIA-M003 PAR sensor
connected to a HOBOmicro station data logger (H21-002 Onset computers corporation, Bos-
ton, USA). After sampling, the cartridges were sealed with Teflon-coated brass caps and stored
at 4°C until transport and analysis in Copenhagen, Denmark. The measurement chambers
were also removed and cleaned, using paper towels, to eliminate water and possible memory
effects from sticky compounds that might have attached on chamber surface. Blank measure-
ments to detect compounds originating from the material used during the measurement or
analysis system were performed by covering the chamber base with a pre-cleaned polyethylene
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terephthalate (PET) film to exclude the soil and vegetation. These measurements were per-
formed in situ in ambient conditions.

The BVOCs were analyzed by thermal desorption, at 250°C and cryofocusing at -10°C
(UNITY2, Markes, Llantrisant, UK), coupled with an ULTRA autosampler and gas chro-
matograph-mass spectromer (7890A Series GC coupled with a 5975C inert MSD/DS Perfor-
mance Turbo EI System, Agilent, Santa Clara, CA, USA), with a HP-5 capillary column
(50 m × 0.2 mm, film thickness 0.33 μm). Oven temperature was 40°C for 1 min, then in-
creased by 5°C min-1 until 210°C, and finally increased at a rate of 20°C min-1 up to 250°C.
Helium was the carrier gas and the run time was 45 minutes. BVOCs were grouped into iso-
prene, MTs, SQTs, other reactive volatile organic compounds (ORVOCs; compounds having
a lifetime in the atmosphere less than 24 hours) and other volatile organic compounds (other
VOCs; compounds having a lifetime in the atmosphere longer than 24 hours) [14]. The
BVOCs were identified using pure liquid standards and according to the mass spectra in
NIST library and quantified using pure standards for tricyclene, 2-methylfuran, toluene, non-
anal, 2-hexenal, 1-octen-3-ol, bornylacetate, α-pinene, camphene, sabinene, β-myrcene, β-pi-
nene, α-phellandrene, 3-carene, d-limonene, 1,8-cineole, α-terpinene, terpinolene, linalool,
camphor, borneol, α-copaene, longifolene, β-caryophyllene, α-humulene, cis-3-hexenyl ace-
tate, methyl salicylate and isoprene. Standards in methanol solution were injected in adsor-
bent cartridges in helium stream. The compound α-pinene was used for quantifying MTs
which did not have a pure standard available, 1,8-cineole for oxygenated MTs, α-humulene
for SQTs, and toluene for ORVOCs and other VOCs (in the subarctic data, cis-3-hexenyl ace-
tate was used for ORVOCs and methyl salicylate for other VOCs). Compounds that had an
identification quality in the NIST library of above 85% were included in the dataset. Com-
pounds which were found to originate from the system, i.e. found in blanks, were subtracted
from samples. The BVOC emission rates (μg BVOC m-2 ground area h-1) were calculated as
in Faubert et al. [15]. To calculate a daily sum, the hourly emission rates were first multiplied
by three in the High and Low Arctic and two in the Subarctic, to represent the emission rates
of the three or two-hour periods, respectively. Then, these products were summed to obtain
an estimate for an emission rate for a 24-hour period.

Statistical analyses
For each BVOC group, differences in emissions between time points during the 24-hour period
were tested using a one-way ANOVA mixed model computed in the R software (3.0.1, R core
team, 2013, package: lme4 version 1.0–5), with time as a fixed factor and plot as a random fac-
tor. When an additional factor was introduced, such as the warming treatment in the high arc-
tic data, it was added in the model as a fixed factor, and a two-way ANOVA mixed model was
used. If there was a significant difference between time points, a Dunnett’s test was used to
compare the different time points against the midday measurement, 12:00 for the high- and
low arctic data and 13:00 for the subarctic data. Differences between treatments were also test-
ed separately for all time points and Bonferroni adjusted P-values were used to correct for the
multiple comparisons. Student´s t-test was used for testing difference in emission rates between
vegetation communities. The effect of warming, by OTCs, on chamber and soil temperature,
soil moisture, and differences in daily sum between vegetation types were tested using one-way
ANOVA.

The light/dark data were tested using a two-way ANCOVAmixed model, with chamber
temperature as a covariate (to account for the unwanted effect of the light treatment on tem-
perature), the light/dark factor and the field treatment (C, W) as fixed factors and plot as a ran-
dom factor. A Pearson’s correlation test was used for testing correlations between emission
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rates and environmental parameters (PAR and temperature inside measurement chambers). In
general, an α = 0.05 was used, but to reduce the risk of Type II errors, which is rather high due
to the limited amount of replicates, we also discuss trends at a 0.05<α<0.1. The data were log-
transformed to obtain normal distribution and equal variances.

Results

Variation of emissions over 24 hours
High Arctic. At noon the total BVOC emission rate from the unmanipulated control plots

in the Cassiope-heath was 53.0 ± 48.7 (mean ± SE) μg m-2h-1 (Fig 2 and S5 Table) and the rate
for the Salix-heath was significantly higher, 100.6 ± 60.4 μg m-2h-1 (P<0.05, Fig 2 and S6
Table). The daily sum of total BVOC emissions during the 24-hour period tended to be lower
for the Cassiope-heath than for the Salix-heath (P = 0.09; Table 1).

Emissions from the Cassiope-heath peaked at noon and 90% of them were MTs (Fig 2 and
S6 Table). The MT emissions were significantly lower from 21:00 to 09:00 compared to the
12:00 emissions (P<0.05). SQTs were emitted only at 12:00 and 15:00 from two plots at a maxi-
mum rate of 1.0 μg m-2h-1. The ORVOCs were emitted at< 2 μg m-2h-1 from 09:00 to 18:00
and at even lower rates at 21:00, midnight and 06:00 (P = 0.08). Emissions of other VOCs ac-
counted for approximatively 1% of the total BVOC emissions and were significantly lower only
at 21:00 compared to the noon emission rate (P<0.01). Isoprene was emitted in minor
amounts during the daytime (S6 Table).

Isoprene, with a noon emission rate of 97.4 ± 61.2 μg m-2h-1, constituted 93% of the total
emission from the Salix-heath (Table 1), with a maximum emission rate at 15:00
(175.7 ± 66.4 μg m-2h-1, S5 Table). The isoprene emission rate stayed high until 18:00 when it
dropped and was significantly lower (P = 0.05) at all other time points compared to midday.
The emissions of MTs and ORVOCs were low, with maximum rates of 0.04 ± 0.02 and
1.1 ± 0.8 μg m-2h-1, respectively, with no differences between time points during the 24-hour
period (S6 Table). The noon emission rate of other VOCs was 2.8 ± 1.4 μg m-2h-1, and did not
differ between time points (S6 Table). The Salix-heath did not release any SQTs.

The total BVOC and MT emissions from the Cassiope-heath correlated with PAR (P< 0.01,
r2 = 0.29 for total BVOCs and 0.23 for MTs, n = 32) and chamber temperature (P< 0.01, r2 =
0.33 for total BVOCs and r2 = 0.28 for MTs, n = 32). There was a strong correlation between
isoprene emission and PAR (P<0.001, r2 = 0.63, n = 32) and chamber temperature (P<0.001,
r2 = 0.60, n = 32). The lowest PAR level was, between 21:00 and 06:00, on average 289 and
299 μmol m-2 s-1 for Cassiope- and Salix-heath, respectively (see Table 2 for 24-hour means).

Low Arctic. The total BVOC emission rates at 12:00 in the Betula- and Salix-heath in the
low arctic site were 138.1 ± 94.3 and 254.7 ± 60.3 μg m-2h-1, respectively (Fig 3 and S7 Table).
The daily sum of total BVOCs for Betula- and Salix- heaths did not differ from each other, and
they were minimum 2 fold higher than the daily sum for the High Arctic (P<0.01; Table 1).

In the Betula-heath, isoprene was emitted only at 12:00 and 15:00 with emission rates of
29.2 ± 18.5 μg m-2h-1 and 32.6 ± 7.3 μg m-2h-1, respectively. The MT emission rates were low,
varying between 0.3 and 5.2 μg m-2h-1, and only emitted from 09:00 to 21:00 with no differ-
ences between time points. Emission of SQTs occurred between 09:00 and 18:00, with an aver-
age of 23.2 ± 9.9 μg m-2h-1 at noon. The highest SQT emission rate of 32.8 ± 13.0 μg m-2h-1 at
15:00 did not differ from noon emissions but was higher than emissions at all other time points
(P<0.001). The ORVOC emissions reached a maximum at 15:00 with an average of
11.1 ± 3.4 μg m-2h-1, which was significantly higher than at noon (P<0.01). The emission rate
was low at all other time points and was under the detection limit from midnight to 09:00. The
emission of other VOCs, with methyl-butane as the dominant compound, occurred
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Fig 2. Diel emissions of biogenic volatile organic compounds (BVOCs) from aCassiope tetragona-dominated heath and a Salix arctica-dominated
heath in the High Arctic, Zackenberg valley. The stacked bars showmean emission rates (n = 4) of isoprene (ISO), monoterpenes (MT), sesquiterpenes
(SQT), other reactive volative organic compounds (ORVOC) and other volative organic compounds (Other VOC) during a 24-hour period. The error bars
represent standard error for total emissions. The incoming photosynthetically active radiation (PAR) and chamber temperature (Ch.Temp) during the
measurements are shown.

doi:10.1371/journal.pone.0123610.g002
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throughout the 24-hour period, and was highest at 09:00, 312.6 ± 195.6 μg m-2h-1. There was a
large variation in the emission of other VOCs and no significant differences were found be-
tween time points.

In the Salix-heath, the majority of emissions owed to isoprene, which was emitted from
09:00 to 18:00. The emission at 09:00 was 3.1 ± 2.0 μg m-2h-1, significantly lower compared to
the rate at 12:00 (187.7 ± 78.9 μg m-2h-1; P<0.01; S7 Table). The emission stayed high until
15:00 at, 408.7 ± 190.0 μg m-2h-1, before dropping to 3.3 ± 2.0 μg m-2h-1 at 18:00 (P<0.01 com-
pared to 12:00). MTs were emitted at three time points, 12:00, 15:00 and 21:00, with noon
emission of 4.9 ± 4.3 μg m-2h-1. No significant differences between time points were found for
SQTs, ORVOCs or other VOCs, which had noon emission rates of 3.6 ± 2.7, 3.3 ± 2.7 and
55.1 ± 37.5 μg m-2h-1, respectively. The daily sum of total BVOC emissions tended to be higher
in the low arctic Salix-heath compared to the high arctic Salix-heath (P = 0.07; Table 1), which
was due to the higher emission of other VOCs in the low arctic. The daily sum of isoprene
emissions did not differ between the high- and low arctic Salix-heaths (P>0.1).

Isoprene, MT, SQT and ORVOC emissions correlated significantly with PAR (P<0.01, r2 =
0.34–0.58, n = 31) and temperature (P<0.01, r2 = 0.37–0.70, n = 31) for both vegetation commu-
nities. The lowest PAR level was between 21:00 and 06:00, at an average of 149.0 μmol m-2 s-1,
(see Table 2 for 24-hour means).

Subarctic. In the subarctic ecosystem, where the mossWarnstorfia exannulata and the
sedge Eriophorum russeolum were dominant species, the daily sum of total BVOCs in July was
at a minimum two times higher than the daily sum for the high or low arctic ecosystem
(P<0.01; Table 1). The daily sums of isoprene and MTs were significantly higher in August
compared to July (P<0.05), but the emission of SQTs was higher in July compared to August
(P<0.01; Table 1), and there were no significant differences between the daily sums of total
BVOCs for the two samplings (P>0.1).

In July, the total BVOC emissions at 13:00 were less than one third, 188 ± 70 μg m-2h-1, of
the highest emission found at 15:00, 692 ± 319 μg m-2h-1 (P = 0.07, Fig 4 and S8 Table).

Table 1. Mean (SE) daily sums (n = 4) of BVOC emissions for high, low and subarctic sites.

Daily sums of BVOC emissions (μg m-2 d-1)

Site Treatment Isoprene MTsa SQTsb ORVOCsc Other VOCsd Total BVOCs4

High Arctic

Cassiope-heath Control 7.6 (4.6) 172 (132) 3.6 (3.0) 12.0 (4.0) 19.6 (6.9) 214.3 (144.9)

Warming 46.1 (37.4) 94.2 (87.9) 12.0 (12.0) 21.8 (16.5) 29.5 (15.7) 203.6 (121.5)

Salix-heath Control 961 (367) 0.3 (0.1) <0.01 7.5 (2.8) 63.0 (18.5) 1032 (379.7)

Warming 1918 (402) 1.3 (0.7) <0.01 6.5 (4.3) 82.0 (26.8) 2008 (425.3)

Low Arctic

Betula-heath 186 (35.4) 31.0 (14.3) 173.8 (69.3) 50.0 (13.3) 2919 (1477) 3357 (1447)

Salix-heath 1808 (808) 30.0 (21.4) 24.2 (18.7) 39.9 (19.2) 3029 (1643) 4931 (1790)

Subarctic

July 736 (127) 1895 (139) 299 (11.8) 1995 (538) 5056 (1170) 10040 (1430)

August 2269 (619) 3584 (522) 51.7 (10.4) 1509 (395) 4164 (850) 11589 (1342)

aMonoterpenes (MTs)
bSesquiterpenes (SQTs)
cother reactive volatile organic compounds (ORVOC; having a lifetime in the atmosphere less than 24 hours)
dother volatile organic compounds (Other VOCs; having a lifetime in the atmosphere longer than 24 hours)
etotal biogenic volatile organic compounds (Total BVOCs).

doi:10.1371/journal.pone.0123610.t001
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Isoprene emission was highest at 15:00, 93.1 ± 68.0 μg m-2h-1, and dropped to zero at 01:00 in all
plots except for one that released 15.8 μg m-2h-1. Compared to midday, the MT emissions were
significantly higher at 15:00, 19:00, 21:00, 23:00, 09:00 and 11:00 (P<0.01) and tended to in-
crease at 03:00 and 05:00 (P = 0.07–0.08, S8 Table). The SQT emissions were 8.8 ± 5.3 μg m-2h-1

at 13:00 with no significant differences in emission rates during the 24 hours expect at 15:00
when the emissions increased three-fold to 31.9 ± 7.5 μg m-2h-1 (P<0.05). There were no signifi-
cant differences in ORVOC and other VOC emissions between time points (S8 Table).

In August, there were no significant changes for total BVOC emissions between time points
during the 24-hour period (Fig 4. and S9 Table). For isoprene, the highest rate was measured at
13:00, 323 ± 172 μg m-2h-1. Isoprene emission was under detection limit only at 01:00. No sig-
nificant differences were found between time points for MTs, SQTs or other VOCs (P>0.1).
The highest emission rate for ORVOCs was at 15:00, 165.8 ± 84.8 μg m-2h-1, which is signifi-
cantly higher (P<0.05) than at 13.00, 25.5 ± 10.7 μg m-2h-1 (S9 Table).

Isoprene emissions in July did not correlate with either PAR or temperature (P>0.1). How-
ever, in August isoprene emission correlated with both PAR (P = 0.001, r2 = 0.2, n = 52) and
temperature (P<0.001, r2 = 0.32, n = 52). The emission rates of other BVOCs did not correlate
with PAR or temperature on either of the dates. The lowest PAR level was found between 21:00
and 07:00, at an average of 48 and 34 μmol m-2 s-1 in July and August respectively.

Effect of warming on the diel variation of BVOC emissions
In the high arctic Cassiope-heath, only isoprene emission was significantly higher in the W
compared to the C plots (P = 0.05, Fig 5 and S1 Table), and the contribution of isoprene to the
total BVOC emission increased from 5% in the C to 21% in the W plots. No treatment effects
were found for MTs, SQTs, ORVOCs or other VOCs. Testing emission rates separately for the
time points revealed a trend that the total BVOC emission was increased by warming only at

Table 2. Mean (SE) abiotic parameters (n = 4) at the different sites during BVOC sampling.

Site Treatment Chamber
Temp (°C)

Air Temp (°C)a Soil moisture % Soil Temp (°C) 2 cm Soil Temp (°C) 5 cm PARb(μmol m-2 s-1)

High Arctic

Cassiope-heath Control 16.3 (1.5) 10.7 (0.6) 27.4 (1.7) 8.5 (0.3) 8.3 (0.2) 731 (79)

Warming 16.7 (1.5) 10.7 (0.6) 25.6 (4.0) 9.6 (0.4) 9.2 (0.2) 597 (73)

Salix-heath Control 17.8 (1.4) 14 (0.9) 22.5 (1.7) 9.1 (0.2) 8.6 (0.2) 618 (75)

Warming 18.9 (1.5) 14 (0.9) 14.1 (1.7) 10.3 (0.3) 9.4 (0.2) 547 (68)

Low Arctic

Betula-heath 12.3 (1.6) 7.0 (0.6) 66.1 (8.3) 7.8 (0.7) 6.7 (0.4) 809 (139)

Salix-heath 12.7 (1.5) 7.1 (0.7) 66.1 (8.3) 7.6 (0.6) 7.7 (1.1) 836 (141)

Light/Darkc Control 21.9 (1.5) 14.9 (0.7) 43.0 (10.6) 8.6 (0.7) 6.1 (0.4) 1118 (170)

Warming 28.6 (1.7) 14.5 (0.8) 26.8 (8.1) 9.4 (0.8) 5.4 (0.7) 1068 (212)

Subarctic

July 14.4 (0.3) n.ad 100 n.ad n.ad 165 (22)

August 14.3 (0.6) n.ad 100 n.ad n.ad 245 (39)

a The Air temperature was measured at 1.5 meters above the ground. There are no treatments included in the air temperature measurements.
b PAR is the average measured PAR per campaign and 24-hour
c Note that the values presented from the light/dark experiment (except PAR) are from measurements in both light and darkness.
dData is not available (n.a)

doi:10.1371/journal.pone.0123610.t002
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Fig 3. Diel emisisons of BVOCs fromBetula nana and Salix glauca-dominated heaths in the Low Arctic, Disko Island. The stacked bars showmean
emission rates (n = 4) of BVOCs during a 24-hour period. Abbreviations for the BVOC groups as in Fig 2. The error bars represent standard error for total
emissions. The incoming photosynthetically active radiation (PAR) and chamber temperature (Ch.Temp) during the measurements are shown.

doi:10.1371/journal.pone.0123610.g003
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Fig 4. Diel emissions of biogenic volatile organic compounds (BVOCs) in the Subarctic, Northern Finland in July and August. The dominant plants
in this site were the mossWarnstorfia exannulata and the sedge Eriophorum russeolum. The stacked bars showmean emission rates (n = 4) of BVOCs
during two 24-hour periods. Abbreviations for the BVOC groups as in Fig 2. The error bars represent standard error for total emissions. The incoming
photosynthetically active radiation (PAR) and chamber temperature (Ch.Temp) during the measurements are shown.

doi:10.1371/journal.pone.0123610.g004
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Fig 5. The effect of warming by open top chambers on the diel BVOC emissions in a high arcitcCassiope tetragona-dominated heath and a high
arctic Salix arctica-dominated heath.Mean BVOC emissions (n = 4) during a 24-hour period in control (C) and warmed (W) plots. Error bars represent
standard error for the total emissions. Abbreviations for the BVOC groups as in Fig 2. The incoming photosynthetically active radiation (PAR) and chamber
temperature (Ch.Temp) for the two treatments are shown. *(P<0.1), **(P<0.05) and ***(P<0.01) indicate significant differences in chamber temperature
between treatments. Note different Y-axes scales for the different vegetation communities.

doi:10.1371/journal.pone.0123610.g005
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midnight (P = 0.08), but not at any other time (P>0.1). The daily sum of total BVOCs did not
differ between C and W plots (P>0.1, Table 1).

In the Salix-heath, warming increased the 24-hour average BVOC emissions by 51%
(P = 0.05, Fig 5 and S1 Table). The total BVOC emission tended to be increased by warming at
18:00 and 21:00 (P = 0.06 and P = 0.09). The overall isoprene emission was not significantly af-
fected by warming, and of the different time points only at 18:00; isoprene emission was 83%
higher in W than C plots (P<0.05, Fig 5). The MT emissions were increased by 18% in the W
compared to the C plots at 12:00 (P = 0.01). The MTs emitted from the Salix-heath only con-
tained 1,8-cineole in the C plots and 1,8-cineole and β-ocimene in the W plots, both 1,8-cineole
and β-ocimene emissions correlated with chamber temperature (P<0.01 and<0.05 and r2 =
0.3 and 0.2 respectively). There was no difference in the daily sum of total BVOCs between C
andW plots (P>0.1, Table 1).

In the Cassiope-heath measurement, the chamber temperature did not differ between the
treatments averaged over the 24 hours (P>0.1). It was significantly higher in the W compared
to the C plots between 15:00 and 00:00 (P<0.05) but no differences were found between 03:00
and 12:00 (Fig 5). In contrast, the 24-hour average chamber temperature in the Salix-heath was
significantly warmer by 1.1°C in the W than in the C plots (P<0.001) and this difference was
significant between 12:00 and 21:00 (Fig 5). No difference was found at 00:00 and 09:00.
Warming increased the soil temperature at 2 cm depth by 1.1 and 1.2°C and at 5 cm depth by
0.8 and 0.9°C for Cassiope-heath and Salix-heath, respectively (P<0.05, Table 2). There was a
positive correlation between soil and chamber temperature, averaged for both C and W plots
(P<0.001, r2 = 0.23 and r2 = 0.24 for Cassiope- and Salix-heath respectively). The soil moisture
did not differ between the treatments in the Cassiope-heath (P>0.1), but it was significantly re-
duced by warming in the Salix-heath (P<0.05, Table 2). The OTCs used for warming did not
affect the incoming PAR (P>0.1). The total plant coverage in the Cassiope-heath did not differ
between treatments while an 18% higher plant cover was found in the W compared to the C
plots in the Salix-heath (P<0.05); the additional coverage consisted of the species S. arctica,
and Dryas octopetala (S1 Table).

Effects and interactions between light manipulation and warming on
BVOC emissions
In the low arctic light/dark measurements, the temperature inside the measurement chambers
was reduced by 6.2°C due to darkening (P<0.05 averaged for both C and W plots). The total
BVOC emissions, averaged for both C and W plots, were 48% higher in light compared to
darkness (S10 Table). However, this difference was not statistically significant when chamber
temperature, which had a significant positive effect on the emissions (P = 0.01), was used as a
covariate (Fig 6). Also the increased number of compounds emitted in light than in darkness
(average for both C and W plots 15 ± 2.5 compared to 10 ± 1) was due to the higher tempera-
ture (P<0.05).

There was no isoprene emission from C or W plots during dark measurements, and the
emission measured in light was not affected by chamber temperature (P>0.1). MT emission
was lower in dark than light due to a decreased chamber temperature (P<0.05 average for both
C and W plots, Fig 6). Of the individual MTs, α-thujene, α-fenchene, α-phellandrene, β-pi-
nene, 3-carene, α-terpinene and fenchol were only emitted in light, where light emission of α-
fenchene, 3-carene and α-terpinene correlated with chamber temperature (P = 0.03, 0.02 and
0.06 and r2 = 0.57, 0.81 and 0.47, respectively). The individual MTs, α–pinene, camphene and
d-limonene were not affected by the light manipulation (P>0.1). The SQT emissions were in
general higher in light, because of the higher chamber temperature (P>0.05 for light/dark
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factor and P<0.05 for chamber temperature), and there was an interaction between the light
manipulation and field treatments (P<0.05). A separate test revealed that the SQT emissions
in C plots were significantly higher in the light measurements, due to the higher chamber tem-
perature (P<0.01), but the light treatment itself was not a controlling factor for the emissions
(P>0.1). There was a trend that chamber temperature and light increased the emissions of
SQTs in the W plots (P = 0.07 and P = 0.1, respectively). Chamber temperature had no effect
on SQT emissions in the dark measurements (P>0.1) but was a controlling factor in the light
measurements (P<0.05). The ORVOC emission rates were 38% higher in light than in dark,
however, this was due to increased temperature (P>0.05 for light/dark factor and P<0.05 for
chamber temperature). Emission of other VOCs were unaffected by the light manipulation and
chamber temperature (P>0.1).

The number of different compounds emitted, averaged for both light and dark measure-
ments, was significantly higher in the W than in the C plots (P<0.05), 16 ± 2 compared to
10 ± 2. The emissions of other VOCs and SQTs were significantly increased by warming
(P<0.05).

Fig 6. The effect of darkening on BVOC emissions in a low arctic heath under ambient and warmed conditions.Measurements were conducted with a
transparent chamber (light) and with the chamber darkened with a black cloth (dark) in two field treatments: control and warming. Error bars represent
standard error for total emissions (n = 4). Abbreviations for the BVOC groups as in Fig 2. Mean chamber temperatures (Ch.Temp) are shown.

doi:10.1371/journal.pone.0123610.g006
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The chamber temperature, averaged for light and dark measurements, was 6.7°C higher in
the W than in the C plots (P<0.05, Table 2). The soil temperatures at 2 and 5 cm depths did
not differ between the W and C plots or light manipulations (P>0.1; Table 2). The incoming
PAR during the measurements in light did not differ between the field treatments (P>0.1). The
total plant coverage did not differ between the treatments (P>0.1).

Discussion

Variation in emission over 24 hours
This study shows that BVOCs are emitted from arctic ecosystems during both day- and night-
time, which is in agreement with our hypotheses. The night-time emissions were in general sig-
nificant, albeit lower than those during the day, and thus they should not be overlooked when
considering the total emissions. In particular, the relatively stable emissions in the subarctic
site throughout the 24 hours should be noted (Fig 4).

In the high arctic heaths, BVOC emissions correlated with PAR and temperature and were
very low during night-time (Fig 2). However, the emissions dropped substantially by 21:00,
even though the PAR was still relatively high (480 μmol m-2 s-1) and the temperature was well
above the 10°C suggested as a minimum for significant BVOC emissions from these ecosys-
tems [38]. It seems likely that the emissions of some BVOCs follow a circadian cycle not corre-
sponding to the available light levels, as has been shown for the emission of BVOCs from many
plants [7,39,40]. This conclusion is also supported by an earlier finding demonstrating that car-
bon assimilation rates for Salix pulchra Cham. and C. tetragona from Tussock tundra in Alaska
(68°37’N) follow a circadian cycle [38]. Patankar et al. [38] reported peaks in carbon assimila-
tion rates at 12:00 for Salix and between 8:00 and 12:00 for Cassiope and very low rates during
night-time despite PAR levels above saturation. Thus, the plants did not take advantage of the
available light during evenings [38].

In the low arctic heath, no clear diel patterns for the total emissions were apparent (Fig 3).
Isoprene emission was highest during the day and correlated with light and temperature,
which is in line with the general understanding of BVOC emission behavior [7,11]. The emis-
sions of other VOCs were stable throughout the 24-hour period and they were the only com-
pound group emitted during night-time. Other VOCs may be released by the soil and the
emissions of e.g. 2-methyl-butane and methoxy-phenyl-oxime may therefore be dependent on
soil characteristics such as microbial biomass and activity, nutrient availability, amount and
quality of litter, and soil moisture [41,42] more so than on light and/or air temperature. Never-
theless, soil emissions are often 1–2 orders of magnitude lower than the emission from above-
ground plant parts [43], and thus, it is not likely that all other VOC emissions derive from the
soil. The few studies on soil emissions from northern ecosystems show contrasting results
[15,42] suggesting possibly higher contribution of soil emission for arctic ecosystems with low
leaf area index and large carbon stocks in the soil. However, in general the importance of these
emissions to the ecosystem flux is not known [43].

In the subarctic site, many non-oxygenated terpenes, for example isoprene, d-limonene,
3-carene, α-pinene and β-caryophyllene, showed no clear differences between day- and night-
time emissions (Fig 4). Isoprene emission during the night, when the PAR was zero, was a sur-
prise result as this BVOC is produced light-dependently [7]. Isoprene emitted during the night
in darkness may derive from temporary storage pools rather than de novo synthesis. The pres-
ence of temporary storage pools for isoprene has been suggested by Funk et al. [44] andWiber-
ley et al. [45] who studied emission of isoprene from Populus species. Wiberley et al. [45]
reported isoprene emission after three days of darkness from Poplar trees, indicating that iso-
prene originated from storage pools. Night-time emission of MTs, such as α-pinene, β-pinene,
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3-carene and limonene, has earlier been reported [24,46]. The night-time emissions of these
MTs are likely to originate from temporary storage pools, being independent of light or stoma-
tal conductance (for details on stomatal conductance in controlling BVOC emissions see Har-
ley [47]), because the dominant plant species,W. exannulata and E. russeolum, in the subarctic
site probably lack specialized storage structures. However, isoprene [48] and MTs [41] emitted
during night-time may also derive from the soil, which cannot be separated from whole ecosys-
tem flux in the present study.

Afternoon peaks in SQT emissions were found in the low arctic site as well as in the subarc-
tic site in July. Diel variation in SQT emissions has earlier been reported, with peaks in the
morning for Black Sage (Salvia mellifera) in California [49] and at noon for various Citrus vari-
eties in Spain [50]. SQTs have also been shown to be emitted in dark and at night [50–53].
Thus, there are differences in emission patterns of SQTs between different species and habitats,
and it is unclear what factors control their diel variation [53].

The emission profiles differed between day- and night-time, at all three sites. Also, the emis-
sion rates differed between sites. The highest emission rates and daily sum of total BVOC emis-
sions were found at the subarctic site and the lowest in the high arctic site, which suggests that
the emission rates decrease towards higher latitudes. However, even the high arctic emission
rates during daytime are in a range that cannot be ignored, as also shown by Schollert et al.
[6].]. In fact, the isoprene emission from the high arctic was as high as the isoprene emission
found in the low arctic and in the subarctic peatland in the present study, as well as earlier re-
ported for a subarctic wet heath [30]. The isoprene emission from the high arctic Cassiope-
heath was comparable to the rates for a similar vegetation community in Schollert et al. [6].
However, the isoprene emission measured for the high arctic Salix-heath was much higher
than in Schollert et al. [6], (176 ± 66 compared to 7.9 ± 2.1 μg m-2h-1). The dissimilarity in re-
ported emission rates could be explained by different environmental conditions or a seasonal
effect as Schollert et al. [6] measured in August while the measurements in the present study
were conducted in July. The differences in BVOC emission rates between sites could be ex-
plained by differences in plant species composition, plant biomass, soil properties and activity
of microorganisms, or environmental conditions. The higher daily sum of isoprene measured
in August compared to July in the subarctic ecosystem is probably due to the higher PAR and
chamber temperature driving high daytime emissions during the August measurement. In con-
trast, the higher MT emissions in August compared to July could not be explained by the light
levels or chamber temperature, since the higher emissions occurred during night-time and did
not correlate with PAR or temperature. The difference might be due to a seasonal effect or a
build-up of temporary storage pools during the warm day that was released during night-time.

In general, the night-time emissions during the midnight sun period were lower than ex-
pected. The low emissions could be partly explained by the low light levels during late evenings
and night, which was due to the sun being obstructed by mountains and terrain. Thus, despite
the location north of the Arctic Circle (66°N) and the measurements within the midnight sun
period, the PAR was low during the night. Alternatively, changes in deposition rates of BVOCs
may also explain the low net emissions of BVOCs during night-time [54], but deposition pro-
cesses could not be studied with the methodology used in the present study.

Effect of warming on BVOC emissions
The OTC warming in the high arctic heath increased the temperature during the measure-
ments both during the day and night, which is in contrast to our hypothesis and earlier data
[31] suggesting that the effect of the OTC warming is driven by PAR. However, the most signif-
icant difference in temperature was found during the day (Fig 5). The significant warming
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effect during the night when PAR was very low may be explained by the warmed soil inside the
OTCs. Soil, which has low albedo [55] and higher heat capacity than the surrounding air [56],
warms up during the day and acts as a temperature buffer during the night.

The total BVOC emissions were significantly increased by warming in the high arctic Salix-
heath. It was expected that the increased emission would be due to a higher emission of iso-
prene, since it is the most emitted single compound from the Salix-heath and isoprene emis-
sion from a tundra heath has been reported to increase with increased temperature [28].
However, isoprene emission significantly increased under warming only at 18:00 while the
total amount of emission over the 24-hour period was unaffected. The only compound group
for which the 24-hour emissions were significantly increased by warming was MTs, of which
only β-ocimene was significantly affected. The lipophilic β-ocimene is able to diffuse through
the cell membrane [47], and the emissions correlated positively with chamber temperature. It
is therefore likely, that this increase was due to a higher diffusion rate from the specialized stor-
age structures on the leaves [57]. The lower soil moisture in W plots may have induced stoma-
tal closure, which can reduce the production and emission of BVOCs coming directly from de
novo synthesis or temporary storage pools inside the leaves. Thus, the emissions may increase
more significantly in a future warmer and wetter [58] climate, than what was shown here.

The increase in BVOC emission rates can be due to higher temperature, leading to higher
production and diffusion rate. Moreover, changes in the amount or composition of vegetation
could affect emissions. The plant cover in the high arctic Salix-heath was increased by 18% in
warmed plots. The increased plant cover, and consequent higher BVOC production may have
contributed to the higher emission rates. In the Cassiope-heath, isoprene emission was higher
over the 24-hour period under warming. The vegetation cover in the control and warmed plots
were not significantly different and we suggest that the increased isoprene emission was due to
stimulated de novo synthesis due to higher temperature.

The 6.7°C warming caused by the OTCs in the low arctic heath resulted in increased emis-
sions of SQTs and other VOCs. The total BVOC emissions increased under warming in the
high arctic Salix-heath, but, no clear treatment effects on the emission of any group or total
BVOCs from the high arctic Cassiope-heath due to large variation in the data. We suggest that
future studies should focus on the processes that affect the emissions from different vegetation
communities under changing soil moisture and temperature conditions, using, for example,
carbon isotope labeling. If the plant biomass of these areas increases as suggested by Hudson
et al. [59] we can expect that a future warmer climate will increase the BVOC emissions from
the Arctic [60].

Effect of light and dark on BVOC emissions
The emission rates of most compounds and the number of different compounds emitted were
clearly lower in dark than in light during the day (Fig 6), showing an immediate effect of light
conditions. However, the correlation between temperature and light makes it difficult to sepa-
rate the driving factors for emissions. Isoprene, α-fenchene, α-phellandrene, 3-carene, α-terpi-
nene, α-selinene and fenchol were only emitted under ambient light, and the emissions of
oxygenated MTs were in general very low in dark measurements, suggesting that the emissions
of these compounds are dependent on the rate of de novo synthesis, stomatal conductance or
chamber temperature, or a combination thereof [47]. Our finding is in agreement with an earli-
er report showing that the emission rates of many MTs decreased when a measurement cuvette
was darkened during sampling from branches of Betula pubescens in southern Finland [30].
Thus, it is evident that emissions of some compounds are directly dependent on the light con-
ditions or indirectly dependent on stomatal conductance. Emissions during darkness may
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result from diffusion from the temporary storage pools and some compounds may have been
released in the beginning of the sampling period due to a slow response in stomatal conduc-
tance to darkening that started only 10 minutes prior to sampling. Also, we cannot rule out
that the lower temperature during darkening had an effect on the diffusion rate and production
of BVOCs. Thus, studies under controlled conditions are needed to further understand the
light responses.

Conclusion
BVOC emissions from arctic and subarctic ecosystems are of importance, even during night-
time, and should be considered in global models. The emissions during the night in the low
and subarctic sites were in the same range as during the day, which warns against overlooking
the night period when considering emissions from arctic regions.

Large differences in diel variation of BVOC emissions were found between sites examined
in this study. This variation may be explained by different dominant plant species, seasonal ef-
fects as well as differences in environmental parameters, such as temperature, light and soil
moisture. These results highlight the importance of reporting what time of the day measure-
ments are conducted, as the BVOC profiles change over the 24-hour period. This point is also
important when studying treatment effects on BVOC emissions since the effect seems to differ
between times of the day. We suggest that future studies focus on factors regulating the diel
variation of the emissions in the arctic region, which would improve the accuracy of the BVOC
emission estimates for the Arctic.
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