
u n i ve r s i t y  o f  co pe n h ag e n  

Global biogeographic regions in a human-dominated world

the case of human diseases

Just, Michael G.; Norton, Jacob F.; Traud, Amanda L.; Antonelli, Tim; Poteate, Aaron S.;
Backus, Gregory A.; Snyder-Beattie, Andrew; Sanders, R. Wyatt; Dunn, Robert Roberdeau

Published in:
Ecosphere (Washington, D.C.)

DOI:
10.1890/ES14-00201.1

Publication date:
2014

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Just, M. G., Norton, J. F., Traud, A. L., Antonelli, T., Poteate, A. S., Backus, G. A., ... Dunn, R. R. (2014). Global
biogeographic regions in a human-dominated world: the case of human diseases. Ecosphere (Washington,
D.C.), 5(11), 1-21. [143]. https://doi.org/10.1890/ES14-00201.1

Download date: 08. apr.. 2020

https://doi.org/10.1890/ES14-00201.1
https://curis.ku.dk/portal/da/publications/global-biogeographic-regions-in-a-humandominated-world(7fd5b886-08de-4467-8cae-493ff6b65530).html
https://curis.ku.dk/portal/da/publications/global-biogeographic-regions-in-a-humandominated-world(7fd5b886-08de-4467-8cae-493ff6b65530).html
https://doi.org/10.1890/ES14-00201.1


Global biogeographic regions in a human-dominated world:
the case of human diseases

MICHAEL G. JUST,1,� JACOB F. NORTON,2 AMANDA L. TRAUD,2 TIM ANTONELLI,2 AARON S. POTEATE,3,6

GREGORY A. BACKUS,2 ANDREW SNYDER-BEATTIE,2 R. WYATT SANDERS,1 AND ROBERT R. DUNN
4,5

1Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 USA
2Department of Mathematics and Biomathematics Graduate Program, North Carolina State University,

Raleigh, North Carolina 27695 USA
3Department of Sociology and Anthropology, North Carolina State University, Raleigh, North Carolina 27695 USA

4Department of Biological Sciences and Keck Center for Behavioral Biology, North Carolina State University,
Raleigh, North Carolina 27695

5Center for Macroecology, Evolution, and Climate, Natural History Museum of Denmark, University of Copenhagen,
2100 Copenhagen Ø, Denmark

Citation: Just, M. G., J. F. Norton, A. L. Traud, T. Antonelli, A. S. Poteate, G. A. Backus, A. Snyder-Beattie, R. W. Sanders,

and R. R. Dunn. 2014. Global biogeographic regions in a human-dominated world: the case of human diseases.

Ecosphere 5(11):143. http://dx.doi.org/10.1890/ES14-00201.1

Abstract. Since the work of Alfred Russel Wallace, biologists have sought to divide the world into

biogeographic regions that reflect the history of continents and evolution. These divisions not only guide

conservation efforts, but are also the fundamental reference point for understanding the distribution of life.

However, the biogeography of human-associated species—such as pathogens, crops, or even house

guests—has been largely ignored or discounted. As pathogens have the potential for direct consequences

on the lives of humans, domestic animals, and wildlife it is prudent to examine their potential

biogeographic history. Furthermore, if distinct regions exist for human-associated pathogens, it would

provide possible connections between human wellbeing and pathogen distributions, and, more generally,

humans and the deep evolutionary history of the natural world. We tested for the presence of

biogeographic regions for diseases of humans due to pathogens using country-level disease composition

data and compared the regions for vectored and non-vectored diseases. We found discrete biogeographic

regions for diseases, with a stronger influence of biogeography on vectored than non-vectored diseases. We

also found significant correlations between these biogeographic regions and environmental or socio-

political factors. While some biogeographic regions reflected those already documented for birds or

mammals, others reflected colonial history. From the perspective of diseases caused by pathogens, humans

have altered but not evaded the influence of ancient biogeography. This work is the necessary first step in

examining the biogeographic relationship between humans and their associates.
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INTRODUCTION

Biogeographic regions have been delineated

for many animal and plant taxa and are a

cornerstone of large spatial scale biology. How-

ever, human associated species—such as pests,
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domesticates, and pathogens—tend to be exclud-
ed from consideration when discerning biogeo-
graphic regions. These human associates are
often expected to be ubiquitous and, on average,
do indeed have larger geographic ranges than
most other species (Dunn and Romdal 2005,
Olden et al. 2006, Smith et al. 2007). Even
relatively large human associates, such as rats
and house flies, spread around the world with
early western colonization (West 1951, He et al.
2009), just as West Nile virus and avian influenza
H5N1 more recently spread (Centers for Disease
Control and Prevention 2003, Spielman et al.
2004, Fauci 2005, Olsen et al. 2006). Delineation
of biogeographic regions for taxa that are truly
everywhere, such as what appears to be the case
for aquatic protists (Fenchel and Finlay 2004),
would not be particularly useful. It’s possible that
the easy and repeated spread of human associ-
ates might blur any interesting or useful biogeo-
graphic pattern in the composition of human
associates. However, importantly, not all human
associates have spread to all inhabited continents
(Gonçalves et al. 2003), and some human-
associated species, particularly those that live
outdoors for part of their life cycles, are directly
influenced by the presence of vectors, alternate
hosts, climate or other environmental conditions
(Wilcox and Colwell 2005), such that it is possible
that historic and climatic influences might still
lead to discrete biogeographic regions for these
species.

While scientific curiosity and conservation
have motivated most studies of biogeographic
regions (Wallace 1876, Grenyer et al. 2006, Holt et
al. 2013), the biogeography of human associates
in general and pathogens in particular has the
potential for direct human consequences. Others
have suggested that diversity and prevalence of
human pathogen species affect human politics,
the likelihood of war (Thornhill et al. 2009), and
religion (Fincher and Thornhill 2008) among
other aspects of socio-politics (Nettle 2009), such
that the biogeographic distribution of pathogens
has the potential to pervasively affect human life
and societies. If the limits of pathogen distribu-
tions are determined not only by climate and
attempts at disease control but also the ancient
biogeographic distribution of vectors and hosts
(e.g., Stensgaard et al. 2013), the differences
among regions in their pathogens (and conse-

quently religions, behaviors, and socio-politics)
may be relatively persistent features of those
regions.

To the extent that biogeographic regions for
human pathogens exist, they might be expected
to differ as a function of the biology of the
pathogens. A priori it seems likely that vectored
and non-vectored pathogens might differ in their
biogeographic regions. Vectored pathogens re-
quire at least the presence of a suitable vector
and, in some cases, a reservoir host. Non-
vectored pathogens, on the other hand, many of
which evolved relatively recently (Wolfe et al.
2007), can be transmitted either person to person
or via contaminated water such that their global
spread might be less likely to be influenced by
environmental differences among regions of the
world. We could have divided pathogens into
other groupings, but we chose to focus on
vectored/non-vectored taxa in as much as it
allowed us to test a priori predictions (e.g., Smith
and Guégan 2010), rely on relatively robust
categorizations of pathogens (whether or not a
pathogen is vectored tends to be reasonably well-
known), and leads to groups with sample sizes
sufficient to justify the development of biogeo-
graphic regions. If biogeographic regions exist
for either grouping or overall, we hypothesize
they might be due to differences in climate,
biogeographic history (e.g., the movement of the
continents, the chance dispersal of host lineages,
etc.) or human history and culture.

Here we test whether human pathogens are
distributed globally in distinct biogeographic
regions. We first consider 301 human diseases
caused by pathogens from the Global Infectious
Diseases and Epidemiology Online Network
(GIDEON; http://gideononline.com) database
and then consider diseases caused by vectored
(n ¼ 93) and non-vectored pathogens (n ¼ 208)
separately. GIDEON defines vectors as the agent
in which a pathogen is transmitted from one host
to another. The GIDEON disease data are
described in detail in Smith et al. (2007). They
are not complete (diseases, particularly rare ones,
can be missed), but they are, to our knowledge,
the most complete disease data available. As
with any global dataset, it is likely the data are
poorer in regions with less well developed public
health systems such that pathogens unique to
those regions might be missed. This includes
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both rare diseases that have not yet been detected
in particular regions and emerging pathogens
that have yet to be detected anywhere. As in
other studies of the biogeography of non-human
associates we use a hierarchal clustering algo-
rithm (e.g., Wang et al. 2003, Xie et al. 2004,
Oliver and Irwin 2008), specifically, Ward’s
hierarchical agglomerative method (Ward 1963),
to evaluate if biogeographic regions exist. We
then test the robustness of these biogeographic
regions using a complementary and more com-
putationally intensive approach: community de-
tection (Lancichinetti and Fortunato 2009).
Finally, once biogeographic regions were identi-
fied, we compared, individually, the environ-
mental and socio-political variables associated
with those regions for both vectored and non-
vectored diseases caused by pathogens.

MATERIALS AND METHODS

Data collection
Human disease data.—Data on the presence and

absence of 301 diseases caused by pathogens
(Appendix: Table A1) of humans in 229 countries
(Appendix: Table A2) from GIDEON were the
basis for the majority of our analyses. GIDEON
also provided basic data on the life history of the
pathogens that cause each disease, particularly
whether or not each is vector borne. We excluded
GIDEON entries from our analyses that were not
recorded in the database as currently present in
any country, were not associated with a patho-
gen, or were difficult to assign as vector- or non-
vector-borne. We used the broader pathogen
literature to guide our classification decisions
such that we were able to identify vectors for
Mycobacterium ulcerans as vector-borne (Marsol-
lier et al. 2002), but none of the other Mycobac-
teria were classified as vector-borne. GIDEON’s
data have now been used in a number of papers
on the biogeography of disease (Møller et al.
2009, Thornhill et al. 2009, Yang et al. 2012, Hay
et al. 2013) and represent the highest quality data
available at the global scale, except those for
particular pathogens (e.g., malaria [Moyes et al.
2013]).

Environmental and socio-political variables data.—
To compare different biogeographic regions, we
focused on environmental variables known to be
associated with the distribution of individual

pathogens. Toward this end, we extracted data
on the minimum temperature, maximum tem-
perature, daily precipitation frequency, annual
precipitation volume, total precipitation volume
in the month with the minimum amount of
precipitation, and total precipitation volume in
the month with the maximum amount of
precipitation for each country from the Tyndall
Center for Climate Change Research at the
University of East Anglia (Mitchell et al. 2002).
Each of these variables has been suggested to
influence the distributions of at least some
pathogens (Guernier et al. 2004, Jones et al.
2008, Bonds et al. 2012) or their vectors (Lafferty
2009). In addition, we used derived estimates of
human population density (persons per square
kilometer in 2010), gross domestic product (2012
US dollars), and land area (square kilometer)
data per country from the Population Division of
United Nations (United Nations 2013) and
supplemented as needed from the CIA World
Factbook (http://www.cia.gov). Human popula-
tion density has the potential to influence the
persistence of pathogens, but it has been sug-
gested that there is also an association between
the diversity of human pathogens and the
diversity of birds and mammals, with areas with
higher diversity of birds and mammals tending
to have more diseases caused by pathogens
(Dunn et al. 2010). For our analyses we chose to
use only native mammal species richness data
since global bird, mammal, and plant richness
are highly correlated (Qian and Ricklefs 2008),
and our qualitative result should be similar
regardless of which of these variables we
analyze. Mammal diversity estimates were based
on the International Union for Conservation of
Nature’s native mammal species richness data
(IUCN 2013).

Statistical analysis
Using political boundaries as our unit of

analysis, we demarcated biogeographic regions
based on the composition of diseases caused by
pathogens. We employed hierarchical clustering
to identity potential biogeographic regions from
three different schemas of the pathogen compo-
sition by country data: (1) full suite of diseases,
(2) vector-borne diseases, and (3) non-vector-
borne diseases. We then used a second statistical
procedure, community detection, to validate our
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findings. Ideally, one might consider fine grain
data on human diseases, or data on individual
taxa of pathogens (e.g., distinguishing the distri-
bution patterns of strains of Bartonella rather than
simply the presence of Bartonellosis) but such
data exist only for a minority of pathogens.
Amazingly, we remain more ignorant about the
distribution of human pathogen taxa than we do
about rare birds.

All of our analyses were performed in R 2.15.1
(R Core Team 2013) except where otherwise
noted. Biogeographic regions were identified
using Ward’s agglomerative hierarchical cluster-
ing method (R function: hclust), as Ward’s
method is a preferred method in many biogeo-
graphic studies (Kreft and Jetz 2010). Regions
were created by clustering countries based on
their composition of diseases caused by patho-
gens (i.e., presence and absence). The major
benefit to using Ward’s method is that the
algorithm joins groups while minimizing with-
in-cluster variance. However, agglomerative hi-
erarchical methods produce results (in the form
of a dendrogram) without clear indication of the
optimal number of biogeographic regions (k).
Therefore, we used a Mantel-based algorithm
(Borcard et al. 2011) to determine k for each
schema (i.e., vector-borne pathogens, non-vector-
borne pathogens, and the full suite of 180
pathogens; R package: cluster; function: daisy
[Maechler et al. 2013]). This method simply aims
to maximize the correlation between the original
(unclustered) distance matrix and the distance
matrices computed by cutting the dendrogram at
various levels (Borcard et al. 2011).

We validated the biogeographic regions found
by hierarchical methods using community detec-
tion. In particular, we used a modularity maxi-
mization algorithm, Fast Unfolding (Blondel et
al. 2008), to divide the network of countries into
biogeographic regions, modularity being the
fraction of connections that occur within regions
minus the fraction expected given a particular
network. In the network countries were connect-
ed if they shared the presence of a disease, and
that connection was weighted by how many
diseases they had in common. To compare our
two sets of regions (i.e., clustering, community
detection) we calculated a Rand similarity
coefficient (Rand 1971). We assessed the strength
of the match through comparison of the Rand

similarity coefficient to a post hoc distribution for
the Rand similarity coefficient with randomiza-
tion tests and then calculated the p-value directly
from this distribution.

After determining the optimal number of
biogeographic regions, we used multinomial
and binomial models (R package: nnet) to assess
how environmental and socioeconomic factors
correlate with these biogeographic regions (Ven-
ables and Ripley 2002). Multinomial logistic
regressions predict placement in a category, here
biogeographic region, based on multiple inde-
pendent variables, here environmental (number
of native mammal species, maximum tempera-
ture, minimum temperature, temperature differ-
ence, precipitation frequency, total annual
precipitation) and socio-political (GDP, popula-
tion density) To corroborate the multinomial
models, each schema and covariate combination
was evaluated in isolation using a series of
binomial logistic regressions in MATLAB.

RESULTS

Using Ward’s clustering algorithm and a
Mantel optimality procedure, we determined
the following number of biogeographic regions
for each schema: vectored diseases (n ¼ 7), non-
vectored diseases (n¼ 5) and the full suite of 301
diseases (n ¼ 2 [Appendix: Table A2]). We
discerned seven biogeographic regions when
considering vectored diseases (Fig. 1A; Appen-
dix: Fig. A1), but only five regions when
considering just non-vectored diseases (Fig. 1B;
Appendix: Fig. A3), implying that the former
have more biogeographic structure. In addition,
the differences among biogeographic regions for
vectored diseases were much greater than those
for non-vectored diseases (Appendix: Figs. A1,
A2). The differences between the most distinct
biogeographic regions for non-vectored diseases
were akin to those found within the biogeo-
graphic regions of vectored diseases (Appendix:
Figs. A1, A2). Though community detection
methods discerned similar biogeographic re-
gions, the exact number of regions was different
for the two subset schemas. For example, three
regions were found when the vector-borne
diseases were considered using community
detection, four less than found using Ward’s
clustering. However, the regions found using
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community detection match the first branches in
Ward’s clustering (Appendix: Figs. A1, A2) and
the regions detected using the two approaches
were much more similar between the methods
than expected by chance (p , 0.001) on the basis
of Rand similarity coefficients.

Vectored biogeographic regions were signifi-
cantly correlated with climate, biodiversity, and
social variables (Table 1). Non-vectored regions
were correlated with all variables except mini-
mum temperature (Table 1). Biogeographic re-

gions from the full suite of pathogens were
correlated with native mammal species richness
and GDP (Table 1).

DISCUSSION

We have shown that biogeographic regions
exist for human diseases caused by pathogens.
Although those species that live on our bodies, in
our homes, or in our backyards are among those
with the most direct effects on our health and

Fig. 1. (A) Map of biogeographic regions (n ¼ 7) delineated from vector-borne (n ¼ 93) human-associated

diseases based on presence by country (n ¼ 229). (B) Regions (n ¼ 5) for non-vector-borne diseases (n ¼ 208).

Regions were created by hierarchical clustering using Ward’s distance.
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well-being, the distribution of these organisms
remains poorly understood, perhaps in part
because they are assumed to live everywhere
we do. For diseases and the pathogens that cause
them this assumption is wrong. The biogeo-
graphic regions for diseases caused by pathogens
are robust to the statistical approaches used and
are as distinct as the biogeographic regions of, for
example, vertebrates, or plants. In other words,
not only do biogeographic regions exist for
diseases and disease causing pathogens (and
likely other human associates), they are compa-
rable in their delineation to the other established
biogeographic regions, regions typically de-
scribed as existing due to biogeographic history
before the actions and movement of humans.

The biogeographic regions for vectored diseas-
es coincide in many respects with those recently
derived for non-human vertebrates (Holt et al.
2013). Where it exists, the coincidence of these
regions suggests that the same historic factors
that influence the composition of wild birds,
mammals, and amphibians also influence
(whether directly or indirectly) which diseases
are present in any particular region. While
previous work has suggested strong links be-
tween climate and the diversity of pathogens or
diseases globally (Guernier et al. 2004, Bonds et
al. 2012), here we suggest something different:
namely that, in addition to climate, history and
geography have strong effects on which patho-
gens are where. That the impacts of history and
geography are nearly as strong on diseases and
their pathogens as on organisms such as mam-

mals, which are superficially less mobile between
regions, is both novel and somewhat surprising.
The biogeographic regions of birds, mammals
and other animals are the result of the geograph-
ic position of landmasses, plate tectonics, and
chance dispersal events (e.g., Holt et al. 2013).
Ultimately, these same factors must also play a
role in the distribution of the pathogens that
cause diseases whether directly or via their
effects on alternate hosts and vectors. As a result,
the precise mix of vectored diseases in any
particular place is the result of not only climate,
human migration, and attempts at disease
control, but also millions of years of tectonics
and chance dispersal (or failure to disperse). So
long as our attempts to control vectored patho-
gens are incomplete, human health and well-
being, culture, and even political stability are
likely to continue to be influenced by this ancient
history.

However, the biogeographic regions for vec-
tored diseases did depart from those of verte-
brates in several interesting ways. For example,
one of the biogeographic regions clearly defined
for vectored diseases, Region 6, (Fig. 1) included
portions of the Holarctic, but also included
historically British colonized countries, such as
Australia. From the perspective of vectored
diseases, Australia is part of the same biogeo-
graphic region as England even though Australia
is one of the most unique historical biogeograph-
ic regions in terms of birds or mammals (Wallace
1876, Holt et al. 2013). Similarly, India and
Bangladesh, despite being climatically and his-

Table 1. Z-statistic (full suite) values for each binomial regression and chi-squared (v2) values for each

multinomial regression between each schema’s biogeographic regions and individual environmental or socio-

political variables.

Variable Full suite Vector Non-vector

Native mammal species richness �0.032* 152.49*** 106.22***
Gross domestic product 2.6 3 10�5*** 100.56*** 44.70***
Population density 0.001 74.55*** 23.44***
Maximum temperature �0.051 67.85*** 25.27***
Minimum temperature �0.134 81.92*** 9.23
Temperature difference . . . 73.45*** 56.40***
Precipitation frequency 8.9 3 10�4 55.20*** 32.45***
Total annual precipitation 0.002 89.85*** 50.56***
Minimum precipitation month 14.5 66.27*** 14.07**
Maximum precipitation month �0.017 70.53*** 11.21*

Notes: The missing value for temperature difference for the full suite data schema is expected due to two interacting
properties of the analysis: the optimal number of biogeographic regions (n ¼ 2) and the variable, temperature difference, is a
linear combination of two other variables, maximum and minimum temperature.

*p , 0.05; **p , 0.01; ***p , 0.001.
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torically very different from any Holarctic region
are part of a biogeographic region (Region 7) that
is most similar to Region 6 (the region containing
Britain [Appendix: Fig. A1]). Clearly, human
history can and has altered the biogeographic
regions of diseases, even if it has not fully
obscured those ancient regions. The history of
colonization from other regions also seems to
influence the biogeographic regions, albeit some-
what less clearly. The composition of diseases in
Italy, for example, was similar to that in its
former colonies (e.g., Eritrea, Ethiopia, Somalia,
etc.). The relationships between colonies and
former colonies and states are doubtless very
complex—the consequence of the layered influ-
ence of colonial movement, socio-politics and
disease biology—and yet the existence of patho-
gen biogeographic regions that correspond to
colonial histories is striking. The ancient bioge-
ography of vectored pathogens can be altered
and in as much as the Holarctic (including
British) pathogen composition is a relatively
benign one, altered to the ends of human benefit.

We also found some outwardly unusual pair-
ings of countries. For example, vectored Region
1, with member countries including Afghanistan,
Malta, Monaco, Qatar, and others, seems unusual
upon initial review as the climate, history, and
biogeography of these nations within these
regions is diverse. However, similarity indices,
such as those used in our hierarchical clustering,
tend to unite sites with low diversity (Boyle et al.
1990) and these countries were in the lowest 15%
of vectored disease richness as is the case both in
countries of small size, where sampling is likely
to be incomplete or where, as in Qatar, climate is
generally ill conducive to life. In other words,
these regions share the attribute of hosting a
relatively low diversity of recorded, vectored
diseases.

Non-vectored diseases were clustered into
fewer biogeographic regions than were vectored
diseases regardless of our statistical approach
and those regions were far less different from one
another than were the biogeographic regions for
vectored diseases. One of those regions was
composed of the temperate Palearctic and Ne-
arctic (together, Holarctic) regions of the world.
The other four were largely comprised, respec-
tively, of the countries that were islands (Region
2), large proportions of sub-Saharan Africa

(Region 3), Central and South America (Region
4), and Southeast Asia (Region 5). The links
between colonial territories and states is damp-
ened in the non-vectored regions compared to
the vectored regions.

Like the pathogen subset schemas (vectored
and non-vectored), the full suite of diseases
(Appendix: Figs. A3, A4) is distributed into
statistically significant biogeographic regions,
but the nature of the regions is different from
the subsets. We found just two biogeographic
regions when considering the full set of diseases
and these regions broadly reflected the division
between Holarctic and Australia and the rest of
the world. At the coarsest grain, in other words,
the world can be divided, from the perspective of
diseases, into just two pieces with many conse-
quences, all of those associated with diseases,
following from this division.

Biogeographic regions of vectored and non-
vectored diseases were associated with both
climatic and socio-political variables, suggesting
that in addition to the influence of history,
climate and socio-politics have influenced the
distribution of diseases. Though much is under-
stood about the individual natural histories of
vectors (Qiu et al. 2002, Foley et al. 2007), less is
known about general trends of the histories of
the vectored diseases. Given that the biogeo-
graphic regions of vectored disease are associat-
ed with climate variables, it seems likely that the
precise boundaries of these regions will shift as
climate changes, as has been suggested to be the
case for individual pathogens (Pascual and
Bouma 2009), though just how they will shift is
likely to be difficult to predict given that such
shifts will represent the cumulative effect of the
movement of hundreds of pathogen species, their
vectors, and alternate hosts. Not surprisingly,
given the less distinct biogeographic divisions of
the full suite of diseases, they were not strongly
associated with environmental and socio-politi-
cal variables.

A key question that emerges from our work is
why diseases, particularly those with vectors, can
be grouped into biogeographic regions akin to
those for birds and mammals. Clearly, climate
influences the distribution of both vectors and
pathogens, as we found here, and as shown in
many other studies (e.g., Mordecai et al. 2013,
Stensgaard et al. 2013). Yet, if climate were the
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sole influence on the biogeographic regions of
vectored pathogens, we would expect those
regions to simply reflect the climatic zones of
the world. They do not. Instead, they reflect both
the influence of climate and, it appears, the
influence of the biogeographic history of regions.
This influence implies that many pathogens have
been unable to disperse to all of the regions for
which they and their vectors are climatically
suited. In addition, for those pathogens that
require alternate hosts (e.g., Chagas disease), the
spread of pathogens may be limited by the need
for dispersal of those hosts, the vector, and the
pathogen. If true, these mechanisms bear obvious
consequences for the future distributions of
pathogens. As novel, non-vectored pathogens
emerge, the relative lack of biogeographic re-
gions for such pathogens suggests time, rather
than climate and history are likely to influence
where they will occur. Conversely, for vectored
pathogens, it suggests that both of these barriers
to dispersal may be more persistent.

More broadly, we have shown that diseases
caused by pathogens can be persistently influ-
enced by ancient evolutionary history and
climate to such an extent as to cluster globally
into biogeographic regions. But we suspect
similar (though probably not identical) biogeo-
graphic regions exist for other human associates
such as house guests, pests, and even mutualist
species. Given that such species are those with
the most direct effect on human fitness and some
of the most direct effects on politics and
economies, their biogeographic regions are fun-
damental to the human story. These regions are a
reminder of the influences of evolutionary
history and climate on our lives. We posit that
among the most important factors influencing an
individual’s life expectancy and general fate is the
disease biogeographic region in which they are
born. But the influence of human history on the
details of these regions is also a reminder that
they can be changed.
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v www.esajournals.org 8 November 2014 v Volume 5(11) v Article 143

JUST ET AL.



Ecology drives the worldwide distribution of
human diseases. PLoS Biology 2:e141.

Hay, S. I., K. E. Battle, D. M. Pigott, D. L. Smith, C. L.
Moyes, S. Bhatt, J. S. Brownstein, N. Collier, M. F.
Myers, and D. B. George. 2013. Global mapping of
infectious disease. Philosophical Transactions of the
Royal Society B 368:20120250.

He, W. M., Y. Feng, W. M. Ridenour, G. C. Thelen, J. L.
Pollock, A. Diaconu, and R. M. Callaway. 2009.
Novel weapons and invasion: biogeographic dif-
ferences in the competitive effects of Centaurea
maculosa and its root exudate (6)-catechin. Oeco-
logia 159:803–815.

Holt, B. G., J. Lessard, M. K. Borregaard, S. A. Fritz,
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SUPPLEMENTAL MATERIAL

APPENDIX

Fig. A1. Dendrograms from hierarchical clustering using Ward’s distance for disease presence for countries (n¼
229) from the GIDEON database. The vertical axis represents Ward’s distance between clusters. Our analyses

resulted in 7 clusters using vector-borne disease (n ¼ 93) presence. Each differently colored cluster indicates a

biogeographic region (colors match biogeographic regions from Fig. 1A).
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Fig. A2. Dendrograms from hierarchical clustering using Ward’s distance for disease presence for countries (n¼
229) from the GIDEON database. The vertical axis represents Ward’s distance between clusters. Our analyses

resulted in 5 clusters using non-vector-borne disease (n¼ 208) presence. Each differently colored cluster indicates

a biogeographic region (colors match biogeographic regions from Fig. 1B).

Fig. A3. Map of biogeographic regions (n¼ 2) delineated from the full suite of human-associated diseases (n¼
301) based on presence by country (n ¼ 229). Regions were created by hierarchical clustering using Ward’s

distance.
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Fig. A4. Dendrogram from hierarchical clustering using Ward’s distance for disease presence for countries from

the GIDEON database. The vertical axis represents Ward’s distance between clusters. Our analyses resulted in

countries (n¼ 229) being placed into 2 clusters using the full suite of diseases (n¼ 301). Each differently colored

cluster indicates a biogeographic region (colors match biogeographic regions from Appendix: Fig. A3).
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Table A1. Diseases (n ¼ 301) included from the GIDEON database for our analyses. Each diseases’ group

membership (V¼ vector-borne, NV¼ non-vector-borne) is also indicated.

Pathogen Group membership

Actinomycosis NV
Adenovirus NV
Aeromonas hydrophila and marine Vibrio NV
African tick bite fever V
Alkhurma hemorrhagic fever V
Amebic colitis V
Amoeba, free living NV
Amoebic abscess V
Anaplasmosis V
Angiostrongyliasis NV
Angiostrongyliasis, abdominal NV
Anisakiasis NV
Anthrax V
Argentine hemorrhagic fever NV
Ascariasis NV
Astrakhan fever V
Babesiosis V
Bacillary angiomatosis V
Bacillus cereus food poisoning NV
Balantidiasis NV
Barmah Forest disease V
Bartonellosis, cat borne V
Bartonellosis, other systemic V
Bartonellosis, South American V
Bas-Congo virus NV
Baylisascariasis NV
Bertiella and Inermicapsifer NV
Blastocystis hominis infection NV
Bolivian hemorrhagic fever NV
Botulism NV
Brazilian hemorrhagic fever NV
Brazilian purpuric fever NV
Brucellosis NV
Bunyaviridae infections, misc. V
California encephalitis group V
Campylobacteriosis NV
Capillariasis, extraintestinal NV
Capillariasis, intestinal NV
Cercarial dermatitis NV
Chancroid NV
Chandipura and Vesicular stomatitis viruses NV
Chikungunya V
Chlamydial infections misc NV
Chlamydophila pneumoniae infection NV
Cholecystitis and cholangitis NV
Cholera NV
Chronic meningococcemia NV
Clonorchiasis NV
Clostridial food poisoning NV
Clostridial myonecrosis NV
Clostridium difficile colitis NV
Coenurosis NV
Colorado tick fever V
Coltiviruses, Old World V
Common cold NV
Conjunctivitis, inclusion NV
Conjunctivitis, viral NV
Crimean-Congo hemorrhagic fever V
Cryptosporidiosis NV
Cutaneous larva migrans NV
Cyclosporiasis NV
Cysticercosis NV
Cytomegalovirus infection NV
Dengue V
Dicrocoeliasis NV
Dientamoeba fragilis infection NV
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Table A1. Continued.

Pathogen Group membership

Dioctophyme renalis infection NV
Diphtheria NV
Diphyllobothriasis NV
Dipylidiasis NV
Dirofilariasis V
Dracunculiasis NV
Eastern equine encephalitis V
Ebola NV
Echinococcosis, American polycystic NV
Echinococcosis, multilocular NV
Echinococcosis, unilocular NV
Echinostomiasis NV
Ehrlichiosis, human monocytic V
Endemic syphilis (bejel) NV
Entamoeba polecki infection NV
Enteritis necroticans NV
Enterobiasis NV
Enterovirus infection NV
Epidural abscess NV
Erysipelas or cellulitis NV
Erysipeloid NV
Erythrasma NV
Escherichia coli diarrhea NV
Fascioliasis NV
Fasciolopsiasis NV
Filariasis, Bancroftian V
Filariasis, Brugia malayi V
Filariasis, Brugia timori V
Flinders Island spotted fever V
Gardnerella vaginalis infection NV
Gastrodiscoidiasis NV
Gastroenteritis, viral NV
Giardiasis NV
Glanders NV
Gnathostomiasis NV
Gongylonemiasis NV
Gonococcal infection NV
Granuloma inguinale NV
Group C virus fevers V
Hantavirus infection, Old World NV
Hantavirus pulmonary syndrome NV
Hendra virus infection NV
Hepatitis A NV
Hepatitis B NV
Hepatitis C NV
Hepatitis D NV
Hepatitis E NV
Hepatitis G NV
Herpes B infection NV
Herpes simplex encephalitis NV
Herpes simplex infection NV
Herpes zoster NV
Heterophyid infections NV
HIV infection, initial illness NV
Hookworm NV
Human herpesvirus 6 infection NV
Hymenolepis diminuta infection NV
Hymenolepis nana infection NV
Ilheus and Bussuquara V
Infectious mononucleosis or EBV infection NV
Influenza NV
Intestinal spirochetosis NV
Intracranial venous thrombosis NV
Isosporiasis NV
Israeli spotted fever V
Japanese encephalitis V
Japanese spotted fever V
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Table A1. Continued.

Pathogen Group membership

Karelian fever V
Kingella infection NV
Kyasanur Forest disease V
Lagochilascariasis NV
Laryngotracheobronchitis NV
Lassa fever NV
Legionellosis NV
Leishmaniasis, cutaneous V
Leishmaniasis, mucocutaneous V
Leishmaniasis, visceral V
Leprosy NV
Leptospirosis NV
Listeriosis NV
Liver abscess, bacterial NV
Loiasis V
Louping ill V
Lyme disease V
Lymphocytic choriomeningitis NV
Lymphogranuloma venereum NV
Malaria V
Malignant otitis externa NV
Mammomonogamiasis NV
Mansonelliasis, M. ozzardi V
Mansonelliasis, M. perstans V
Mansonelliasis, M. streptocerca V
Marburg virus disease NV
Mayaro V
Measles NV
Melioidosis NV
Meningitis, aseptic (viral) NV
Meningitis, bacterial NV
Metagonimiasis NV
Metorchiasis NV
Microsporidiosis NV
Moniliformis and Macracanthorhynchus NV
Monkeypox NV
Mumps NV
Murray Valley encephalitis V
Mycobacteriosis, M. marinum NV
Mycobacteriosis, M. scrofulaceum NV
Mycobacteriosis, M. ulcerans V
Mycobacteriosis, miscellaneous nontuberculous NV
Mycoplasma (miscellaneous) infections NV
Mycoplasma pneumoniae infection NV
Myiasis V
Nanophyetiasis NV
Necrotizing skin or soft tissue infection NV
Neutropenic typhlitis NV
New World phleboviruses V
Nipah and Nipah-like virus infection NV
Nocardiosis NV
North Asian tick typhus V
Ockelbo disease V
Oesophagostomiasis NV
Old World phleboviruses V
Omsk hemorrhagic fever V
Onchocerciasis V
O’nyong nyong V
Opisthorchiasis NV
Orf NV
Ornithosis NV
Oropouche V
Otitis media NV
Paragonimiasis NV
Parainfluenza virus infection NV
Parvovirus B19 infection NV
Pediculosis V
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Table A1. Continued.

Pathogen Group membership

Pentastomiasis, Armillifer NV
Pentastomiasis, Linguatula NV
Pericarditis, bacterial NV
Pertussis NV
Pharyngeal and cervical space infections NV
Pharyngitis, bacterial NV
Pinta V
Plague V
Pleurodynia NV
Pneumonia - bacterial NV
Pogosta disease V
Poliomyelitis NV
Powassan V
Pseudocowpox NV
Pyodermas (furunculosis impetigo etc) NV
Pyomyositis NV
Pythiosis NV
Q-fever NV
Queensland tick typhus V
Rabies NV
Rat bite fever, spirillary NV
Rat bite fever, streptobacill NV
Relapsing fever V
Respiratory syncytial virus infection NV
Rheumatic fever NV
Rhinoscleroma and ozena NV
Rhinosporidiosis NV
Rhodococcus equi infection NV
Rickettsia felis infection V
Rickettsia sibirica mongolotimonae infection V
Rickettsialpox V
Rift Valley fever V
Rocio V
Rocky Mountain spotted fever V
Ross River disease V
Rotavirus infection NV
Rubella NV
Salmonellosis NV
Sarcocystosis NV
SARS and hCoV-EMC NV
Scabies V
Scarlet fever NV
Schistosomiasis, haematobium NV
Schistosomiasis, intercalatum NV
Schistosomiasis, japonicum NV
Schistosomiasis, mansoni NV
Schistosomiasis, mattheei NV
Schistosomiasis, mekongi NV
Sennetsu neorickettsiosis V
Septicemia, bacterial NV
Shigellosis NV
Sindbis V
Sinusitis NV
Smallpox NV
Sparganosis NV
Spondweni V
Spotted fevers, Old World V
St. Louis encephalitis V
Staphylococcal food poisoning NV
Staphylococcal scalded skin syndrome NV
Streptococcus suis infection NV
Strongyloidiasis NV
Suppurative parotitis NV
Syphilis NV
Taeniasis NV
Tanapox virus infection NV
Tetanus NV
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Table A1. Continued.

Pathogen Group membership

Thelaziasis V
Thogoto V
Tick-borne encephalitis V
Tick-borne encephalitis: Russian spring-summer V
Toxocariasis NV
Toxoplasmosis NV
Trachoma V
Trichinosis NV
Trichomoniasis NV
Trichostrongyliasis NV
Trichuriasis NV
Trypanosomiasis, African V
Trypanosomiasis, American V
Tuberculosis NV
Tularemia V
Tungiasis NV
Typhoid and enteric fever NV
Typhus, endemic V
Typhus, epidemic V
Typhus, scrub V
Vaccinia and cowpox NV
Varicella NV
Venezuelan equine encephalitis V
Venezuelan hemorrhagic fever NV
Vibrio parahaemolyticus infec. NV
Wesselbron V
West Nile fever V
Western equine encephalitis V
Whipple’s disease NV
Whitewater Arroyo virus infection NV
Yaws NV
Yellow fever V
Yersiniosis NV
Zika V
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Table A2. Biogeographic region membership by country and analysis schema. Vector-borne diseases (n ¼ 93),

non-vector-borne diseases (n¼ 208), and the full suite of diseases (n¼ 301) for regions created by hierarchical

clustering using Ward’s distance.

Country Full suite Non-vector Vector

Afghanistan 1 1 1
Albania 1 1 1
Algeria 1 1 2
American Samoa 1 2 3
Andorra 1 1 3
Angola 2 3 4
Anguilla 1 2 3
Antigua Barbuda 1 2 3
Argentina 2 4 5
Armenia 1 1 2
Aruba 1 2 3
Australia 1 1 6
Austria 1 1 2
Azerbaijan 1 1 2
Azores 1 2 1
Bahamas 1 2 3
Bahrain 1 1 1
Bangladesh 2 1 7
Barbados 1 2 3
Belarus 1 1 2
Belgium 1 1 6
Belize 2 4 5
Benin 2 3 4
Bermuda 1 2 3
Bhutan 1 1 3
Bolivia 2 4 5
Bosnia and Herzegovina 1 1 2
Botswana 2 1 4
Brazil 2 4 5
British Virgin Islands 1 2 3
Brunei 1 1 3
Bulgaria 1 1 2
Burkina Faso 2 3 4
Burundi 2 3 4
Cambodia 2 5 7
Cameroon 2 3 4
Canada 1 1 6
Canary Islands 1 2 6
Cape Verde 1 1 3
Cayman Islands 1 2 3
Central African Republic 2 3 4
Chad 2 3 4
Chile 2 4 6
China 2 5 7
Christmas Island 1 2 3
Colombia 2 4 5
Comoros 1 1 3
Congo 2 3 4
Cook Islands 1 2 3
Costa Rica 2 4 5
Croatia 1 1 2
Cuba 1 1 3
Cyprus 1 1 6
Czech Republic 1 1 2
Democratic Rep of Congo 2 3 4
Denmark 1 1 6
Djibouti 2 1 4
Dominica 1 2 3
Dominican Republic 1 1 3
East Timor 2 5 7
Ecuador 2 4 5
Egypt 2 1 4
El Salvador 2 4 5
Equatorial Guinea 2 3 4
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Table A2. Continued.

Country Full suite Non-vector Vector

Eritrea 2 3 4
Estonia 1 1 2
Ethiopia 2 3 4
Falkland Islands 1 2 3
Fiji 1 2 3
Finland 1 1 6
France 1 1 2
French Guiana 2 4 5
French Polynesia 1 2 3
Gabon 2 3 4
Gambia 2 3 4
Georgia 1 1 2
Germany 1 1 6
Ghana 2 3 4
Gibraltar 1 2 1
Greece 1 1 2
Greenland 1 1 3
Grenada 1 1 3
Guadeloupe 1 2 3
Guam 1 1 3
Guatemala 2 4 5
Guinea 2 3 4
Guinea Bissau 2 3 4
Guyana 2 4 5
Haiti 1 1 3
Honduras 2 4 5
Hong Kong 1 1 3
Hungary 1 1 2
Iceland 1 2 3
India 2 5 7
Indonesia 2 5 7
Iran 1 1 2
Iraq 1 1 1
Ireland 1 1 6
Israel 1 1 2
Italy 1 1 2
Ivory Coast 2 3 4
Jamaica 1 1 5
Japan 2 5 6
Jordan 1 1 1
Kazakhstan 1 1 2
Kenya 2 3 4
Kiribati 1 2 3
Kuwait 1 1 1
Kyrgyzstan 1 1 2
Laos 2 5 7
Latvia 1 1 2
Lebanon 1 1 1
Lesotho 2 1 4
Liberia 2 3 4
Libya 2 1 1
Liechtenstein 1 1 6
Lithuania 1 1 2
Luxembourg 1 1 6
Macao 1 1 3
Macedonia 1 1 2
Madagascar 2 3 4
Malawi 2 3 4
Malaysia 2 5 7
Maldives 1 1 3
Mali 2 3 4
Malta 1 1 1
Marshall Islands 1 2 3
Martinique 1 2 3
Mauritania 2 3 4
Mauritius 1 1 3
Mexico 2 4 5
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Table A2. Continued.

Country Full suite Non-vector Vector

Micronesia 1 2 3
Moldova 1 1 2
Monaco 1 2 1
Mongolia 1 1 2
Montserrat 1 2 3
Morocco 2 1 2
Mozambique 2 3 4
Myanmar Burma 2 1 7
Namibia 2 1 4
Nauru 1 2 3
Nepal 2 1 7
Netherlands 1 1 6
Netherlands Antilles 1 2 3
New Caledonia 1 1 3
New Zealand 1 1 3
Nicaragua 2 4 5
Niger 2 3 4
Nigeria 2 3 4
Niue 1 2 3
Norfolk Island 1 2 3
Northern Marianas 1 2 3
Norway 1 1 6
Oman 2 1 1
Pakistan 2 1 7
Palau 1 2 3
Panama 2 4 5
Papua New Guinea 1 1 7
Paraguay 2 4 5
Peoples Dem Rep Korea 2 5 6
Peru 2 4 5
Philippines 2 5 7
Pitcairn Island 1 2 3
Poland 1 1 2
Portugal 1 1 2
Puerto Rico 1 1 3
Qatar 1 1 1
Republic of Korea 2 5 6
Reunion 1 1 3
Romania 1 1 2
Russian Federation 1 1 7
Rwanda 2 3 4
Samoa 1 2 3
San Marino 1 1 3
Sao Tome Principe 2 3 3
Saudi Arabia 2 1 4
Scotland 1 1 6
Senegal 2 3 4
Serbia and Montenegro 1 1 2
Seychelles 1 2 3
Sierra Leone 2 3 4
Singapore 1 1 3
Slovakia 1 1 2
Slovenia 1 1 2
Solomon Islands 1 2 3
Somalia 2 3 4
South Africa 2 3 4
Spain 1 1 2
Sri Lanka 2 1 7
St. Helena 1 2 3
St. Kitts Nevis 1 2 3
St. Lucia 1 2 3
St. Vincent Grenadines 1 2 3
Sudan 2 3 4
Suriname 2 4 5
Swaziland 2 1 4
Sweden 1 1 6
Switzerland 1 1 6
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Table A2. Continued.

Country Full suite Non-vector Vector

Syria 1 1 1
Taiwan 2 5 6
Tajikistan 1 1 2
Tanzania 2 3 4
Thailand 2 5 7
Togo 2 3 4
Tokelau 1 2 3
Tonga 1 2 3
Trinidad Tobago 2 1 5
Tunisia 1 1 2
Turkey 1 1 2
Turkmenistan 1 1 2
Turks and Caicos Islands 1 2 3
Tuvalu 1 2 3
Uganda 2 3 4
Ukraine 1 1 2
United Arab Emirates 1 1 1
United Kingdom 1 1 6
United States 1 1 6
Uruguay 2 4 6
Uzbekistan 1 1 2
Vanuatu 1 2 3
Venezuela 2 4 5
Vietnam 2 5 7
Virgin Islands US 1 2 3
Wake Island 1 2 3
Wallis and Futuna Islands 1 2 3
Western Sahara 1 1 3
Yemen 2 1 4
Zambia 2 3 4
Zimbabwe 2 3 4
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