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Abstract 

Background 

Inflammatory bowel disease (IBD) is a complex multi-factorial inflammatory disease with 

Crohn’s disease (CD) and ulcerative colitis (UC) being the two most common forms. A 

number of transcriptional profiling studies have provided compelling evidence that describe 

the role of protein-coding genes and microRNAs in modulating the immune responses in 

IBD. 

Methods 

In the present study, we performed a genome-wide transcriptome profiling of lncRNAs and 

protein-coding genes in 96 colon pinch biopsies (inflamed and non-inflamed) extracted from 

multiple colonic locations from 45 patients (CD = 13, UC = 20, Controls = 12) using 

expression microarrays platform. 

Results 

In our study, we identified widespread dysregulation of lncRNAs and protein-coding genes in 

both inflamed and non-inflamed CD and UC compared to the healthy controls. In case of 

inflamed CD and UC, we identified 438 and 745 differentially expressed lncRNAs, 

respectively, while in case of the non-inflamed CD and UC, we identified 12 and 19 

differentially expressed lncRNAs, respectively. We also observed significant enrichment (p-

value < 0.001, Pearson’s Chi-squared test) for 96 differentially expressed lncRNAs and 154 

protein-coding genes within the IBD susceptibility loci. Furthermore, we found strong 

positive expression correlations for the intersecting and cis-neighboring differentially 

expressed IBD loci-associated lncRNA-protein-coding gene pairs. The functional annotation 

analysis of differentially expressed genes revealed their involvement in immune response, 

pro-inflammatory cytokine activity and MHC protein complex. 

Conclusions 

The lncRNA expression profiling in both inflamed and non-inflamed CD and UC, 

successfully stratified IBD patients from the healthy controls. Taken together, the identified 

lncRNA transcriptional signature along with clinically relevant parameters suggests their 

potential as biomarkers in IBD. 

Background 

Inflammatory bowel diseases (IBD) are idiopathic chronic relapsing inflammatory conditions 

of the gastrointestinal (GI) tract. Crohn’s disease (CD) and ulcerative colitis (UC) are two 

most common forms of the IBD. IBD is emerging as a global disease with its incidence and 

prevalence differentially increasing geographically around the world. Accumulating evidence 

suggests that IBD result from the complex interplay between genetic, immunologic, and 

modifiable environmental factors [1], in a genetically susceptible host against a subset of gut 

commensal microbiota [2-4]. 



CD is characterized by intestinal inflammation in a discontinuous fashion and involves any 

part of the GI tract, although in majority of the cases terminal ileum and/or colon is affected. 

Transmural pattern of inflammation is a hallmark of CD accompanied with other 

pathophysiological complications like thickened submucosa, intestinal fibrosis, fissuring 

ulceration in highly active disease, non-caseating granulomas, strictures, abscesses and 

fistulas [3]. By contrast, UC involves only rectum and colon, and is characterized by 

superficial inflammation that is restricted to the mucosa and submucosa with presence of 

cryptitis and crypt abscesses. Disease activity in both CD and UC is typically relapsing and 

remitting and both conditions are often difficult to diagnose because of idiosyncrasies in the 

presentation of overlapping and distinct clinical and pathological features [2,3]. 

Characteristically, diagnosis of either CD or UC is based on number of findings including: 

clinical symptoms, endoscopic features, radiologic tests, and biopsy histology. 

According to a recent meta-analysis of IBD genome-wide association studies (GWAS) data, 

the number of confirmed genetic loci associated with risk for IBD has increased to 163, with 

110 shared between CD and UC, 30 CD-specific and 23 UC-specific. Interestingly, an 

overwhelming majority of these IBD loci are located in the noncoding intergenic and intronic 

regions [5]. Most are overlapping the regulatory elements and consequently are likely to 

influence gene regulation. Findings from our recent studies have demonstrated that large 

number of annotated long non-coding RNAs (lncRNAs), including novel evolutionarily 

conserved structured RNA motifs with regulatory potential ([6], unpublished observations 

(Seemann et al.)), overlap with the IBD loci. Consistent with our findings, another recent 

study, elegantly revealed that IBD loci overlaps with active regulatory regions in primary 

intestinal epithelium and immune cells and also IBD loci was found significantly enriched 

within these active regulatory regions [7]. 

Several transcriptome profiling studies have provided compelling evidence describing the 

role of protein-coding and non-coding RNAs (ncRNAs), such as microRNAs, in modulating 

immune responses in IBD [8-15]. In murine models, loss of endogenous intestinal 

microRNAs is known to cause impairment of epithelial barrier function that result in acute 

inflammation [16]. Several studies have explored clinical differences between CD and UC 

based on transcriptional regulation [17,18]. Recently, Granlund et al. demonstrated lack of 

major differences between CD and UC based on protein-coding gene expression profiling in 

IBD [9]. In contrast, expression profiling of colon biopsies from IBD patients allude to 

differential diagnosis of CD and UC based on transcriptional signatures associated with 

intestinal inflammation [19]. 

Long non-coding RNAs (lncRNAs) have emerged as important regulators of gene expression, 

with accumulating body of evidence linking lncRNAs to a plethora of human pathologies 

including inflammatory diseases [20]. Although, the precise role of lncRNAs in intestinal 

diseases remains poorly understood, evidence from recent studies indicates that lncRNAs 

might be playing a crucial role in inflammatory cascades. Indeed, preponderance of emerging 

evidence from number of studies, demonstrates important roles of lncRNAs in regulating 

gene expression within the immune system. Nevertheless, identification of IBD susceptibility 

loci has afforded limited success in translating results from gene expression studies to 

advance our knowledge and understanding of the IBD pathophysiology. In particular, the 

details about the initiation, propagation and maintenance of the lingering inflammation in 

IBD remains unclear. Furthermore, earlier transcriptomic studies in IBD have mostly been 

focused on the protein-coding genes with limited profiling studies focusing on microRNAs. 

However, no study has explored the genome-wide expression profile of lncRNAs in IBD. 



In the present study, transcriptomic profiling of lncRNAs and protein-coding genes from 

colon pinch biopsies of IBD patients was performed using expression microarray platform. 

Our results identified widespread dysregulation of lncRNAs and protein-coding gene 

expression in both CD and UC. Notably, differential transcriptomic signature of lncRNAs 

and protein-coding genes in inflamed-CD (iCD) and inflamed-UC (iUC) enabled clear 

stratification of the CD and UC phenotype. These data indicate that lncRNAs could 

potentially be used as predictive biomarkers in IBD. 

Methods 

Samples collection (Patients and control) 

All the patient samples were collected from an IBD cohort at North Zealand Hospital, 

Hillerød, Denmark. Subjects were required to meet the Copenhagen criteria for Crohn’s 

disease or ulcerative colitis. Participants recruited for the study were patients admitted to the 

Department of Gastroenterology for colonoscopy who were diagnosed either with CD or UC, 

or were admitted to the clinic for diagnostic colonoscopy because of symptoms unrelated to 

the IBD. Written informed consent from all the participants in the study was acquired prior to 

the collection of samples and medical history. In total, 90 biopsies were collected from 45 

individuals (13 CD, 20 UC patients and 12 healthy controls). Subjects were included as 

normal controls only after all clinical examinations had concluded no signs of autoimmune or 

inflammatory disease. In case of the IBD groups (CD and UC), one to five endoscopic pinch 

biopsies were extracted from macroscopically most inflamed mucosa (iCD/iUC) and adjacent 

non-inflamed (niCD/niUC) mucosa within colon (transverse, descending, sigmoid), ileum, 

transverse ileum and rectum for the CD, and colon sigmoid and rectum for the UC patients. 

Whereas, for the control group, one to five biopsies were taken from the same locations as in 

the CD group, except for the two samples (G3_G1 and 60_G1) that were extracted from 

duodenal bulb. All biopsies were placed in RNAlater solution (QIAGEN, Hilden, Germany), 

and stored for the later downstream use. The study was approved by the Regional Ethical 

Committee (H-4-2012-030). The inflammation status of biopsies was confirmed by the 

histologic examination and features of chronic intestinal inflammation for each patient were 

scored using a previously described scoring system for UC [21] and CD [22]. The 

pathologists were blinded to the status of inflammation. Additionally, we also tested 

expression of a panel of twenty-six pro-inflammatory markers (cytokines, interleukins, 

metalloproteases) using qPCR (Fluidigm platform) to confirm the inflammation status of 

biopsies (data not shown) prior to the microarray analysis. 

RNA extraction and quality control 

Total RNA was extracted from biopsies stored in RNAlater using RNeasy Mini Kit 

(QIAGEN, Hilden, Germany) according to the manufacturer’s instructions. Briefly, the 

biopsy samples were homogenized in lysis buffer with 1.4 mm ceramic beads (MO BIO 

Laboratories) using Thermo Savant FastPrep FP120 Homogenizer for 30 seconds at a speed 

of 4 m/sec. All the remaining steps of the protocol were performed according to the 

manufacturer’s recommendations. To remove traces of genomic DNA, samples were treated 

with DNase I (QIAGEN, Hilden, Germany). RNA was finally eluted with nuclease-free water 

supplied with the kit. The quantity and purity of isolated RNA was determined by UV 

absorbance using NanoDrop 2000 Spectrophotometer (Thermo Scientific, DE, USA), and the 

integrity of RNA was assessed by analysis of rRNA band integrity on an Agilent 2100 



Bioanalyzer RNA 6000 LabChip kit (Agilent Technologies). Only RNA samples with RNA 

integrity number (RIN) >7 were used for the microarray experiments. 

Microarray hybridization 

100 ng of total RNA was labeled using LowInputQuick Amp Labeling kit v6.5 (Agilent 

5190–2305) following manufacturer instructions. Briefly, mRNA was reverse transcribed in 

the presence of T7-oligo-dT primer to synthesize cDNA. The cDNA was then in-vitro 

transcribed with T7 RNA polymerase in the presence of Cy3-CTP to generate labeled cRNA. 

The labeled cRNA was hybridized to the Agilent Custom 8x60K format lncRNA expression 

microarray (AMADID 047718, based on Gencode v15 catalog of human long noncoding 

RNAs, probe length = 60 nt) according to the manufacturer’s protocol. Finally, the arrays 

were washed, and scanned on an Agilent G2565CA microarray scanner at 100% PMT and 3 

m resolution. Intensity data was extracted using the Feature Extraction software (Agilent). A 

more detailed and general information about the array can also be found on GENCODE 

website [23]. The raw microarray data reported in this manuscript have been deposited in the 

Gene Expression Omnibus (GEO) database with the accession number GSE67106. 

Statistical analyses 

Raw data was corrected for background noise using normexp method [24]. To assure 

comparability across samples we used quantile normalization [unpublished observations 

(Bolstad B. Probe Level Quantile Normalization of High Density Oligonucleotide Array 

Data. 2001. [25]). Median intensity was taken between technical replicates after checking 

pairwise Pearson correlation coefficients (r
2
  0.98). Differential expression analysis was 

carried out on non-control probes with an empirical Bayes approach on linear models 

(LIMMA) [26]. Principal Component Analysis (PCA) method was employed for the initial 

interpretation of the data. In total, we made seven contrasts to identify differentially 

expressed genes (iCD vs control, iUC vs control, iCD vs niCD, iUC vs niUC, niCD vs 

control, niUC vs control and iCD vs iUC) (Additional file 1: Table S1, S2, S3, S4).. P-values 

were adjusted for multiple comparisons using the False Discovery Rate (FDR) correction 

[27]. Differentially expressed genes were identified using the double-filtering criterion: 

adjusted p-value (FDR) < 0.05 and an absolute fold change (abs FC) > 1.5. For transcripts 

targeted by two probes, only those probes that were changing in the same direction and the 

probes with highest FC values were retained for further analysis. All statistical analyses were 

performed with Bioconductor in R statistical environment [28]. 

Validation of differentially expressed genes by quantitative real-time PCR 

(qPCR) 

The expression of differentially expressed genes from microarray experiments was validated 

by the quantitative real-time PCR (qPCR) using hydrolysis probe based inventoried and 

custom designed PrimeTime qPCR 5  Nuclease assays procured from Integrated DNA 

Technologies (IDT). The Double-Quenched hydrolysis probes with 5  FAM fluorophore, a 3  

IBFQ quencher, and an internal ZEN™ quencher was used for all the assays.. From the list of 

top differentially expressed genes from different contrasts, 6 up- and 6 down-regulated genes 

were selected for their expression validation by qPCR in a subset of samples used for the 

microarray experiments. In case of protein-coding, 3 up-regulated (DUOXA2, CHI3L1, DST), 

and 3 down-regulated (PCK1, KCNK10, and SERPINB3) genes were validated. Whereas, for 



the lncRNAs, 3 up-regulated (MMP12, RP11-731 F5.2, AC007182.6), and 3 down-regulated 

(DPP10-AS1, CDKN2B-AS1, and AL928742.12) genes were validated. In addition, 

expression of protein-coding gene DUOX2 was also measured by qPCR. All cDNAs were 

prepared using 750 ng of DNA-free RNA using iScript
TM

 cDNA synthesis kit (BioRad) with 

a mixture of random and oligo(dT) primers following the manufacturer’s instructions. Real-

time PCR was performed with 7.5 ng of cDNA per well template for the all the protein-

coding genes and lncRNAs with Brilliant III Ultra-Fast QPCR Master Mix (Agilent 

Technologies). For PCR amplification, the following thermal profile was used: 3 min 95°C; 

40 x (5 sec 95°C, 10 sec 60°C). Expression of each lncRNA and protein-coding gene tested 

was represented as a fold change using the 2
CT

 method. GAPDH was used as the reference 

gene. 

Identification of IBD-loci associated lncRNAs 

All IBD loci marker SNPs and associated genes were retrieved from the ImmunoBase [29]. 

In total, 233 unique marker SNPs for IBD, CD, and UC regions were retrieved and mapped to 

the 22,007 lncRNAs (Gencode v15) using intersect feature of the BedTools [30]. The 

susceptibility locus for IBD was defined based on 500 kb long genomic region with the IBD 

marker SNP in the middle. The differentially expressed lncRNAs from five contrasts (iCD vs 

control, iUC vs control, iCD vs niCD, iUC vs niUC, and iCD vs iUC), were mapped to the 

IBD loci to identify the IBD loci-associated lncRNAs. Regulatory evidence for the IBD-

associated SNPs was retrieved from Mokry et al. [7] and RegulomeDB [31]. 

Functional annotation and Gene Ontology (GO) analysis of differentially 

expressed lncRNAs 

For the differentially expressed lncRNAs, the nearest protein-coding neighbors within a span 

of <10 kb were identified. For the antisense overlapping or intronic overlapping lncRNAs, 

intersecting protein-coding gene(s) were identified using intersect feature of BedTools [30]. 

PANTHER (protein annotation through evolutionary relationship) classification system [32] 

was used to perform functional annotation and GO analysis of genes that overlap with or are 

neighbors of the differentially expressed lncRNAs. Likewise, for the IBD loci-associated 

lncRNAs, GO analysis was performed using the above described nearest neighbor approach. 

The enrichment for over-represented GO functional terms was calculated based on Binomial 

test in PANTHER. 

Sample classification using SVM based on differentially expressed genes 

identified by LIMMA 

Support Vector Machines (SVM) [33] was used for classifying the CD and UC cases from 

the controls based on differentially expressed genes identified by LIMMA in five contrasts 

(iCD vs control, iCD vs niCD, iUC vs control, iUC vs niUC and iCD vs iUC). SVM 

classification was applied to all five contrasts using the Leave-one-out cross-validation 

(LOOCV) for differentially expressed lncRNAs and protein-coding genes. To explore the 

effect of various clinical parameters (age, sex, smoking, disease index and biopsy location) 

on overall disease outcome, we used the following linear regression function: 

*
    1*   2 *   3*   4 *   5  y err w age w sex w smoking w disease index w biopsy location



Here, y = 1 for iCD or iUC disease phenotype and for rest of the samples it is 0. For clinical 

parameters: age and disease index, we used original values, while for sex and smoking, we 

used the following binary outcomes: male = 1, female = 0 and smoker =1, non-smoker = 0. In 

case of six biopsy locations, we used values ranging from 0 to 5. To control any input bias, 

same analysis was performed on a randomized lncRNA gene list of the same number as the 

total differentially expressed lncRNA genes. The feature values were normalized to values 

ranging from 0 to 1 using (x-min)/(max-min). Linear regression was applied using Scikit-

learn [34] package in python and least square method was used for optimization in our 

analysis. Furthermore, differentially expressed genes identified by LIMMA were verified by 

Support Vector Machines- Recursive Feature Elimination (SVM-RFE) method [35]. SVM-

RFE recursively prunes genes whose absolute weights are the smallest until desired number 

of features is reached. For each contrast, we used SVM-RFE to identify the same number of 

differentially expressed genes as identified by LIMMA. 

Co-expression network analysis 

To identify CD and UC specific networks clusters (modules) based on highly correlated 

genes, weighted correlation network analysis (WGCNA) method was used [36]. We used the 

normalized expression data as input and removed the outlier samples. The clinical parameters 

were represented as following: numeric for age and disease, binary for sex, ethnicity (3 

categories), smoking (4 categories), clinical subgroup (5 categories), and biopsy location (6 

categories). The standard procedure of WGCNA was applied for network construction and 

module identification. The trait-based gene significance measure is defined as the absolute 

correlation and correlation test p-value between the trait and the gene expression profile. 

Gene Ontology analysis of modules was performed with GOstats package in R [37] using 

adjusted p-value < 0.001. We controlled for study bias in the GO analysis by running the 

same analysis for randomized gene sets of the same module sizes. 

Results 

The overall summary describing sample information is provided in Table 1. Both, CD and 

UC samples were divided based on inflammation status confirmed by both macroscopic, 

microscopic evaluations and pro-inflammatory gene signatures into inflamed (iCD, iUC) and 

non-inflamed (niCD, niUC) categories. The total number of samples included 21 iCD, 23 

niCD, 15 iUC, 9 niUC and 22 healthy controls. In total, 90 intestinal pinch biopsies (45 

individuals (13 CD, 20 UC patients and 12 healthy controls)) from multiple colonic regions 

were harvested from both inflamed and non-inflamed mucosa (Figure 1A). Detailed sample 

information including the ethnic background, disease index, previous treatment regimens and 

other clinical parameters are listed in Table 2. 

  



Table 1 Overall study design and sample information 
Diagnosis Number of samples Number of individuals

iCD 21 13 

niCD 23 

iUC 21 (15 unique) 20 

niUC 9 

Controls 22 12 

Total 96 (90 unique samples) 45 

90 biopsy samples extracted from different colonic locations from 45 patients (CD = 13, UC = 20, Controls = 12). 6 samples 

from UC patients were used as technical replicates. 

Figure 1 Study design and inflammatory gene signature for iCD and iUC. (A) Study design 

included 90 pinch biopsies from multiple colonic regions for both inflamed and non-inflamed 

mucosa (21 iCD, 23 niCD, 15 iUC, 9 niUC and 22 healthy controls samples). (B) Principal 

component analysis (PCA) separated inflamed-CD (iCD) and inflamed-UC (iUC) samples 

from non-inflamed and healthy controls. PC1 and PC2 together explained 15% of the total 

variation. (C) Unsupervised hierarchical clustering of the most dynamic probes (coefficient 

of variance >0.05) across the samples resulted in clustering of samples according to their 

clinical subgroups. (D) The log2 ratio and –log10 adj.P-values are plotted in the form of 

volcano plots for iCD vs control, iUC vs control and iCD vs iUC contrasts. The probes in red, 

blue and orange colors represents up-regulated (FC >1.5 and adj.P-value <0.05), down-

regulated (FC < 1.5 and adj.P-value <0.05) and significant with small fold change (FC > 

1.5 and <1.5), respectively. The non-significant probes are represented in black color. The 

selected protein-coding genes and lncRNAs labeled in black and green, respectively. (E) 

Venn diagram shows the overlap between differentially expressed genes identified in iCD vs 

control, iUC vs control and iCD vs iUC contrasts. The up-regulated genes are depicted in 

italics, down-regulated as underlined and contra-regulated in red. 

Table 2 Clinical parameters 
Number of individuals CD UC Controls 

13 20 12 

Age 31 (19–59) 46 (18–68) 54 (18–77) 

median years (range) 

Average age at diagnosis (years) 27 33 NA 

Average years with disease (Disease duration) 8 9.3 NA 

Female / Male 6/7 13/7 8/4 

Smoking    

Smoker (S) 8 1 4 

Previous (P) 4 8 1 

Never (N) 1 11 5 

Not disclosed (ND) - - 2 

Ethnicity    

Danish (DK) 9 19 12 

European (EU) 1 - - 

Middle Eastern (ME) 3 1 - 

Number of individuals with family history of other 

autoimmune diseases 

1 (7%) 6 (30%) 5 (41%) 

Number of patients on medication   NA 

5-ASA 2 13  

Solumedrol 2 1  

Azathioprin 2 2  

Budesonide 1 1  

Prednisolon 1 2  

Disease Index HB index = 3-36 SCCAI index = 2-12  



Each column summarizes characteristics for all patients contributing with samples to the corresponding sample groups. 5-

ASA – 5-aminosalicylic acid. HB index – Harvey Bradshaw index. SCCAI index – Simple Clinical Colitis Activity index. 

Microarray analysis of lncRNAs and protein-coding gene expression 

In Gencode v15 lncRNA microarray design, each lncRNA transcript is targeted by two 

probes covering 22,001 lncRNA transcripts corresponding to 12,963 lncRNA genes. In 

addition, each array contains 17,535 randomly-selected protein-coding targets, of which 

15,182 (unique 12,787) correspond to protein-coding genes. Six samples analyzed in 

duplicates, hybridized on separate chips, and used as technical replicates showed strong 

positive Pearson correlation (r
2
  0.98, p-value < 2.2e-16) (Additional file 2: Figure S1). 

Based on the principal component analysis (PCA) (see methods section for details), 

separation of iCD and iUC samples from niCD, niUC and healthy controls were observed 

(Figure 1B). However, there was no apparent separation between iCD and iUC samples. The 

scatterplot matrices describing the first four principal components are described in Additional 

file 2: Figure S2. Unsupervised hierarchical clustering of the most dynamic probes 

(coefficient of variance >0.05) across the samples ensued in clustering of samples according 

to their clinical subgroups (Figure 1C). The probes targeting lncRNAs and protein-coding 

genes separately also clustered samples in a similar manner (Additional file 2: Figure S3A 

and S3B). 

Differential transcriptional signature of lncRNAs and protein-coding genes in 

CD and UC 

To define CD and UC specific transcriptional signatures based on intestinal inflammation, we 

identified differentially expressed genes using LIMMA [24] (based on a cutoff of log2 fold 

change (FC) >1.5 (up-regulated), FC < 1.5 (down-regulated) and adj.P-value <0.05 

(moderated t-test)) in all contrasts (Table 3). The log2 ratio and –log10 adj.P-values are 

plotted and represented as volcano plots for iCD vs control, iUC vs control and iCD vs iUC 

contrasts in Figure 1D. For the non-inflamed tissues contrasts (iCD vs niCD and iUC vs 

niUC), the volcano plots are shown in Additional file 2: Figure S4A and S4B, respectively. 

Table 3 Total number of differentially expressed genes 
Total differentially expressed genes 

 iCD niCD iUC niUC 

Control 1477 73 2429 44 

iCD  435 73  

iUC    1814 

Protein-coding genes 

 iCD niCD iUC niUC 

Control 1039 61 1684 25 

iCD  328 50  

iUC    1215 

LncRNAs 

 iCD niCD iUC niUC 

Control 438 12 745 19 

iCD  107 23  

iUC    599 

Total differentially expressed genes identified in seven pairwise contrasts (iCD vs control, iUC vs control, iCD vs niCD, iUC 

vs niUC, niCD vs control, niUC vs control and iCD vs iUC). 



Differential gene expression analysis identified the following up/down-regulated genes: 

761/278 protein-coding genes and 254/184 lncRNAs in iCD vs control and 1085/599 protein-

coding genes and 370/375 lncRNAs in iUC vs control (Table 3 and Figure 1E). The top up-

regulated and down-regulated lncRNAs and protein-coding genes (based on FC) for iCD vs 

control and iUC vs control are listed in Tables 4 and 5. Interestingly, lncRNA RP11-731 F5.2 

(whose 3  end partly spans into the start of the IGHG2 gene) and antisense lncRNA MMP12 

were found significantly up-regulated, whereas, the antisense DPP10-AS1, ANRIL 

(CDKN2B-AS1) and DIO3OS lncRNAs were significantly down-regulated in both iCD vs 

control and iUC vs control contrasts (Tables 4 and 5). 

Table 4 Top ten differentially expressed genes in iCD 
Up-regulated lncRNAs Up-regulated protein-coding genes 

Gene Name Transcript FC Gene Name Transcript FC

RP11-731 F5.2 ENST00000460164.1 14.14 REG3A NM_138938 52.71 

MMP12 ENST00000532855.1 6.64 DUOXA2 NM_207581 47.26 

MMP12 ENST00000326227.5 6.52 DEFA5 NM_021010 37.73

RP11-465 L10.10 ENST00000419897.1 5.69 DEFA6 NM_001926 28.33 

RP11-44 K6.2 ENST00000520185.1 3.83 CHI3L1 NM_001276 26.29 

FAM66D ENST00000526690.1 3.36 CXCL1 NM_001511 14.8 

LINC01272 ENST00000445003.1 3.35 DMBT1 NM_007329 13.45 

RP11-44 K6.4 ENST00000522970.1 3.24 SAA1 NM_000331 12.67 

SAA2-SAA4 ENST00000524555.1 3.16 CXCL9 NM_002416 12.07 

KIF9-AS1 ENST00000429315.2 3.14 IGHG3 ENST00000390551 11.52 

Down-regulated lncRNAs Down-regulated protein-coding genes 

DPP10-AS1 ENST00000432658.1 8.57 PCK1 NM_002591 5.55

PDZK1P2 ENST00000401008.2 4.11 SLC26A2 NM_000112 3.82 

DIO3OS ENST00000553575.1 3.01 C10orf116 NM_006829 3.8 

DIO3OS ENST00000554694.1 3.01 GUCA2B NM_007102 3.61 

DIO3OS ENST00000557532.1 2.99 LCN15 NM_203347 3.43 

DIO3OS ENST00000557109.1 2.98 AQP7P1 NR_002817 3.32 

ANRIL (CDKN2B-AS1) ENST00000422420.1 2.97 TRPM6 NM_017662 3.19 

ANRIL (CDKN2B-AS1) ENST00000428597.1 2.97 TNNC2 NM_003279 3.1 

DIO3OS ENST00000554441.1 2.96 UGT2A3 NM_024743 2.97 

DIO3OS ENST00000554735.1 2.95 ADH1C NM_000669 2.96 

Top ten up and down-regulated lncRNAs and protein-coding genes in iCD vs control contrast. The log2 fold change is 

denoted as FC. 

Table 5 Top ten differentially expressed genes in iUC 
Up-regulated lncRNAs Up-regulated protein-coding genes 

Gene Name Transcript FC Gene Name Transcript FC

RP11-731 F5.2 ENST00000460164.1 20.64 DUOXA2 NM_207581 109.61 

MMP12 ENST00000532855.1 17.05 CHI3L1 NM_001276 39.71 

MMP12 ENST00000326227.5 16.54 SAA1 NM_000331 30.67 

RP11-465 L10.10 ENST00000419897.1 9.52 CXCL1 NM_001511 25.92 

KIF9-AS1 ENST00000429315.2 5.75 MMP7 NM_002423 21.2 

FAM66D ENST00000526690.1 5.73 SLC6A14 NM_007231 20.52 

SAA2-SAA4 ENST00000524555.1 5.66 IGHG3 ENST00000390551 20.14 

CLRN1-AS1 ENST00000476886.1 4.64 MMP12 NM_002426 15.76 

RP11-1149O23.3 ENST00000517774.1 4.29 C4orf7 NM_152997 14.76

RP5-1028 K7.2 ENST00000578280.1 4.21 CXCL2 NM_002089 11.91 

Down-regulated lncRNAs Down-regulated protein-coding genes 

ANRIL (CDKN2B-AS1) ENST00000422420.1 8.67 PCK1 NM_002591 15.24 

ANRIL (CDKN2B-AS1) ENST00000428597.1 8.31 OSTalpha NM_152672 11.33 

ANRIL (CDKN2B-AS1) ENST00000585267.1 7.06 ANPEP NM_001150 11.02 

ANRIL (CDKN2B-AS1) ENST00000580576.1 6.92 SLC26A2 NM_000112 10.46 

ANRIL (CDKN2B-AS1) ENST00000577551.1 6.74 GBA3 NM_020973 9.28 



ANRIL (CDKN2B-AS1) ENST00000581051.1 6.72 GUCA2A NM_033553 9.22 

ANRIL (CDKN2B-AS1) ENST00000582072.1 6.68 SLC3A1 NM_000341 9.21 

PDZK1P2 ENST00000401008.2 6.67 GUCA2B NM_007102 8.84 

DPP10-AS1 ENST00000432658.1 5.95 TMIGD1 NM_206832 8.17 

ANRIL (CDKN2B-AS1) ENST00000421632.1 5.78 SLC1A7 NM_006671 6.57 

Top ten up and down-regulated lncRNAs and protein-coding genes in iUC vs control contrast. The log2 fold change is 

denoted as FC. 

In case of the protein-coding genes, the top differentially expressed genes included, 

DUOXA2, CHI3L1, CXCL1 and SAA1, which were all significantly up-regulated, whereas, 

PCK1, SLC26A2, GUCA2B, were significantly down-regulated (Tables 4 and 5). In case of 

iCD vs controls, REG3A was >52 fold up-regulated (adj.P-value = 2.17e-04). The top 

differentially expressed lncRNAs and protein-coding genes for iCD vs niCD and iUC vs 

niUC contrasts, displayed similar expression patters as healthy controls (Additional file 1: 

Table S1 and S2). 

On comparing niCD vs control and niUC vs control, only a small number of up/down-

regulated genes (61/25 and 8/17 protein-coding, 12/19 and 9/10 lncRNAs) were identified for 

niCD and niUC, respectively. Nearly, all of the differentially expressed genes in niCD vs 

control were also present in iCD vs control contrast with the exception of protein-coding gene 

CRYBB2 (FC = 1.5) (Additional file 1: Table S3). Conversely, in case of niUC vs control, 

majority (15 out of 17) of the up-regulated genes including 4 small nucleolar RNAs 

(snoRNAs: SNORD97, SNORA28, SNORA53, and SNORA74A) and the down-regulated 

genes, MAST3, CPT1B, LOC338799, EXOC3L4, and MAPK8IP3 were specifically found in 

niUC only (Additional file 1: Table S4). Importantly, in the case of iCD vs iUC contrast, 

18/32 protein-coding genes and 13/10 lncRNAs were significantly found to be up/down-

regulated. The top up/down-regulated lncRNAs and protein-coding genes for iCD vs iUC are 

shown in Table 6. The annotations for the Gencode v15 [38] microarray features for 

lncRNAs are summarized in Figure 2A. Majority of the differentially expressed lncRNAs 

identified in our analysis belonged to three main classes: antisense, processed transcripts and 

intergenic lincRNAs (Figure 2B), as described in the following section. 

Table 6 Top ten differentially expressed genes in iCD vs iUC 
Up-regulated lncRNAs Up-regulated protein-coding genes 

Gene Name Transcript FC Gene Name Transcript FC

FLJ42969 ENST00000514926.1 2.6 C8G NM_000606 2.75 

AC007182.6 ENST00000455232.1 2.42 SLC25A34 NM_207348 2.43 

RP11-542 M13.2 ENST00000599411.1 2.04 UGT1A6 NM_001072 2.25 

RP11-399 F4.4 ENST00000453998.1 1.87 LRRC66 NM_001024611 2.20 

FAM95B1 ENST00000455995.1 1.87 EXOC3L4 NM_001077594 1.95 

RP3-395 M20.8 ENST00000432521.2 1.69 ANO7 NM_001001891 1.95 

RP3-395 M20.8 ENST00000448624.2 1.65 GLYCTK NM_145262 1.90 

OPLAH ENST00000426825.1 1.61 CLEC10A NM_182906 1.89 

OPLAH ENST00000534424.1 1.61 FAM95B1 NR_026759 1.89 

SPPL2B ENST00000592738.1 1.59 LPIN3 NM_022896 1.87

Down-regulated lncRNAs Down-regulated protein-coding genes 

AL928742.12 ENST00000412518.1 2.01 SERPINB3 NM_006919 3.87 

RP11-444D3.1 ENST00000540811.1 1.84 SLC6A14 NM_007231 3.51 

AL928742.12 ENST00000427543.1 1.8 GAL NM_015973 2.50 

FAM25D ENST00000426412.2 1.69 GJB4 NM_153212 2.38 

RP11-274 N19.2 ENST00000515643.1 1.64 IGHV1-58 ENST00000390628 2.29 

RP11-838 N2.4 ENST00000579007.1 1.59 CRYM NM_001888 2.28 

RP11-279 F6.3 ENST00000558941.1 1.57 SLC26A4 NM_000441 2.22 

RP11-279 F6.3 ENST00000559212.1 1.55 DEFB103B NM_018661 2.22 



LINC00524 ENST00000555860.1 1.54 LAMC2 NM_005562 2.20 

VAV3-AS1 ENST00000438318.1 1.52 TUSC3 NM_178234 2.02 

Top ten up and down-regulated lncRNAs and protein-coding genes in iCD vs iUC. The log2 fold change is denoted as FC. 

Figure 2 Gencode v15 annotation of the total differentially expressed lncRNAs in IBD and 

microarray validation by qPCR. (A) The Gencode v15 array targeted 22007 lncRNA 

transcripts falling into seven major annotation classes (antisense, processed transcripts, 

intergenic (lincRNAs), sense overlapping, sense intronic and retained introns). Three classes 

(ambiguous_orf, non-coding RNAs and TEC (to be experimentally confirmed) with small 

number of lncRNAs were merged into miscellaneous (misc) class for better representation. 

(B) Three major classes of differentially expressed lncRNAs identified in our study: 

intergenic (lincRNAs), processed transcripts and antisense lncRNAs. (C) The differences 

between the expression levels of top 3 most up-and down regulated protein-coding genes (in 

blue) and lncRNA genes (in red) in different the clinical were tested using Kruskal-Wallis 

with Dunn’s multiple comparison test. The top 3 up-regulated protein-coding genes 

(DUOXA2, CHI3L1 and CXCL9) and lncRNAs genes (MMP12, FAM66D and SAA2-SAA4), 

showed increasing signal intensity from control group to inflamed CD and UC groups based 

on averaged gene expression levels (p-value < 0.001). While, in case of the top 3 down-

regulated protein-coding genes (PCK1, GUCA2B and TNNC2) and lncRNA genes (DPP10-

AS1, PDZK1P2 and ANRIL), a decreasing signal intensity across the clinical subgroups was 

observed from iCD, iUC to controls (p-value < 0.001). (D) A total of 8 genes were selected 

for real-time PCR validation of the microarray data in iCD vs control (red) and iUC vs 

control (blue). The log2 fold change (FC) is plotted on the y axis. 

Additionally, we also tested the differences between the clinical subgroups for the top 

differentially expressed protein-coding and lncRNA genes. The top 3 up-regulated protein-

coding genes (DUOXA2, CHI3L1 and CXCL9) and lncRNAs genes (MMP12, FAM66D and 

SAA2-SAA4), showed increasing signal intensity based on the averaged gene expression 

levels across the spectrum of clinical subgroups from control to iCD and iUC (p-value < 

0.001) (Figure 2C). In case of top 3 down-regulated protein-coding genes (PCK1, GUCA2B 

and TNNC2) and lncRNA genes (DPP10-AS1, PDZK1P2 and ANRIL), we observed 

decreasing signal intensity across the clinical subgroups from iCD, iUC to controls (p-value < 

0.001) (Figure 2C). Importantly, eight major isoforms (out of total 17 annotated isoforms) of 

ANRIL were found to be down-regulated in iCD and iUC when compared to controls and 

non-inflamed tissues in our data (Tables 4 and 5). ANRIL was 2.97 and 2.72 fold down-

regulated in iCD vs control and iCD vs niCD contrasts, and 8.31 and 7.98 fold down-

regulated in iUC vs control and iUC vs niUC contrasts, respectively. 

Furthermore, for the validation of microarray results by quantitative real-time PCR (qPCR), 

we selected 8 top differentially expressed genes (based on FC) common between iCD vs 

control and iUC vs control (up-regulated: DUOXA2, CHI3L1, DUOX2, MMP12, RP11-731 

F5.2; down-regulated: PCK1, DPP10-AS1, ANRIL). The qPCR analysis confirmed the 

microarray expression results with respect to the fold change values (Additional file 1: Table 

S5). We also performed qPCR analysis for DUOX2 although it was not probed on our 

microarray, but it has been implicated along with its maturation factor DUOXA2 in IBD 

pathogenesis (see discussion). Both DUOXA2 and DUOX2 were found to be significantly up-

regulated in iCD vs control (FC = 8.83 and 5.85) and iUC vs control (FC = 9.14 and 6.05) 

(Figure 2D). In case of the remaining four contrasts, we also tested 5 differentially expressed 

genes by qPCR validation (Additional file 1: Table S6 and S7). 



Overlap of differentially expressed genes in iCD and iUC 

A Venn diagram illustrating the relationship between lncRNAs and protein-coding genes 

differentially expressed in iCD and iUC is shown in Figure 3. In total, 337 differentially 

expressed lncRNAs were identified as common between iCD and iUC with 100 unique 

lncRNAs for iCD and 400 unique lncRNAs for iUC (when compared to the healthy controls) 

(Figure 3A). While in case of the protein-coding genes, 901 differentially expressed genes 

were found to be common for iCD and iUC with 128 unique for iCD and 739 unique for iUC 

(Figure 3B). Conversely, in iCD vs iUC contrast, 19 out of 23 and 45 out of 50 differentially 

expressed lncRNAs and protein-coding genes, respectively overlapped with iCD vs control 

and iUC vs control. 

Figure 3 Overlap of differentially expressed lncRNAs and protein-coding genes between 

iCD and iUC. Venn diagram shows an overlap of 337 lncRNAs (A) and 901 protein-coding 

genes (B) that were differentially expressed (fold change >1.5, adj.P-value <0.05) between 

patients with iCD and iUC when compared with healthy controls. We observed contra-

regulated genes between iCD/iUC vs control contrasts when compared with iCD vs iUC 

contrast. The up-regulated genes are depicted in italics, down-regulated as underlined and 

contra-regulated in red. Heat maps of average normalized gene expression for the 

overlapping 337 lncRNAs (C) and 901 protein-coding genes (D) between iCD and iUC in the 

five clinical subgroups (iCD, niCD, iUC, niUC and controls) are displayed. Selected up-

regulated and down-regulated genes are listed. 

The unsupervised hierarchical clustering showed that both inflamed groups (iCD and iUC) 

cluster together in contrast to the non-inflamed (niCD and niUC) which clustered with 

healthy controls. The normalized gene expression values from the above mentioned 337 

lncRNAs and 901 protein-coding genes common to both iCD and iUC conditions were 

averaged for each of the five clinical subgroups and visualized in a heat map in Figure 3C 

and D. The expression patterns for the specific up-regulated and down-regulated genes 

showed increasing or decreasing signal intensity across the clinical subgroups (from iCD, 

iUC, niCD, niUC and healthy controls). Collectively, these overlapping differentially 

expressed genes between iCD vs control and iUC vs control define a distinct inflammatory 

iCD/iUC gene expression signature. Importantly, this inflammatory gene signature included 

the key drivers of the innate and adaptive immune responses (for example DUOXA2 and 

CXCL1). 

Comparison of expression levels of top differentially expressed genes in 

patients and healthy controls 

To stratify iCD and iUC samples from the healthy controls, we also compared the expression 

profiles of top 20 up/down-regulated lncRNAs and top 20 up/down-regulated protein-coding 

genes (based on FC) through unsupervised hierarchical clustering. The expression map of 

these top 40 differentially expressed genes displayed a clear separation of the patients from 

the control groups (Figure 4A and B), except for the two iUC samples B11 and 17_3 which 

were misclassified in the clustering. The magnitude of log2 intensity signal for these top 

differentially expressed genes displayed in Figure 4 was >6 in both iCD and iUC. 

Interestingly, in case of the iCD vs iUC contrast, clustering was unable to distinguish 

between iCD and iUC patients (Additional file 2: Figure S5). In addition to the top 

candidates, we also compared the expression profiles of all differentially expressed lncRNAs 



and protein-coding genes, and observed similar results as described above (Additional file 2: 

Figure S6A and S6B). 

Figure 4 Comparison of expression levels of the top 40 differentially expressed lncRNAs and 

protein-coding genes. Unsupervised hierarchical clustering of samples (patients in red, 

controls in blue) based on normalized expression values from the top 40 up and down-

regulated lncRNAs and protein-coding genes for (A) iCD vs control and (B) iUC vs control. 

The log2 normalized expression values are shown in the color key. A clear separation 

between the diseased from control group is visible in case of iCD vs control contrast. 

Inflammatory response and antimicrobial peptide (AMPs) genes are 

dysregulated in iCD and iUC 

Antimicrobial peptides (AMPs) play an important role in protection of the host intestinal 

mucosa against microorganisms and AMPs dysregulation have been associated with IBD 

pathogenesis (see discussion for details). Therefore, we investigated whether there were 

differences in expression of genes involved in inflammatory response and AMPs, between 

different clinical subgroups. Our analysis identified key genes associated with inflammatory 

response, including the pro-inflammatory chemokines and cytokines. CCL11, CCL19, CCL4 

and CXCL9, were significantly up-regulated, in both iCD vs control and iUC vs control. In 

addition, we also found key antimicrobial response genes to be significantly up-regulated in 

iCD and iUC when compared to healthy controls (Figure 5). REG3A, DEFA5 and DEFA6 

were >30 fold up-regulated only in iCD vs control. Chemokines CXCL1 and CXCL2 were 

>15 and >25 fold up-regulated in both iCD vs control and iUC vs control, respectively. 

CXCL5, IL15 and C3AR1 were specifically up-regulated in iCD vs control (Figure 5). 

Notably, NOD2 gene was >2 fold up-regulated in iCD vs control, iUC vs control and iCD vs 

niCD contrasts. DEFB1 and NPY were the only AMP genes that were significantly down-

regulated in both iUC and iCD. 

Figure 5 Differentially expressed protein-coding genes involved in antimicrobial and 

autoimmune response. Key genes involved autoimmune and inflammatory immune responses 

and AMPs were found to be dysregulated in both iCD and iUC when compared to healthy 

controls as well as to non-inflamed tissues. The log2 fold change values are plotted on the y 

axis. 

Differentially expressed genes in iCD and iUC are enriched within IBD loci 

Since majority of disease associated susceptibility SNPs map to the non-coding regions in the 

genome, we looked for the presence of known IBD associated SNPs (total 233 SNPs) within 

the Gencode v15 annotated lncRNAs. Interestingly, 29 IBD risk variants intersected 37 

lncRNAs, of which only IFNG-AS1 antisense lincRNA (ENST00000536914.1) harboring UC 

susceptibility SNP rs7134599 was found to be differentially expressed in our study. IFNG-

ASI was up-regulated in iUC vs control (FC = 1.54) and iUC vs niUC (FC = 1.52). 

Furthermore, we identified IBD loci associated lncRNAs and protein-coding genes by 

intersecting the IBD susceptibility loci, which was defined as 500 kb long genomic region 

with the IBD risk variant in the middle. In total, 1040 IBD loci-associated lncRNAs were 

identified, out of which 96 lncRNAs were found to be differentially expressed (Additional 

file 1: Table S8). These differentially expressed lncRNAs co-localized with 57 IBD risk 

variants (within 500 kb locus), and were found to be enriched within IBD loci (p-value < 



0.0001, Pearson’s Chi-squared test). In case of protein-coding genes, 681 genes were found 

to be associated with IBD loci, out of which 154 were differentially expressed and enriched 

within IBD loci (p-value < 0.0001, Pearson’s Chi-squared test). Based on unsupervised 

hierarchical clustering of averaged normalized gene expression values of 96 and 154 

differentially expressed IBD loci-enriched lncRNAs and protein-coding genes, respectively, 

enabled independent stratification of disease from the controls and further distinguished 

inflamed from the non-inflamed conditions in both CD and UC (Figure 6). 

Figure 6 Averaged gene expression for differentially expressed IBD loci-associated lncRNAs 

and protein-coding genes. Unsupervised hierarchical clustering of averaged normalized 

expression values for (A) 96 differentially expressed IBD loci-associated lncRNAs and (B) 

154 protein-coding genes in different clinical subgroups. The range for the expression values 

is shown in the color scale. 

Regulatory IBD-associated SNPs co-localize with differentially expressed IBD 

loci-associated lncRNAs 

Next, we asked whether active regulatory regions within the IBD loci overlap with the 

differentially expressed IBD loci-associated lncRNAs. IBD associated SNPs overlapping 

active regulatory elements in intestinal epithelium were retrieved from Mokry et al. study [7]. 

In their study, the active regions overlapping IBD associated SNPs were identified based on 

H3K27ac chromatin immunoprecipitation and sequencing (ChIP-Seq). Out of 96 

differentially expressed IBD loci-associated lncRNAs, 68 lncRNAs were found to be 

associated with 24 IBD loci SNPs co-localizing with the active regulatory elements in 

intestinal epithelium and immune cells (Additional file 1: Table S8). These overlapping IBD 

loci-associated active regulatory elements have been reported to frequently co-localize with 

the known transcription factor binding motifs [7]. A number of IBD-associated SNPs 

potentially affect the binding affinity of transcriptional factors, and thus perturb the gene 

expression. Additionally, IBD-associated risk variants also act as expression quantitative trait 

loci (eQTLs) signals for number of genes (Additional file 1: Table S8). For example, IBD-

associated risk variant rs10797432 located within IBD loci-associated lncRNA RP3-395 

M20.8 (ENSG00000238164) alters the binding motifs for TFAP2A and CTCF. Furthermore, 

it is also known to acts as cis-eQTL for MMEL1 in monocytes. Regulatory IBD-associated 

SNP rs1569723 located within IBD loci-associated lncRNA RP11-465 L10.10 

(ENSG00000204044) acts as cis-eQTL for CD40 in monocytes. Also, SNP rs12946510 

associated with lncRNAs RP11-387H17.4 (ENSG00000264968) and RP11-94 L15.2 

(ENSG00000264198) is known to perturb the binding sites for transcription factors FOXO1, 

ELF3, and SRF. In addition, this SNP also acts as a cis-eQTL for pseudogene KRT222P, 

transcriptional co-activator complex component MED24, transcription factor NR1D1, and 

ORMDL3 in lymphoblastoid cell lines. In case of the antisense lncRNA CTD-2196E14.5 

(ENSG00000261266), the associated SNP rs7404095 acts as a cis-eQTL for PRKCB in 

lymphoblastoid and PRKCB1 in monocytes. Moreover, SNP rs734999 associated with 

lncRNA RP3-395 M20.8 (ENSG00000238164) acts as a cis-eQTL for TNFRSF14 in 

lymphoblastoid cell line. 



Cis-acting correlation of expression between differentially expressed IBD loci-

associated lncRNAs and protein-coding genes 

We computed pairwise Pearson correlations in order to explore the possible co-expression 

patterns between IBD loci-associated differentially expressed lncRNAs and protein-coding 

genes. Pairwise correlations of expression involving neighboring lncRNAs and protein-

coding genes associated with each IBD-associated SNP (500 kb loci with SNP in the middle) 

were computed. We found positive (r
2
  0.5) and extreme positive (r

2
  0.9) correlations 

between the overlapping as well as cis-neighboring differentially expressed IBD loci-

associated lncRNA-protein-coding gene pairs (p-value < 0.05). The pairwise correlations for 

six intersecting IBD loci associated lncRNA-protein-coding gene pairs LSP1 and 

ENST00000509204.1 (rs907611), HLA-DQB1 and ENST00000443574.1 (rs9268853, 

rs6927022), MST1 and ENST00000563780.1 (rs9822268 and rs3197999), TSPAN33 and 

ENST00000498745.1 (rs4728142), SLC22A5 and ENST00000417795.1 (rs2188962, 

rs12521868), DGRD and ENST00000442524.1 (rs12994997, rs3792109) are plotted in Figure 

7. Interestingly, lncRNA ENST00000563780.1 and MST1 protein-coding gene exhibited 

extreme positive correlation (r
2
  0.99) (Figure 7). Enrichment for positive correlations has 

been reported for the lncRNAs intersecting protein-coding genes in antisense orientation [35]. 

Indeed, we also observed strong positive correlation (r
2
  0.7) for the intersecting antisense 

lncRNA ENST00000417795 and SLC22A5 protein-coding gene. 

Figure 7 Correlations of expression for cis-neighboring pairs of IBD loci-associated 

differentially expressed lncRNAs and protein-coding genes. Expression correlations for cis-

neighboring pairs of IBD loci-associated lncRNAs and protein-coding genes. Overall positive 

correlations between overlapping protein-coding and lncRNA gene-pairs (a) LSP1 and 

ENST00000509204.1 (b) HLA-DQB1 and ENST00000443574.1 (c) MST1 and 

ENST00000563780.1 (d) TSPAN33 and ENST00000498745.1 (e) SLC22A5 and 

ENST00000417795.1 (f) DGRD and ENST00000442524.1 were observed. An extreme 

positive (r
2
  0.99, p-value < 2.2e-16) correlation was observed in case of MST1 and its 

intersecting lncRNA ENST00000563780.1 associated with IBD risk variants rs9822268 and 

rs3197999. Protein-coding expression is plotted on the x-axis, and lncRNA expression is 

shown on the y-axis. Each point represents a biopsy sample from different clinical subgroups. 

Functional annotation of differentially expressed lncRNAs 

The functional annotations of lncRNAs have mostly been based on nearest-neighbor 

approach i.e. “guilt-by-association” analyses, for example Cabili et al. [39]. We therefore 

analyzed the GO terms of genes that overlap with or are neighbors of the differentially 

expressed lncRNAs. We identified 516 nearest protein-coding neighbors within a span of <10 

kb covering 610 differentially expressed lncRNAs. In addition, we also included 712 

neighboring protein-coding genes for the 57 IBD risk variants (associated with 96 

differentially expressed IBD loci-associated lncRNAs) based on 1 Mb locus size for each 

variant. The most significant over-represented GO terms in the biological process category 

included, antigen processing and presentation (p-value 7.39e-08), immune system process (p-

value 2.5e-05) and natural killer cell activation (p-value 9.6e-05) (Additional file 1: Table 

S9). In the cellular component category, we found enrichment for MHC protein complex (p-

value 5.95e-09). Furthermore, we also observed enrichment for over-represented GO terms in 

molecular function category which included protein binding, receptor binding and cytokine 

activity. 



Cross validation of differentially expressed genes by SVM 

Support Vector Machines (SVM) [33] was used for classifying IBD cases from controls and 

for cross-validating differentially expressed genes identified by LIMMA. The best SVM 

classifier performance was obtained from differentially expressed lncRNAs identified in iCD 

vs control followed by iUC vs control contrast (see methods for details). The classifier 

distinguished iCD and iUC from controls with 100% and 94.6% accuracy, 100% and 100% 

specificity and 100% and 86.7% sensitivity, respectively. In addition, the classifier was also 

able to distinguish iCD and iUC from niCD and niUC samples with an accuracy of 86.4% 

and 91.7%, with 78.3% and 88.9% specificity and 95.2% and 83.3% sensitivity, respectively. 

While for iCD vs iUC contrast, the accuracy of classifier was 77.8%, with 60.0% specificity 

and 90.4% sensitivity (Figure 8A). For the differentially expressed protein-coding genes, the 

classifier achieved accuracy of 100% and 94.6%, with 100% and 100% specificity, with 

%100 and 86.7% sensitivity, in discriminating iCD and iUC from controls, respectively 

(Figure 8B). Similar to the above described observations, the classifier also allowed 

distinction between iCD and iUC from niCD and niUC samples with an accuracy of 81.8% 

and 83.3%, with 78.2% and 77.8% specificity and 85.7% and 86.7% sensitivity, respectively. 

While for iCD vs iUC contrast, the accuracy of classifier was 88.9%, with 80.0% specificity 

and 95.2% sensitivity (Figure 8B). Furthermore, our classifier achieved the similar 

performance when using combined differentially expressed protein-coding and lncRNA 

genes or only protein-coding genes (data not shown). The effect of clinical parameters (Table 

2 and Additional file 2: Figure S7) on disease (iCD or iUC) was described by the following 

linear function: 

Figure 8 ROC curve analysis of differentially expressed lncRNAs and protein-coding genes. 

Receiver operating characteristic (ROC) curve analysis of differentially expressed (A) 

lncRNAs and (B) protein-coding genes for five contrasts. 
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Using t-statistics, p-values for linear regression coefficients for age, sex, smoking, disease 

index and biopsy location were 1.40e-01, 2.29e-01, 2.98e-03, 5.02e-07 and 6.43e-01, 

respectively. Our analysis indicated that disease index had strongest effect on defining iCD 

and iUC phenotype, followed by smoking, sex and age (Additional file 2: Figure S7, Figure 

S8). Differentially expressed genes identified by LIMMA were verified by Support Vector 

Machines- Recursive Feature Elimination (SVM-RFE) [35], which revealed a robust 

concordance rate in terms of total number of overlapping differentially expressed genes 

identified by the two methods (Additional file 2: Figure S9). In both iCD vs control, and iUC 

vs control contrasts, the overlap of about 66% was observed. To control for any input bias, a 

randomized lncRNA gene list of same size as differentially expressed lncRNAs was also used 

in this analysis (Additional file 2: Figure S8). 

Impact of clinical parameters on disease diagnosis 

We next investigated impact of the clinical parameters for disease diagnosis, and in the 

question if expression profiles of differentially expressed genes are also correlated to other 

clinical parameters. The applied strategies were linear regression model and weighted 

correlation network analysis (WGCNA) [36]. The regression analysis showed a strong impact 

of the disease index (Harvey-Bradshaw Index (HB) for CD and Simple Clinical Colitis 



Activity Index (SCCAI) for UC) (p-value < 10e-6, t-test) which by definition is positively 

correlated to the severity of the disease, and a significant impact of smoking (p-value < 0.05, 

t-test) which was however, 3.5 times lower than the disease index and lower than the error 

rate. However, biopsy location did not show any significant effect on the severity of the 

disease. In agreement, the network analysis identified 10,435 genes significantly correlated to 

the disease index (p-value < 0.05, t-test), which is a clinical parameter with most related gene 

expression profiles. However, only 509 of these genes were differentially expressed between 

disease and control. Conversely, the expression profile of 1006 differentially expressed genes 

significantly associated with age (p-value < 0.05, t-test; Additional file 1: Table S10). These 

results suggest that even though the sample diagnosis for disease is only partly related to 

other clinical parameters, especially disease index and smoking, many differentially 

expressed genes in iCD and iUC also reflect impact of the patient’s age. The average gene 

significance measures for all genes in a given module are summarized in Additional file 1: 

Table S10. 

Overall, the network analysis identified three large co-expression modules enriched for 

differentially expressed genes between iCD / iUC and control (p-value < 10e-100, Pearson’s 

Chi-squared test; Additional file 2: Figure S10 and S11). The three modules comprised of 

2054 out of 2737 differentially expressed genes. The gene network of the “brown” module 

was found to be enriched for immune and pro-inflammatory response (Additional file 1: 

Table S11), the “green” and “red” module were driven by genes involved in small molecule 

trans-membrane transport, anionic and cationic transport (Additional file 1: Table S12 and 

S13). GO analysis was also performed for the randomized gene sets of the same module 

sizes. None of the randomized modules had significant GO terms. 

Discussion 

The present study was intended to explore the transcriptomic landscape of the lncRNAs in 

IBD, with particular focus on CD and UC. To explore the transcriptomic profiles of CD and 

UC patients, colonic pinch biopsies were analyzed using gene expression microarrays. Our 

results revealed widespread dysregulation of lncRNAs and protein-coding gene expression in 

both CD and UC. It is noteworthy that although our main focus was transcriptome analysis of 

lncRNAs, we also profiled a significant number of protein-coding genes (~12,000, see 

methods). The Gencode v15 lncRNA microarray has been extensively used and the levels of 

both mRNAs and lncRNAs are comparable and show strong correlations (ranging from 0.62 

to 0.75) with results obtained from RNA sequencing (RNAseq) [38]. These correlations are 

also comparable with the previous lncRNA microarray versions [35]. The Gencode v15 

lncRNA microarray has been designed to capture both poly(A) and non-poly(A) transcripts 

(out of total 22,007 lncRNA transcripts targeted by the microarray, 9273 lncRNA transcripts 

are polyadenylated). In recent years, many studies have been conducted to profile lncRNAs 

using RNAseq, however, it is expensive and time consuming because of the requirement of 

doing deep sequencing particularly lncRNAs which are relatively expressed at lower levels 

than the protein-coding genes [38]. It has also been reported that microarrays are more 

sensitive to detect whether a lncRNA is expressed or not as compared to RNAseq [40]. 

SVM based classifiers have been previously used to cross-validate the circulating microRNA 

based biomarker panels in UC [13]. We also verified robustness of the differentially 

expressed genes by SVM and the predictive capability of these genes to discriminate CD and 

UC was tested using SVM-RFE based classifiers. HB Index and SCCAI are symptom based 

indices used to assess the disease activity in CD and UC, respectively. Among various 



clinical parameters tested, we found strong influence of disease index followed by smoking, 

age and sex, on iCD and iUC phenotypes. Smoking is known to have deleterious effects in 

CD while it has been found to be protective against UC [41]. Furthermore, smoking has also 

been known to influence colonic gene expression profile in CD [42]. Additionally, based on 

linear regression and WGCNA analysis, we did not find any significant effect of biopsy 

location on overall gene expression. However, regional variation in gene expression along the 

colonic mucosa has been reported to have influence on the expression profiling studies in 

IBD [43,44]. These modest regional variations are more pronounced in healthy controls and 

un-inflamed biopsies and largely remain masked when comparing inflamed biopsies [44]. On 

the contrary, other studies suggest no such gene expression differences due to regional 

variation [17,45]. These reports highlight the importance and impact of various confounding 

factors like smoking, sex, biopsy locations, among many other clinically relevant parameters 

in gene expression analysis in IBD. 

Our analysis identified common expression patterns between the lncRNAs and protein-

coding genes in iCD and iUC as confirmed by unsupervised hierarchical clustering (Figure 

3). A distinctive inflammatory (iCD/iUC) gene expression signature included the key drivers 

of the innate and adaptive immune responses (chemokines, cytokines and defensins) for 

example DUOXA2 [dual oxidase maturation factor 2], CXCL1 [chemokine (C-X-C motif) 

ligand 1], CXCL9 [chemokine (C-X-C motif) ligand 9] and also included a significant 

number of lncRNAs. Expression levels of both DUOX2 and DUOXA2 have been reported to 

be up-regulated in association with iUC, and in UC-CRC (UC-associated colorectal dysplasia 

and colorectal cancer) and are involved specifically in inflammation and regulated on a crypt-

by-crypt basis in UC [46]. We also observed a global up-regulation of DUOXA2 in iCD and 

iUC when compared to both non-inflamed and healthy controls. Both DUOX2 and its 

maturation factor DUOXA2 are part of the NADPH oxidase family of enzymes involved in 

release of hydrogen peroxide (H2O2) [47]. These enzymes are essential components of 

evolutionarily conserved mechanisms through which organisms are known to defend 

themselves against bacterial, viral, or parasitic infections, yet allowing tolerance of 

commensals [48,49] Suppression of DUOX2-generated H2O2 production by Mesalazine (5-

aminosalicylic acid; 5-ASA) has been demonstrated to reduce reactive oxygen species 

(ROS)-induced genetic lesions and thereby lowering the risk of UC-CRC [46]. 

Our results revealed significant down-regulation of lncRNA ANRIL [antisense non-coding 

RNA in the INK4 locus] in both iCD (FC < 2.7, p-value < 0.05) and iUC (FC < 7.9, p-

value < 0.05) when compared to non-inflamed and healthy controls. ANRIL, encoded on the 

chromosome 9p2.3 region is a known hotspot for the disease-associated SNPs [50]. ANRIL 

has emerged as an important regulatory molecule mediating human disease at various levels 

and cellular settings. Nevertheless, the role of ANRIL has not yet been described specifically 

in context of the IBD pathology. ANRIL has been found to be up-regulated in leukemia, 

prostate cancer, basal cell carcinoma and glioma, whereas, depletion of ANRIL has been 

implicated with reduced proliferation, indicating its role in cancerogenesis [51-53]. 

Remarkably, in our study, eight major ANRIL isoforms, including the isoforms known to 

form circular variants (cANRIL), were found to be universally down-regulated in both iCD 

and iUC. Importantly, endogenous expression of cANRIL has been associated with risk for 

atherosclerosis [54]. In this context, dysregulation of ANRIL in IBD is highly intriguing, 

particularly the down-regulation of cANRIL isoform. Indeed, recently, circular RNAs have 

been shown to be involved in stabilizing the sense transcripts and also act as sponges for 

microRNAs [55] however; biological functions of circRNAs have recently been debated [56]. 



It is therefore imperative to investigate comprehensively the potential roles of cANRIL in IBD 

pathogenesis. 

Unsurprisingly, our results also enabled us to distinguish between iCD and iUC, although the 

number of differentially expressed genes were small, which emphasizes the close pathogenic 

nature of CD and UC. An interesting distinction between iCD and iUC expression was 

observed in SERPINB3 [serpin peptidase inhibitor, clade B (ovalbumin), member 3] 

expression, where SERPINB3 was significantly down-regulated (FC < 3.8) in iCD vs iUC 

contrast (Table 6 and Figure 1G). SERPINB3 has been found to be over-expressed in certain 

squamous epithelial cancers, for instance uterine cervix carcinoma, head and neck 

carcinomas, and esophagus carcinoma [57] Although, the precise physiological functions of 

SERPINB3 are elusive, it has been hypothesized that SERPINB3 might be involved in the 

development of autoimmunity [58]. 

In our study, we found significant enrichment for the 96 differentially expressed lncRNAs 

within IBD loci. Collectively, we found differentially expressed IBD loci-associated 

lncRNAs overlapping active regulatory elements in intestinal epithelium and immune cells 

located within known binding motifs [7]. LncRNA RP3-395 M20.8 was found to be 

associated with the regulatory IBD risk variant rs10797432 which affects the binding motifs 

for AP-2 [transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha)] and 

CTCF [CCCTC-binding factor (zinc finger protein)] (Additional file 1: Table S5). Moreover, 

IBD risk variant rs1569723 is known to act as a cis-eQTL for CD40 [CD40 molecule, TNF 

receptor superfamily member 5] which was significantly up-regulated in iUC and associated 

with lncRNA RP11-465 L10.10. Additionally, lncRNA IFNG-ASI harboring UC 

susceptibility SNP rs7134599 was found to be up-regulated in iUC. SNP rs7134599 is 

associated with IBD26 (12q15) genetic locus and with regulatory pro-inflammatory cytokines 

IFNG [interferon, gamma] and IL-2 [interleukin 2] and anti-inflammatory cytokine IL-26 

[interleukin 26]. IFNG gene encodes interferon gamma (IFN- ), a soluble cytokine that is 

pivotal for the host’s innate and adaptive immunity against viral, certain bacterial and 

protozoal infections. Aberrant expression of IFN-  has been linked with a number of 

autoimmune and inflammatory diseases, and mucosal expression of IFN-  is known to play a 

vital role in pathogenesis IBD [59]. IL-2 is encoded by IL2 gene and is involved in immune 

responses to microbial infections and intestinal inflammation activation in IBD. Anti-

inflammatory IL-26 has been shown to be overexpressed in CD [60]. These findings suggest 

potential involvement of differentially expressed lncRNAs overlapping the active regulatory 

elements in IBD pathogenesis. 

Interestingly, we also found positive (r
2
  0.5) and extreme positive (r

2
  0.9) correlations 

between the overlapping as well as cis-neighboring differentially expressed IBD loci-

associated lncRNA-protein-coding gene pairs. A strong positive correlation was observed 

between lncRNA AC051649.12 and protein-coding gene LSP1 [lymphocyte-specific protein 

1] associated with IBD risk variant rs907611. SNP rs907611 affects the binding affinity of 

transcriptional factors YY1 and NF-muE1 and thus alters the gene expression. It is plausible 

that the differentially expressed IBD loci-associated lncRNAs intersecting protein-coding 

genes somehow contribute to the regulation of the latter [61]. Taken together, these data 

suggests role of lncRNAs in regulating the expression of IBD loci-associated genes. 

Additionally, we also noticed dysregulation of AMPs and inflammatory response genes such 

as, pro-inflammatory chemokines and cytokines in various clinical subgroups. For example, 

key antimicrobial response genes, REG3A (Regenerating islet-derived 3 alpha), DEFA5 



(Defensin, alpha 5, Paneth cell-specific) and DEFA6 (Defensin, alpha 6, Paneth cell-specific), 

were >30 fold up-regulated specially in iCD vs control. Consistent with our results, REG3A, 

DEFA5 and DEFA6, have been shown previously to be significantly up-regulated and linked 

to Paneth cell metaplasia in IBD [62,63]. Mutations in the cytoplasmic pathogen recognition 

receptor NOD2 (nucleotide-binding oligomerization domain containing 2) gene have been 

associated with ileal CD and Paneth cell dysfunction [64] and importantly, NOD2 was found 

to be up-regulated in both iCD and iUC. Concordant with the findings by Arjis et al., we also 

found two AMPs DEFB1 and NPY significantly down-regulated in both iCD and iUC [59]. 

IL15 (interleukin 15) was found specifically up-regulated in iCD and not in iUC which 

supports the notion that it contributes to acute intestinal inflammation in CD [65]. 

For all the differentially expressed lncRNAs and protein-coding genes, we evaluated 

biological functional processes through analysis of GO terms based on “guilt-by-association” 

and WGCNA approach. Unsurprisingly, we found enrichment for immune response, pro-

inflammatory cytokine activity, extracellular matrix organization, and ion membrane 

transport genes (Additional file 1: Table S9, S11, S12 and S13). Given the idiopathic nature 

of IBD, the overall up-regulation of pro-inflammatory immune response-related gene 

expression manifestation could be largely due to the infiltrating immune cells, rather than due 

to the underlying disease phenotype. Indeed, persistent inflammation in CD and UC is known 

to be elicited by the activation of innate and adaptive immune cells by foreign antigens, 

which in turn produce and release pro-inflammatory cytokines that give rise to the 

acrimonious circle of inflammation thereby leading to chronic tissue injury and epithelial 

damage [66]. Nevertheless, differentially expressed genes identified in non-inflamed (niCD 

and niUC) vs control (Additional file 1: Table S3 and S4), might be disease specific. In 

summary, our findings suggest that dysregulated lncRNAs could be involved in the IBD 

pathogenesis. However, these findings warrant a systematic experimental follow-up in 

cellular and murine based models with additional validation in a larger cohort in order to 

elucidate the role and biomarker potential of these dysregulated lncRNAs in IBD. 

Conclusions 

In conclusion, we show that lncRNA expression profiling can be effectively used to stratify 

iCD and iUC from healthy controls. Additionally, our data indicates the underlining potential 

of lncRNA transcriptional signatures associated with clinical parameters as biomarkers for 

IBD. 
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