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Abstract 

Conservation strategies are often established without consideration of the impact of climate 

change. However, this impact is expected to threaten species and ecosystem persistence and 

to have dramatic effects towards the end of the 21st century. Landscape suitability for species 

under climate change is determined by several interacting factors including dispersal and 

human land use. Designing effective conservation strategies at regional scales to improve 

landscape suitability requires measuring the vulnerabilities of specific regions to climate 

change and determining their conservation capacities. Although methods for defining 

vulnerability categories are available, methods for doing this in a systematic, cost-effective 

way have not been identified. Here, we use an ecosystem model to define the potential 

resilience of the Finnish forest landscape by relating its current conservation capacity to its 

vulnerability to climate change. In applying this framework, we take into account the 

responses to climate change of a broad range of red-listed species with different niche 

requirements. This framework allowed us to identify four categories in which representation 

in the landscape varies among three IPCC emission scenarios (B1,low-; A1B,intermediate-; 

A2,high-emissions): a) susceptible (B1=24.7%, A1B=26.4%, A2=26.2%), the most intact 

forest landscapes vulnerable to climate change, requiring management for heterogeneity and 

resilience; b) resilient (B1=2.2%, A1B=0.5%, A2=0.6%), intact areas with low vulnerability 
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that represent potential climate refugia and require conservation capacity maintenance; c) 

resistant (B1=6.7%, A1B=0.8%, A2=1.1%), landscapes with low current conservation 

capacity and low vulnerability that are suitable for restoration projects; d) sensitive 

(B1=66.4%, A1B=72.3%, A2=72.0%), low conservation capacity landscapes that are 

vulnerable and for which alternative conservation measures are required depending on the 

intensity of climate change. Our results indicate that the Finnish landscape is likely to be 

dominated by a very high proportion of sensitive and susceptible forest patches, thereby 

increasing uncertainty for landscape managers in the choice of conservation strategies. 

 

Introduction 

There is strong evidence that human-induced climate change is modifying landscapes in 

many different ways (e.g., Cramer et al., 2001, Walther et al., 2002; Schmitz et al., 2003; 

Walther et al., 2005; Thuiller, 2007), with effects on inhabiting species; in fact, climate 

change is expected to become a major threat to biodiversity in the 21st century (e.g., Dawson 

et al., 2011; Bellard et al., 2012, Mantyka-Pringle et al., 2012). However, considerable 

uncertainty remains regarding how landscapes can be systematically and effectively managed 

to minimise the loss of biological diversity. Among the most cited recommendations are 

increasing landscape connectivity by designing corridors, removing barriers for dispersal, 

placing reserves close to each other and/or improving the quality of the matrix habitat (Heller 

& Zavaleta, 2009). To minimise the negative impact of climate change, managers of natural 

resources are expected to follow the directives of the Convention on Biological Diversity 

(2010) and to offer a portfolio of adaptation measures based on scientific knowledge and 

ranging from risk-adverse to risk-tolerant (Heller & Zavaleta, 2009; Klausmeyer et al., 2011; 

Crossman et al., 2012; Oliver et al., 2012; Summers et al., 2012). 
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Gilsson et al. (2013) suggest that the choice of conservation strategy should rely on 

assessment both of a landscape’s conservation capacity (i.e., its resilience to change) and of 

its vulnerability to climate change (i.e., its sensitivity and exposure sensu Dawson et al. 

2011). Landscape conservation capacity can be defined as the ability of a landscape to 

maintain habitats for species populations and their spatial configuration (connectivity), both 

of which are essential for species persistence (metapopulation viability, Hanski & 

Ovaskainen, 2000). In Dawson et al. (2011), climate vulnerability is defined as the extent to 

which a species or population is threatened with decline, reduced fitness, genetic loss, or 

extinction due to climate change. In a landscape context, Gilsson et al. (2013) defined climate 

vulnerability as vulnerability that depends on modifications of the landscape induced by 

climate change (exposure) and on how species respond to these changes (sensitivity that is 

dependent on topographic relief). Using this framework, we can assess whether landscapes 

provide suitable habitats for species under new climatic conditions. Categorising landscapes 

in the two-dimensional space of conservation capacity and climatic vulnerability would 

greatly help in assigning them to relevant conservation actions (Heller & Zavaleta, 2009).  

 

A recent study by Watson et al. (2013) noted three shortcomings that are often found 

when conservation-oriented climate change assessments are applied. These are: (1) failure to 

consider the ecosystem’s response as a whole while considering only species-specific 

responses, leading to a lack of practical applications; (2) lack of spatial representation of the 

categories; (3) assessing vulnerability by taking into account the system’s exposure to climate 

change while failing to consider the two other components of vulnerability (adaptive capacity 

and sensitivity). To overcome these shortcomings, Watson et al. (2013) proposed a 

framework for categorisation of the world´s ecoregions based on their intactness (i.e., 
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conservation capacity) and future climate stability (i.e., climate vulnerability) when 

proposing conservation strategies under climate change.  

 

Downscaling of this approach is needed to make it applicable to landscape planning 

under climate change (Heller & Zavaleta, 2009; Klausmeyer et al., 2011; Summers et al., 

2012). Nevertheless, calculation of the two abovementioned indicators, conservation capacity 

and climate vulnerability, at a fine scale for the total biodiversity in the landscape is very 

challenging. In fact, estimation of the landscape conservation capacity requires calculating 

the conservation capacity of the elements of the landscape relevant to the persistence of 

species. Species distribution models are commonly used to estimate future shifts in climatic 

suitability for species using correlations between present climate and known species 

occurrences. Moreover, modelling the occurrence of threatened and rare species at a 

reasonable scale is a very time-consuming and expensive process; it requires monitoring 

schemes to achieve the necessary sample size and can even be impossible when species are 

extremely rare or not the object of public interest (Engler et al., 2004; Wisz et al., 2008; 

Klausmeyer et al., 2011; Garcia et al., 2012; Summers et al., 2012). Finally, when the impact 

of climate change on species distribution and abundance is taken into account, a considerable 

source of uncertainty is added due to the difficulty of estimating how these two parameters 

will be affected by new climatic conditions (Thuiller et al., 2005; Kujala et al., 2013). 

Ecosystem modelling can overcome the shortcomings pinpointed by Watson et al. (2013) and 

fulfil the need of society to manage landscapes at a regional scale, simultaneously accounting 

for different species’ responses to climate change, together with changes in landscape 

characteristics. An ecosystem approach would be more suitable than a species-specific 

approach to identify ecosystem adaptation strategies (Watson et al., 2013). 
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Boreal forests are expected to be severely altered by climate change, as changes are 

likely to occur more quickly at higher latitudes (Eggers et al., 2008; Ruckstuhl et al., 2008; 

Lindner et al., 2010; Hickler et al., 2012). For decades, the dynamics and composition of 

boreal forests have been profoundly modified by human activity, i.e., by forestry, especially 

in Fennoscandia, and this is expected to continue in the future (Nabuurs et al., 2007). In 

northern Europe, increasing atmospheric CO2 and warmer temperatures are enhancing timber 

production as a consequence of speeding up forest growth, and the accumulation of carbon in 

the biomass is driven by the enhanced decomposition of soil organic matter and nitrogen 

supply (Eggers et al., 2008; Lindner et al., 2010; Hickler et al., 2012). In Finland, the 

distribution of tree species is also changing; broadleaved deciduous trees are expanding 

northwards, whereas Scots pine is increasing its dominance in the less fertile forest types in 

the south at the expense of Norway spruce (Kellomäki et al., 2008). A model-based approach 

has been developed for adapting current forest management practices to climate change to 

maximise profit from forests that are experiencing altered environmental conditions 

(Kellomäki et al., 2008). However, to maintain biodiversity, future forestry should also 

ensure the availability of coarse woody debris (CWD) at different stages of decay from 

different tree species (Tikkanen et al., 2006). CWD is an important resource and habitat for 

saproxylic, i.e., dead wood-dependent, species (Stokland et al., 2012). Dead wood can be 

considered an indicator of forest biodiversity (Lassauce et al., 2011). However, the response 

of red-listed saproxylic species to climate change is still poorly understood, even though 

identification of the best management regime for optimising both timber revenues and 

ecological diversity in forests is an important priority (Mönkkönen et al., 2014). The overall 

habitat availability (amount of dead wood) in boreal forests is expected to increase under 

scenarios of climate change. Nevertheless, dead wood availability will also depend on the 

management regime applied (Briceño-Elizondo et al., 2006; Garcia-Gonzalo et al., 2007; 
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Mazziotta et al., 2014a). Intensive timber extraction, which is typical of Fennoscandian 

production forests, reduces dead wood availability through thinning and clear-cutting 

(Hynynen et al., 2005; Tikkanen et al., 2012). In contrast, forest protection increases habitat 

availability (the amount of dead wood) by favouring a higher diversity of dead wood stages 

(Hjältén et al., 2012; Gossner et al., 2013). 

 

Our primary goal in this work was to conduct a climate change assessment of boreal 

forests, focusing on forests currently under intensive forest management regimes in northern 

Europe. Our study area spanned the entire latitudinal extent of the boreal forest from the 

hemiboreal to the northern boreal zone and encompassed a wide range of climatic conditions 

and human land use pressures. We defined the potential resilience of boreal landscapes by 

relating their current conservation capacity to their climate change vulnerability (Gillson et 

al., 2013). When applying this framework, we took into account the responses to climate 

change of a broad range of red-listed species with different habitat requirements. The use of 

this framework permitted us to assess the capacity of boreal forests for biodiversity 

conservation under climate change while avoiding the shortcomings identified by Watson et 

al. (2013).  

 

We identified four categories of landscape based on responses to climate change in the 

landscape (Heller & Zavaleta, 2009; Gillson et al., 2013): a) susceptible, i.e., the most intact 

forest regions highly vulnerable to climate change; b) resilient, i.e., relatively intact areas 

with low climatic vulnerability that could represent important climate refugia; c) resistant, 

i.e., forest regions with low current conservation capacity and low vulnerability to climate 

change; and d) sensitive, i.e., regions with low current conservation capacity and high 
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vulnerability to climate change. Conservation strategies for each landscape category were 

suggested based on current recommendations (Watson et al., 2013). 

 

In our attempt to identify robust conservation strategies under future climatic 

uncertainty, we used three different IPCC emission scenarios to plan for a range of possible 

outcomes at landscape scales (Snover et al., 2013). Specifically, using data from plots of the 

Finnish National Forest Inventory, we investigated: (i) the conservation capacity of a boreal 

landscape for sustaining forest-dwelling species and the vulnerability of individual forest 

stands to climate change; (ii) the main patterns of the response values to climate change 

under alternative emission scenarios across the boreal vegetation zones; and (iii) which 

management strategies are needed to retain important habitats for dead wood-associated 

species under climate change. 

 

Materials and methods 

Climatic data 

We used six climatic variables (temperature sum, number of dry days, evaporation, 

evapotranspiration, mean monthly temperature and precipitation) obtained from the Finnish 

Meteorological Institute and covering the entire area of Finland (Venäläinen et al., 2005; 

Jylhä, 2009), and the forest simulator projected these variables through the 21st century (see 

Kellomäki et al., 2008 for further details). The baseline climate was calculated at a resolution 

of 10 km for the 1971–2000 period, whereas future climatic projections were calculated at a 

resolution of 49 km for the 2010–2099 period. Then, all variables were spatially joined to a 

resolution of 16 km in southern Finland and 32 km in northern Finland to match the National 
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Forest Inventory (NFI) dataset. In both cases, the climatic data represented the daily values 

over seasons, thereby illustrating the inter-annual variability of the trends in the climatic 

variables. The interannual variability was simulated using the monthly mean temperature and 

precipitation with the standard deviations for the rotation time (tri-decadal averages and 

standard deviations). The annual mean values of atmospheric CO2 were used in the 

simulations. Under the baseline climate, atmospheric CO2 was constant at 352 ppm, whereas 

under the future expected climate, CO2 levels increased from the baseline value to different 

future levels. This was accompanied by changes in temperature and precipitation that were 

based on three emission scenarios of the Intergovernmental Panel on Climate Change 

(Nakicenovic et al., 2000): a high-emission scenario (A2), considered the most likely in the 

case of a world with regionally oriented economic development and featuring global average 

surface warming until 2100 of between +2.0 and +5.4 °C and a continuous increase in 

emissions up to the end of the century; an intermediate-emission scenario (A1B) 

characterised by rapid economic growth in a more globalised world with balanced use of all 

energy sources and featuring global average surface warming of +1.7 to +4.4 °C with an 

increase in the emissions up to 2050 at approximately the same rate as in the A2 scenario 

followed by a decrease to 2020 levels by the end of the century; and a low-emission scenario 

(B1), considered likely under the less plausible scenarios of globally oriented 

environmentally sustainable development and featuring global average surface warming of + 

1.1 to +2.9 °C, with an increase in emissions up to 2020 at a much lower rate than in the other 

scenarios followed by a stable emission period up to 2040 and a decrease close to zero 

emission levels by the end of the century (Raupach et al., 2007; Solomon, 2007; Jylhä, 2009). 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

 
This article is protected by copyright. All rights reserved. 
 

National Forest Inventory data 

Our data consist of 2,816 permanent field plots from the 9th Finnish National Forest Inventory 

(NFI) from the period 1996-2003 period (Finnish Forest Research Institute, 2010). The grid 

size of the plots is 16x16 km2 in southern Finland and 32x32 km2 in northern Finland. All 

plots have an extension of 100 m2 and are located on upland mineral soils. The site types of 

most of the plots can be classified as high, medium or low fertility, and include the following 

site types: a) herb-rich heath forests, with Norway spruce (Picea abies) as dominant species 

with admixtures of birch (Betula pendula and B. pubescens); b) mesic heath forests with a 

mixture of Norway spruce, birch and Scots pine (Pinus sylvestris); c) sub-xeric heath forests; 

and d) xeric heath forests in which the primary tree species is Scots pine (Cajander, 1949). 

Details concerning the relationships among site types and soil characteristics (classification, 

water holding capacity, fertility) and on the initialisation of the simulations are described in 

Kellomäki et al. (2008). To define an initial amount of litter accumulated in the soil prior to 

the simulation (background litter), simulations at tree level were first performed using pure 

stands (one tree species) (details in Appendix S1). The values obtained in these simulations 

were also used to calculate the initial amount of nitrogen in soil by applying the values of the 

total nitrogen concentration of the humus layer by site type and tree species (Kellomäki et al., 

2008). 

 

Simulation procedures, model assumptions and performance 

The simulations were performed using SIMA, an individual tree-based ecosystem model that 

is a hybrid physiological and statistical model. In the model, regeneration is partly stochastic 

and partly controlled by the availability of light, soil moisture and temperature. Tree growth 

is based on the increase in tree diameter, which is the product of the potential diameter 

growth and four environmental factors: temperature sum, within-stand light conditions, soil 
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moisture, and the availability of soil nitrogen. These factors control the demographic 

processes (recruitment, growth, death) of tree populations. Simulations are based on the 

Monte Carlo simulation technique, i.e., certain events such as tree recruitment and death are 

partly stochastic. Each time such an event is possible (e.g., when the conditions for a tree to 

die are verified), the algorithm determines whether the event will take place by comparing a 

random number with the probability of the occurrence of the event. The model structure and 

parameterisation are described in detail in Kellomäki (1992a, b), Kolström (1998) and 

Kellomäki et al. (2008). The model has been previously validated in Kolström (1998), 

Kellomäki et al. (2008), Routa et al. (2011), and Mazziotta et al. (2014a). A scheme of the 

interactions between factors and processes in the model is given in Fig. 1. Litter and dead 

trees are decomposed into soil with the subsequent release of nitrogen bound in soil organic 

matter. The litter cohort indicates the amount of dead material originating annually from trees 

and ground vegetation. The weight loss of a litter cohort is a function of the current ratio 

between lignin and nitrogen, and it depends on the available soil moisture and the degree of 

canopy closure. The mineralisation process of nitrogen depends on the nitrogen-carbon ratio 

of the humus and on the local climatic conditions (Pastor & Post, 1986). 

 

Forest dynamics were simulated by applying current Finnish management policy, 

which consists of two different management practices: (i) set-aside (SA), in which there is no 

management of the stands located within current public and private protected areas so as to 

guarantee natural forest succession (applied in 3% of the total NFI plots); (ii) Business-As-

Usual (BAU), which is the recommended management for providing revenues from timber 

extraction (Yrjölä, 2002) and is applied outside the protected areas (97% of the NFI plots). 

BAU consists of a 60-80 year rotation, site preparation, planting or seeding trees, 1-3 

thinnings per rotation, and a final harvest with a green tree retention level of 5 trees/ha. 
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Details regarding the application of the rules for thinning and clear-cut practices are given in 

Kellomäki et al. (2008). In the model, the initial planting density was 2000 saplings/ha 

throughout the country, regardless of tree species and site type. To homogenise the treatment, 

the deterministic application of management rules was replaced by a random procedure that 

included no major changes in stocking at the beginning of the simulation (Kellomäki et al., 

2008). The simulations were repeated 10 times to determine the central tendency of variations 

in behaviour of the forest ecosystem over time. The model was run on an annual basis for a 

typical rotation period of 90 years for each stand. 

 

Dead wood stock 

The dynamics of dead wood (expressed in m3/ha) was simulated by SIMA for a succession 

period of 90 years for each of the four main boreal tree types/species (deciduous trees, 

consisting of pooled data for the deciduous trees Betula pendula, B. pubescens and Populus 

tremula; Scots pine, Pinus sylvestris; Norway spruce, Picea abies; and European aspen, 

Populus tremula) with documented importance for dead wood biodiversity (Stokland et al. 

2012) and for the eight combinations of climatic scenarios (baseline climate, A2, A1B, and 

B1) and management regimes (SA and BAU). The dead wood pool was separated into two 

fractions at different stages of decomposition: fresh, i.e., stages 1 or 2 according to the 

classification of Stokland et al. (2001), and well-decayed, i.e., stages 3 or 4 according to that 

classification. Tikkanen et al. (2006) showed that the habitat association of saproxylic species 

with respect to decay stage can effectively be simplified into these two decomposition 

categories (definitions are given in Kouki & Tikkanen, 2007). 
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Selection of species habitat associations 

Previous research (Tikkanen et al., 2006, 2007; Mönkkönen et al., 2011) has demonstrated 

that for the majority of red-listed saproxylic species in boreal forests habitat suitability can be 

determined according to few environmental variables at the stand level; these variables 

include microclimate conditions and the suitability of the existing resources. All possible 

combinations of stand level variables were used to define 35 habitat associations of the 

Finnish threatened saproxylic species included in the IUCN categories Near Threatened, 

Vulnerable, Endangered, and Critically Endangered) (Rassi et al., 2001) as reported in the 

Hertta database, the Environmental Information System of SYKE, the Finnish Environment 

Institute (Appendix S2). For each of these habitat associations, a Habitat Suitability Index 

(HSI) value was calculated as the product of two different sub-priority functions, translating 

stand characteristics into stand suitability for species (details of this process are given in 

Appendix S3). With respect to the microclimate, which is a function of the basal area of the 

living stock of stands, species can be classified as i) indifferent, i.e., insensitive to variation in 

the local microclimatic conditions, or as associated with ii) sun-exposed or iii) shady 

microhabitats. The suitability of the resources is a function of three components of dead 

wood: the tree species (pine, spruce, aspen, deciduous tree); the decay stage (fresh, well 

decayed); and the diameter association (no diameter association or association with large 

diameters (>30 cm) according to Tikkanen et al., 2006). In boreal forests, a large proportion 

of red-listed saproxylic species is represented by pine, spruce or birch/aspen trees (Tikkanen 

et al., 2006).  

 

The shape and the parameters of the sub-priority functions (see Appendix S3) relating 

the probability of species presence to the states of different environmental variables can be 

estimated indirectly using information on the reported relationship between the amount of 
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dead wood or basal area of living stock and the richness of saproxylic species (Kouki & 

Tikkanen, 2007; Mönkkönen et al., 2011). Particularly for dead wood availability, these 

relationships were deduced in previous studies for spruce (Martikainen et al., 2000; Penttilä 

et al., 2004; Stokland & Larsson, 2011), pine (Similä et al., 2003; Junninen et al., 2006; 

Stokland & Larsson, 2011), and deciduous trees (Martikainen, 2001; Hottola, 2003) or were 

estimated directly by the output of the simulator for aspen. In the latter case, we calculated 

for each 10-km grid cell both the dead wood volume produced by the simulator and the 

number of records of species associated with a certain habitat type (e.g., fresh spruce dead 

wood) and estimated the curve parameter b in Appendix S3. The equations relating species 

richness to microclimate and resources are modifications of the sub-priority functions 

proposed in Mönkkönen et al. (2011) and are reported in Appendix S3. 

 

Stand Conservation Capacity 

An estimate of the potential conservation capacity (SCC) at the stand level (the landscape 

unit) was calculated for each NFI sample plot by weighing the habitat suitability across the k 

= 35 habitat associations, as follows (cf. Pakkala et al., 2002): 

 

 

 

HSIs is the habitat suitability index (HSI) calculated under a certain s climatic 

scenario.  was calculated under baseline climatic conditions, projected and 

averaged across the first 3 simulated decades of the 21st century (t = 2010-2039) for each 

species habitat association k. We refer in the text to  as SCC. SCCs is thus the 

weighted average of HSI for specific habitat associations, the weights being the HSIs 

themselves. This places greater emphasis on large HSI-values and is ecologically more 
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meaningful than using the average values. SCCs range between 0 and 1, where 0 denotes a 

low conservation capacity and 1 high conservation capacity for all species habitat 

associations. We further categorised SCC into five classes by means of the Jenks natural 

breaks classification method (Jenks, 1967), capturing the range of variability of SCC by 

reducing the variance within clusters of values and maximising the variance between classes. 

We then calculated the percentage of NFI plots included in each SCC category (Fig. 2a, Table 

1).  

 

Climate Vulnerability 

Climate vulnerability (CV) is a measure of the impact of climate change on SCC. CV was 

calculated for each NFI sample plot by subtracting the SCC calculated under the three climate 

change scenarios (s = B1, A1B, A2) from the SCCs calculated under baseline climatic 

conditions (s = BC), as follows: 

 

 

 

The habitat suitability indices used in the calculation of SCC under baseline and climate 

change conditions were averaged across the last three simulated decades of the 21st century (t 

= 2070-2099), when the effects of climate change on forest dynamics are predicted to be the 

highest (Kellomäki et al., 2008). A negative CV value corresponds to an increase in SCC 

induced by climate change (improved landscape quality); a positive CV value corresponds to 

a decrease in SCC under climate change (landscape degradation). Because a given small 

change in habitat suitability induced by climate change is expected to have less biological 

importance when the initial level of SCC under baseline climate is either very low (close to 0, 

e.g., an increase from 0.01 to 0.06) or very high (close to 1, e.g., an increase from 0.94 to 
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0.99) and greater importance when SCC values are intermediate (e.g., between 0.47 and 0.52, 

i.e., transcending the 0.5 threshold), we transformed the CV values as follows and, finally, re-

scaled them to between 0 and 1: 

 

. 

 

We mapped the scaled CVs for NFI stands in Finland for each climate change scenario 

and divided the values into five categories: (i) -1.00 ≤ CV ≤ 0.00; (ii) 0.00 < CV ≤ 0.25; (iii) 

0.25 < CV ≤ 0.50; (iv) 0.50 < CV ≤ 0.75; and (v) 0.75 < CV ≤ 1.00 (Fig. 2b,c,d and Table 1). 

The thresholds for separating CV categories were chosen using the Jenks natural breaks 

classification method, and the percentages of NFI plots included in each CV category were 

calculated.  

 

Recent research has shown that biogeographical boundaries may be more effective 

than administrative boundaries for planning forest conservation actions (Gustafsson et al., 

2014). To summarise the variability in the SCC and CV values for each of the four vegetation 

zones (hemiboreal, southern, central and northern boreal) described by Hämet-Ahti (1981), 

we calculated the mean values for each zone. The dependence between the response variables 

(SCC and CV) and the vegetation zones as categorical predictor variables was analysed using 

generalised estimating equations (GEEs) (Hardin and Hilbe 2003). The GEE accounts for the 

spatial correlation in the values of the response variables (Albert & McShane, 1995). The 

GEE focuses on estimating the average response over all the stands “population”, whereas the 

use of regression parameters permits prediction of the effects of changing one or more 

covariates on a given individual stand. The GEE method is based on quasilikelihood theory; 

i.e., it is not necessary that the distribution of the dependent variables be normal. For both of 
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the response variables, we assumed a gamma distribution of errors (random part of the 

model) and a log link function (systematic part) between the dependent variable and the 

categorical predictor. The means of the GEE regression parameters for SCC and CV were 

calculated by means of the Wald test using robust standard errors. 

 

Response categories under climate change 

Categorisation of the Finnish NFI sample plots based on their response to climate change was 

conducted by allocating them in a biplot (Fig. 3) on the basis of their values for the SCC and 

the CV, which are independent axes, being calculated for different time periods, SCC for the 

first 30 years and CV for the last 30 years of the 21st century, in accordance with the 

classification proposed by Gillson et al. (2013), as follows: a) susceptible plots, with SCC > 

0.5 and CV > 0; b) resilient plots, with SCC > 0.5 and CV < 0; c) resistant plots, with SCC < 

0.5 and CV < 0; and d) sensitive plots, with SCC < 0.5 and CV > 0. The response value for 

each plot was obtained by multiplying the absolute value of the SCC under baseline climate 

conditions by the CV of each climate change emission scenario. Stands with higher response 

values were those at greater absolute distances from the axis origin (Fig. 3). For each 

category, we compared the occurrence and response values of the NFI plots across (i) the 

emission scenarios and (ii) the boreal forest zones. The mean response values were compared 

using the GEE method (see previous paragraph). Comparison among vegetation zones allows 

definition of how alternative conservation strategies should be assigned among the regions. 

For each emission scenario, the response values of each category were mapped (Fig. 4). The 

response values were separated into five classes (very low, low, intermediate, high, and very 

high), the thresholds of which were based on natural breaks (Jenks). For each category, the 

threshold response values were the same across the three emission scenarios. 
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The present attempt at landscape planning under climate change has potential 

limitations due to various factors, which are summarised in Appendix S4. All spatial analyses 

were performed using the Geographic Information System software ArcGIS 10 Desktop 

(ESRI, 2011). All statistical analyses were performed using SPSS 20.0 (IBM Corp., 2011). 

 

Results 

Stand Conservation Capacity 

The potential SCC of the Finnish NFI plots for forest-dwelling species associated with dead 

wood was rather low. In fact, only 26.9% of the NFI sample plots showed values higher than 

0.5, and 73.1% had values lower than or equal to 0.5, and optimal NFI plots (with SCC > 

0.75) represented only 2.5% of the total (Table 1). However, plots with habitat quality 

between 0.25 and 0.50 represented almost half of all the NFI data, and stands with low to 

very low habitat quality (SCC ≤ 0.25) made up a significant fraction of the total NFI (28.3%) 

(Table 1). The mean SCC values differed among boreal forest zones (Wald Chi-square = 

86.0, d.f. = 3, P < 0.001); mean SCC values were equal in the hemiboreal and southern boreal 

zones but decreased towards the central and the northern boreal zones (Fig. 2a). 

 

Climate Vulnerability 

At the end of the 21st century under all the emission scenarios considered, the conservation 

capacity decreased (CV > 0) in more than 90% of the NFI plots studied (Table 1). The 

decrease in landscape quality was lower under the low-emission scenario (B1), for which the 

majority of the plots had CVs between 0 and 0.25, than under the intermediate- (A1B) and 

high- (A2) emission scenarios, for which the majority of the plots had CVs between 0.25 and 
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0.50. The intermediate-emission scenario (A1B), with a quarter of the plots showing CVs 

between 0.50 and 0.75, decreased landscape quality even more than the high-emission 

scenario, which had more stands in the CV interval between 0.10 and 0.25 (Fig. 2b,c,d; Table 

1). However, towards the end of the 21st century, an increase in conservation capacity (CV < 

0) occurred for a very low fraction of the NFI plots (always < 10%) irrespective of the 

emission scenario, although this fraction was slightly higher under the low-emission scenario 

(B1) (Table 1). The mean values of climatic vulnerability differed among boreal forest zones 

(Wald Chi-square (d.f. = 2, all P ≤ 0.05):  (B1) = 21.8, (A1B) = 23.7, (A2) =7.7) (Fig. 2b,c,d). 

For all of the emission scenarios, mean climate vulnerability was significantly higher in the 

southern boreal zone than in the central boreal zone. Moreover, under the intermediate- 

(A1B) and high- (A2) emission scenarios, climate vulnerability in the southern boreal zone 

was also significantly higher than in the northern boreal zone. 

 

Climate change response categories 

The proportion and response values of the four categories varied among the emission 

scenarios and for some categories among the vegetation zones, as follows (Figs. 3-4; Table 

2): 

a) Susceptible (B1=24.7%, A1B=26.4%, A2=26.2%): the most intact forest plots 

vulnerable to climate change represented one quarter of the Finnish forest landscape 

irrespective of the emission scenario. The mean response values of susceptible plots were 

highest in the intermediate-emission scenario (A1B), intermediate in the high-emission 

scenario and lowest in the low-emission scenario (Wald = 936.9, d.f. = 2, P < 0.001). The 

mean response values of susceptible plots did not significantly differ among the vegetation 

zones under the low-emission scenario (B1, Wald  = 7.3, d.f. = 3, P = 0.062). However, under 
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the intermediate- (A1B, Wald  = 24.0, d.f. = 3, P < 0.001) and high- (A2, Wald  = 12.3, d.f. = 

3, P = 0.006) emission scenarios, the mean response value of susceptible plots was 

significantly higher in the northern boreal vegetation zone than in the other zones. Moreover, 

under the intermediate- (A1B) emission scenario, the response value of susceptible stands 

was significantly higher in the hemi- and southern boreal zones than in the central boreal 

zone. 

b) Resilient (B1=2.2%, A1B=0.5%, A2=0.6%): intact plots with low climatic 

vulnerability were infrequent in the Finnish forest landscape. The mean response values of 

resilient plots did not differ among the emission scenarios (Wald  = 3.9, d.f. = 2, P = 0.144) 

or among the vegetation zones under the low- (B1, Wald  = 3.0, d.f. = 3, P = 0.384) and high- 

(A2, Wald  = 8.1, d.f. = 3, P = 0.06) emission scenarios. By contrast, under the intermediate-

emission (A1B) scenario, there were differences in the mean response values of resilient plots 

among the zones (Wald = 19.0, d.f. = 3, P < 0.001), with the values being lower in the 

northern boreal vegetation zone than in the other zones. 

 

c) Resistant (B1=6.7%, A1B=0.8%, A2=1.1%): plots with low current conservation 

capacity and low vulnerability to climate change were infrequent in the Finnish forest. The 

mean response value of resistant plots was not significantly different among the emission 

scenarios (Wald  = 0.8, d.f. = 2, P = 0.659). There were statistically significant differences 

between regions in the mean response value of resistant plots in all climate change scenarios 

(B1, Wald = 8.0, d.f. = 3, P = 0.046; A1B, Wald  = 18.8, d.f. = 3, P < 0.001; A2, Wald  = 72.7, 

d.f. = 3, P < 0.001); however, judging from the absolute mean values (Table 2), these 

differences may not be considerable in most cases.  
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d) Sensitive (B1=66.4%, A1B=72.3%, A2=72.0%): low conservation capacity plots 

vulnerable to climate change represented the majority (at least two thirds) of the stands under 

all the emission scenarios. The mean response values of sensitive plots differed among the 

emission scenarios (Wald = 815.3, d.f. = 2, P < 0.001); they were highest in the intermediate-

emission scenario (A1B) and lowest in the low-emission scenario. In all emission scenarios, 

the mean response values of sensitive plots differed among boreal forest zones ((B1) = 32.5; 

(A1B) = 94.8; (A2) = 60.2; in all cases d.f. = 3, P < 0.001) and were lower in the northern 

boreal zone than in the other three zones. 

 

Discussion 

Our modelling approach provides an assessment of the conservation status of the boreal 

forest in Finland under climate change that avoids the shortcomings discussed by Watson et 

al. (2013). We identify categories of response under various scenarios of climate change in a 

spatially explicit way, taking into account two of the three components of climate 

vulnerability (exposure and sensitivity). In our assessment, these challenges are addressed as 

follows: (1) accounting for the response at the ecosystem level is possible because the 

simulator provides information about potential suitable habitats for forest species given 

certain conditions of the forest stands and stand conditions are derived directly from the 

population parameters during the forest succession, which are influenced by the applied 

climatic scenario and the forest management; (2) mapping the pattern and value of each 

response category is conducted for phytogeographic zones, and both conservation capacity 

and vulnerability are based on metrics calculated at the level of the landscape unit (the stand); 

(3) calculating climate vulnerability accounts both for the exposure of stands (because the 

effects of climate change on stand conservation capacity varies with geographic location) and 
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for their sensitivity (because species sharing different habitat associations respond differently 

to climate change effects). 

 

Conservation capacity and climate vulnerability  

Overall, the current conservation capacity of boreal forests in Finland was shown to be rather 

low. This is due to intensive management for timber extraction, which has been shown to 

have strong negative effects on biodiversity (Mönkkönen, 1999) and in particular on the 

resource availability of species associated with dead wood (cf. Chapin III et al., 2007; Ranius 

& Roberge, 2011; Stockland et al., 2012; Mazziotta et al., 2014a). Conservation capacity will 

likely remain low if additional actions such as restoration measures are not taken to increase 

it in the future. The low current conservation capacity of Finland’s forests was particularly 

prominent for forests in the northern boreal zone. Indeed, forests in the southern vegetation 

zones are currently characterised by a larger proportion of deciduous trees, harbouring higher 

habitat diversity, and hence by greater potential to host species than forests in the north 

(Tikkanen et al., 2009). The low current conservation capacity of these forests and the very 

strong decrease in conservation capacity expected by the end of the 21st century are of 

concern because they confirm earlier research findings that climate change effects on 

biodiversity will likely be stronger in landscapes subject to intensive human land use (Travis, 

2003; Bomhard et al., 2005; Brook et al., 2008; Barbet-Massin et al., 2012). Biodiversity-

friendly management strategies such as set-aside are likely to serve as better buffers than 

production forests for climate change effects (cf. Chapin III et al., 2007; Driscoll et al., 

2012).  

 

Climate change is expected to have a stronger effect at higher latitudes and to produce 

more dead wood in the northern boreal zone. However, because of the productivity gradient 
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from higher to lower latitudes, we would expect higher dead wood volumes in central-

southern boreal forests than further north and, as a corollary, higher stand conservation 

capacity for forest-dwelling species (Kellomäki et al., 2008; Mazziotta et al., 2014a). An 

increased decomposition rate (Shorohova et al., 2008; Tuomi et al., 2011) and more frequent 

harrowing (i.e., site preparation practices) (Rabinowitsch-Jokinen & Vanha-Majamaa, 2010; 

Hautala et al., 2011) are likely to contribute to more rapid dead wood removal. The faster 

dead wood dynamics will likely provide less time for forest species to use the higher volumes 

of resources produced under climate change (cf. Eggers et al., 2008; Mazziotta et al., 2014a). 

 

The current very low level of forest protection and the high degree of fragmentation of 

old forests that are largely confined to woodland key habitats in southern Finland (Laita et 

al., 2010; Timonen et al., 2010) require additional conservation actions (Lehtomäki et al., 

2009). We emphasise the need for larger protected areas and careful planning to improve the 

landscape quality to favour the dispersal of forest-dwelling species whose habitat, particularly 

in the southern boreal zone, is expected to become even more degraded by climate change. 

 

Climate change response categories and adaptation strategies 

Through the categorisation of the landscape, our framework permits the identification of 

areas that should be selected for the application of different adaptation strategies. In 

synthesis, our results indicate that, irrespective of the emission scenario, the Finnish 

landscape will likely be dominated by a very high proportion of sensitive and susceptible 

forest patches, whereas resilient and resistant patches are likely to be relatively rare in the 

landscape. This means that most forests, irrespective of their conservation capacity, will be 

vulnerable to climate change, strongly reducing the potential for species persistence and 
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adaptation to new climates. This increased fragility of the landscape translates into a higher 

uncertainty for landscape managers in the choice of conservation strategies. However, the 

response values of susceptible and sensitive plots will likely be lowest under the low-

emission scenario (B1), intermediate under the high-emission scenario (A2) and highest 

under the intermediate-emission scenario (A1B). The fact that the highest proportion of 

susceptible and sensitive categories is found under the A1B scenario could be explained by 

the fact that this scenario includes the highest biofuel harvest of all the scenarios (Eggers et 

al., 2008), a factor that is likely to jeopardise forest biodiversity in different ways (Riffell et 

al., 2011; Bouget et al., 2012). However, the response values of resilient and resistant plots 

are similar under different emission scenarios. Although the value of the climate change 

response categories differs across the vegetation zones under different emission scenarios and 

no unequivocal pattern can be observed, the information provided herein can be useful to 

inform conservation efforts in different vegetation zones.  

 

With respect to biodiversity conservation, an ideal situation would be to have a high 

proportion of resilient forests. Our results show that the frequency of such forests in current 

landscapes is very low irrespective of the emission scenario; thus, alternative conservation 

actions are needed to improve the situation. In the few resilient forest patches, which can act 

as important climate refugia, conservation actions ranging from selective logging to full 

protection (set-aside) (Chapin III et al., 2007) for maintaining and monitoring high landscape 

conservation capacity should be delivered (Heller & Zavaleta, 2009; Gilsson et al., 2013; 

Watson et al., 2013) across all the vegetation zones under both the low- (B1) and high- (A2) 

emission scenarios and should be pursued more aggressively in the southernmost boreal 

zones under intermediate (A1B) emissions. In susceptible patches, conservation actions for 

maintaining high conservation capacity and enhancing heterogeneity (and thereby resilience) 
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by permanently or temporarily protecting biodiverse forest reserves are recommended 

(Mönkkönen et al., 2011). While under low (B1) emissions, protection is less needed in all 

the vegetation zones; under intermediate- (A1B) and high- (A2) emission scenarios, 

protection would be more required in the northern boreal zone. The several resistant patches 

are recommended for restoration projects, which should improve their habitat quality and 

enhance their connectivity, transforming them into resilient patches (Halme et al., 2013). 

These measures would increase the reservoir areas for forest species where the velocity of 

climate change is less critical and adaptation is still possible in all the vegetation zones.  

 

Sensitive stands require alternative measures, but achieving resiliency may be difficult 

as both conservation capacity and climate vulnerability will need to be managed. This is 

easiest for sensitive areas that show a relatively low vulnerability (CV only slightly positive) 

and relatively high conservation capacity (SCC close to 0.5). Forests requiring restoration to 

improve SCC and management for heterogeneity to reduce vulnerability would be more 

common under a low- (B1) emission scenario, especially in the northern boreal zone. At the 

opposite end of the continuum are the highly sensitive areas, which are very vulnerable and 

possess low conservation capacity. These are particularly common under the intermediate- 

(A1B) emission scenario and in the southernmost boreal zones. For such forests, neglect is 

often suggested so as to permit the effective allocation of scarce conservation resources 

elsewhere (Heller & Zavaleta, 2009; Gilsson et al., 2013; Watson et al., 2013; Alagador et al., 

2014). Mazziotta et al. (2014b) showed that setting aside clear-cuts in certain boreal forest 

types would be a cost-efficient conservation action in the long run. Setting aside clear-cuts 

could complement more traditional conservation of old forests: indeed, acquiring such stands 

for conservation purposes is relatively inexpensive, and their conservation capacity will 

improve over time. Therefore, we recommend considering setting aside clear-cuts in boreal 
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settings as a management action for highly sensitive forests such as those in the southernmost 

boreal zones. 

 

Our study, which was conducted using an ecosystem model, represents a novel application of 

the conservation capacity versus climate change vulnerability framework. There are some 

factors that limit our approach: i) the forest simulator did not include potential tree species 

migration in the forest plot driven by climate change; and ii) there are uncertainties related to 

future climate change scenarios (see additional details in Appendix S4). Nevertheless, the 

application of the framework to Finland’s forests at a national scale has proven to be 

important for finding combinations of emission scenarios and vegetation zones in which 

particular landscape climate change response categories occur frequently and at high 

response values. These indications can be used to design management/adaptation 

interventions for those regions at a local scale. Systematic planning of the landscape to 

accommodate adaptation strategies for climate change is an essential tool in efficiently 

allocating the usually limited budget available for conservation-oriented measures (cf. 

Lindenmayer et al., 2007; Alagador et al., 2014; Mazziotta et al., 2014b). In this study, we 

demonstrate that use of an ecosystem simulator together with inventory data and general 

knowledge of species ecology can facilitate achieving this goal. In any case, increased 

investment in conservation actions pursued at the ecosystem level could be required to 

improve landscape conservation capacity, thus buffering the increasingly negative effect of 

climate change on the persistence of forest species (Mori et al., 2013; Watson et al., 2013). 
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Supporting Information 

Appendix S1 Litter in SIMA and calculation of the background litter. 

Appendix S2. Checklist of threatened species and their habitat associations. 

Appendix S3 Sub-priority functions used in the calculation of habitat suitability indexes. 

Appendix S4 Limitations of the present landscape planning approach. 

 

Tables 

Table 1 Proportions of plots of the Finnish National Forest Inventory (total N = 2,816) 

included in each range of values for Stand Conservation Capacity (SCC) and Climate 

Vulnerability (CV). For CV the proportions are reported for each IPCC climate change 

scenario of increasing emissions (from B1 to A1B to A2). 

SCC Range %  CV Range B1 A1B A2 

0.00 ‒ 0.10 11.6  -1.00 ‒ 0.00 8.9 1.2 1.8 

>0.10 ‒ 0.25 16.7  >0.00 ‒ 0.25 63.0 9.2 20.3 

>0.25 ‒ 0.50 44.7  >0.25 ‒ 0.50 26 62 68 

>0.50 ‒ 0.75 24.4  >0.50 ‒ 0.75 2.1 24.7 9.5 

>0.75 ‒ 1.00 2.5  >0.75 ‒ 1.00 0.2 2.7 0.9 
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Table 2 Summary statistics for each response category to climate change (according to the 

definition of Gillson) calculated for each vegetation zone (Zone) and in total under three 

IPCC climate change scenario of increasing emissions  (from B1 to A1B to A2). We report 

the number of plots in the Finnish National Forest Inventory allocated in each category (N) 

and the means of the response for each category and zone.  

Category Zone 
B1 A1B A2 

N Mean N Mean N Mean 

Susceptible 

Hemiboreal 31 0.145 33 0.295 33 0.218 

S boreal 396 0.142 418 0.279 415 0.225 

C boreal 205 0.135 223 0.256 222 0.213 

N boreal 64 0.168 70 0.332 69 0.263 

Total 696 0.142 744 0.278 739 0.225 

Resilient 

Hemiboreal 5 0.231 3 0.243 3 0.266 

S boreal 25 0.101 3 0.358 6 0.250 

C boreal 22 0.101 4 0.147 5 0.172 

N boreal 9 0.069 3 0.022 4 0.06 

Total 61 0.107 13 0.189 18 0.188 

Resistant 

Hemiboreal 4 0.031 1 0.041 1 0.072 

S boreal 61 0.032 3 0.015 9 0.027 

C boreal 80 0.029 7 0.036 8 0.032 

N boreal 44 0.045 11 0.026 14 0.033 

Total 189 0.034 22 0.028 32 0.032 

Sensitive 

Hemiboreal 64 0.070 67 0.134 67 0.105 

S boreal 828 0.067 886 0.135 880 0.105 

C boreal 646 0.055 719 0.120 718 0.094 

N boreal 332 0.048 365 0.087 362 0.071 

Total 1870 0.060 2037 0.121 2027 0.095 
 

Figure legends 

Fig. 1 Outlines of the SIMA model used in the simulation of the National Forest Inventory. 

The legend refers to the elements of the model. Picture modified from Kellomäki et al. 

(2008). T = Temperature, P = Precipitation. 
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Fig. 2 Maps of Stand conservation Capacity (SCC, a) and Climate Vulnerability (CV) for 

three IPCC climate change scenarios of increasing emissions (from B1 (b) to A1B (c)to A2 

(d)) for the National Forest Inventory sample plots in Finland. The thresholds for separating 

SCC and CV categories were chosen using the Jenks natural breaks classification method. For 

CV reference threshold values for B1 (b) are used for comparison with the other two 

scenarios. The borders of the four vegetation zones occurring in Finland are included in the 

maps. Box plots show the distribution of values (mean, interquartile range, outliers) of plots 

for SCC and CV for each vegetation zone (codes for zones: Hb = hemiboreal; Sb = Southern 

boreal; Cb = Central boreal; Nb = Northern boreal).  

 

Fig. 3 Biplots for each IPCC climate change scenario of increasing emissions (from B1 to 

A1B to A2) categorizing the National Forest Inventory sample plots in Finland according to 

their values for Stand Conservation Capacity (SCC) (y-axes) and Climate Vulnerability (CV) 

(x-axes) with indicated the % of stands included in each response category to climate change, 

which are indicated in the small table with, in parentheses, the management actions suggested 

for the selected stands to halt the loss of biodiversity.  

 

Fig. 4 Map of the values of the four response categories to climate change (susceptible, 

resilient, resistant, sensitive) across all the National Forest Inventory sample plots in Finland 

for three climatic scenarios of increasing emissions (from B1 to A1B to A2). Response values 

were separated in five classes (very low, low, intermediate, high, very high) whose thresholds 

were based on natural breaks (Jenks). For each response category the threshold values were 

the same across the three emission scenarios. Boundaries are drawn for the four Finnish 

vegetation zones. 
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