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THE ROKHLIN PROPERTY VS. ROKHLIN DIMENSION 1

ON UNITAL KIRCHBERG ALGEBRAS

SELÇUK BARLAK, DOMINIC ENDERS, HIROKI MATUI, GÁBOR SZABÓ
AND WILHELM WINTER

Abstract. We investigate outer symmetries on unital Kirchberg alge-
bras with respect to the Rokhlin property and finite Rokhlin dimension.
In stark contrast to the restrictiveness of the Rokhlin property, every
such action has Rokhlin dimension at most one. A consequence of these
observations is a relationship between the nuclear dimension of an O∞-
absorbing C∗-algebra and its O2-stabilization. We also give a more di-
rect and alternative approach to this result. Several applications of this
relationship are discussed to cover a fairly large class of O∞-absorbing
C∗-algebras that turn out to have finite nuclear dimension.

0. Introduction

Studying group actions on C∗-algebras has become a more and more promi-
nent field of research during the last decade. While the general task of
classification is far too complicated to expect satisfying results, there be-
gins to develop a nice classification theory for certain finite group actions on
Kirchberg algebras. Notable progress is made currently within this area by
Phillips, leaning also on Köhler’s research regarding an equivariant version
of the UCT. Izumi’s work in this area (see [6] and [7]) has been seminal
for the theory as a whole and for the presented results within this paper in
particular.

So far, one of the driving forces behind many attempts to classify such
actions has been the Rokhlin property. A high degree of rigidity of actions
with the Rokhlin property is one of the main reasons why such attempts
could succeed. On the other hand, this causes severe obstructions to the
existence of such actions, see [6]. To circumvent these obstructions, Hirsh-
berg, Winter and Zacharias invented a higher rank version of the Rokhlin
property in [5], namely finite Rokhlin dimension. In this sense, the classical
Rokhlin property has to be understood as Rokhlin dimension zero.

While finite Rokhlin dimension comes with a higher amount of flexibil-
ity, it has been shown to behave well with underlying C∗-algebras of finite
nuclear dimension. In fact, the first part of this paper serves to give an
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interesting class of examples that showcases how much more flexibility is
possible. Namely, we take a look at what happens if one makes the jump
from Rokhlin dimension 0 to Rokhlin dimension 1 in the case of Z2-actions
on unital Kirchberg algebras. It turns out that in fact every outer Z2-action
on a unital Kirchberg algebra has Rokhlin dimension at most one. This re-
lies heavily on Goldstein’s and Izumi’s remarkable main result of [4], which
asserts that every such outer action absorbs a faithful quasi-free action on
O∞. Thus we obtain our result by proving that a faithful, quasi-free action
on O∞ has Rokhlin dimension one.

The second part of this paper focuses on consequences related to the
nuclear dimension of O∞-absorbing C∗-algebras. An easily deduced conse-
quence of the first part is that there is a relationship between the nuclear
dimension of an O∞-absorbing C∗-algebra and the nuclear dimension of its
O2-stabilization. Said dimensional relationship is described by an inequality
that relates dimnuc(A⊗O∞) to dimnuc(A⊗O2) for any C∗-algebra A. The
main content of the second part is to improve this estimate with a more
direct approach, which is independent of the first part of the paper.

The usefulness of such a relationship is apparent considering that O2-
absorption is a very strong property, in fact so rigid that Kirchberg was able
to classify O2-absorbing C∗-algebras via their prime ideal spaces. Note also
that our abstract approach, unlike similar results as in [17, 3, 12] or [13],
neither makes use of any model systems for the C∗-algebras in question,
nor requires any UCT assumption. As an immediate application, we can
recover the result in [10, Section 7], i.e. that Kirchberg algebras have nuclear
dimension at most 3. As a second application, we consider the non-simple
case of continuous field C∗-algebras with Kirchberg fibres. It turns out that,
as conjectured in [15], the nuclear dimension depends rather on the fibres
than the complexity of the underlying topological space. For example, if the
prime ideal space of such a continuous field C∗-algebra is finite dimensional,
compact and metrizable, then the nuclear dimension is finite.

The authors would like to thank the referee for several helpful suggestions
that ended up making this paper more reader-friendly and self-contained.

1. Preliminaries

Notation 1.1. Unless specified otherwise, we will stick to the following
notation throughout the paper.

• A denotes a separable C∗-algebra.
• α, β or γ denote group actions on a C∗-algebra. Mostly, the acting
group will be Z2 = Z/2Z.

• If M is some set and F ⊂M some finite subset, we write F⊂⊂M .
• For ε > 0 und a, b in some C∗-algebra, we write a =ε b for ‖a−b‖ ≤ ε.
• Z denotes the Jiang-Su algebra.
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• While dimnuc(A) denotes, as usual, the nuclear dimension for a C∗-
algebra A, we also use the (non-standard, but very convenient) no-
tation dim+1

nuc(A) = dimnuc(A) + 1.
• Analogously, the same goes for Rokhlin dimension dimRok and dim+1

Rok.

Let us recall the notion of Rokhlin dimension (see [5]) for finite group
actions.

Definition 1.2. Let G be a finite group, A a unital C∗-algebra and
α : G y A an action via automorphisms. α is said to have Rokhlin dim-
ension d, written dimRok(α) = d, if d is the smallest natural number with
the following property:

For all ε > 0 and F⊂⊂A, there exist positive contractions (f
(l)
g )l=0,...,d

g∈G

satisfying

(1) 1A =ε

d
∑

l=0

∑

g∈G

f (l)g .

(2) αg(f
(l)
h ) =ε f

(l)
gh for all l = 0, . . . , d and g, h ∈ G.

(3) ‖f
(l)
g f

(l)
h ‖ ≤ ε for all l = 0, . . . , d and g 6= h in G.

(4) ‖[f
(l)
g , a]‖ ≤ ε for all l = 0, . . . , d, g ∈ G and a ∈ F .

If there is no such d, we write dimRok(α) = ∞.

The usefulness of this notion is for instance illustrated in the following
result from [5]:

Theorem 1.3. For a finite group G, a unital C∗-algebra A and an action
α : Gy A, we have

dim+1
nuc(A⋊α G) ≤ dim+1

Rok(α) · dim
+1
nuc(A).

2. Outer Z2-actions on Kirchberg algebras

In this section, we prove that outer Z2-actions on unital Kirchberg algebras
always have Rokhlin dimension at most 1. This will have an interesting
application in the third section.

Lemma 2.1. Let A be a unital Kirchberg algebra and let p ∈ A be a pro-
jection with vanishing K0-class. Let u = 1 − 2p. For all ε > 0, there exist
positive contractions f (0) and f (1) in A such that

f (i) ⊥ uf (i)u∗ for i = 0, 1 and
∑

i=0,1

f (i) + uf (i)u∗ =ε 1.

Proof. Let n be an odd natural number with n ≥ 1
ε
. We can choose (using

[2]) projections q1, . . . , qn and r1, . . . , rn in A such that

p = r1 + · · ·+ rn, 1− p = q1 + · · ·+ qn
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and

[rj]0 = 0, [qj]0 =

{

1 , j odd

−1 , j even

for all j = 1, . . . , n. It follows that

u(qj + qj+1) = qj + qj+1 and u(rj + rj+1) = −(rj + rj+1)

for all j = 1, . . . , n − 1. Since [qj + qj+1]0 = 0 = [rj + rj+1]0 for all
j = 1, . . . , n − 1, it follows from [2] that these projections are Murray-
von-Neumann equivalent inside A. Hence, there is a partial isometry vj ∈ A
such that v∗j vj = qj + qj+1 and vjv

∗
j = rj + rj+1. Setting

ej =
1

2
(|vj |+ |v∗j |+ vj + v∗j )

yields projections with

ej + ueju
∗ = pj + pj+1 + rj + rj+1 for all j = 1, . . . , n− 1.

Now we define

f (0) =

n−1
∑

j=2

j even

j

n
ej and f (1) =

n−2
∑

j=1

j odd

n− j

n
ej .

Because of the properties of the ej , we observe f (i) ⊥ uf (i)u∗ for i = 0, 1.
Moreover, one also gets

f (0) + uf (0)u∗ + f (1) + uf (1)u∗ = 1

n
1.

This finishes the proof. �

Corollary 2.2. A faithful, quasi-free action Z2 y O∞ in the sense of [4]
has Rokhlin dimension 1.

Proof. By [4, 5.2], there is only one such action up to conjugacy. It follows
from [4, Section 6], and particularly from the proof of [4, 6.2], that for any
non-trivial projection p ∈ O∞ with [p]0 = 0 ∈ K0(O∞), considering the
unitary u = 1− 2p, the action

γ : Z2 y O∞
∼=

⊗

N

O∞, γ =
⊗

N

Ad(u)

is faithful and quasi-free. By 2.1, it is clear that γ has Rokhlin dimension at
most 1. On the other hand, it is known that no finite group action on O∞

can have the Rokhlin property. Hence the proof is complete. �

Theorem 2.3. Let A be a unital Kirchberg algebra and α : Z2 y A an
action. If α is outer, then α has Rokhlin dimension at most 1.

Proof. Let γ be a faithful, quasi-free action of Z2 on O∞. By [4, 5.1], α is
conjugate to α⊗ γ. Hence the statement follows immediately from 2.2. �

Definition 2.4. Let p ∈ O∞ be a projection with trivial class in K0(O∞).
Define Ost

∞ := pO∞p.
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Remark 2.5. In [6, 4.7], it was shown that there exists an action β : Z2 y

O2 such that O2 ⋊β Z2
∼= Ost

∞ ⊗M2∞ .

It follows from 2.3 that this action has Rokhlin dimension 1. We will
use this in the next section to deduce that for every unital C∗-algebra A, if
A⊗O2 has finite nuclear dimension, then so does A⊗O∞.

3. The nuclear dimension of O∞-absorbing C∗-algebras

With some additional observations, we use 2.5 to derive a dimensional in-
equality between an O∞-absorbing C∗-algebra and its O2-stabilization.

Lemma 3.1 (see [10, Section 5]). For any C∗-algebra A and for any UHF
algebra U of infinite type, we have the inequality

dim+1
nuc(A⊗Z) ≤ 2 dim+1

nuc(A⊗ U).

Proof. In [10, Section 5], the following fact was established: For every ε > 0,
there exists N ∈ N, such that for all m ≥ N , there exist two c.p.c. order zero
maps ψ0, ψ1 : Mm → Z such that ψ0(1) + ψ1(1) =ε 1Z . With a standard
argument, we may thus obtain two c.p.c. order zero maps

ϕ0, ϕ1 : U → Z∞ with ϕ0(1U ) + ϕ1(1U ) = 1Z .

Let A be a C∗-algebra and d = dimnuc(A ⊗ U). It suffices to check that
the nuclear dimension of the canonical embedding idA⊗1 : A → A ⊗ Z
is at most 2d + 1. We remark that the nuclear dimension of this map is
the same as the nuclear dimension of its composition with the canonical
embedding A ⊗ Z → (A ⊗ Z)∞. This follows easily from the projectivity
of finite dimensional C∗-algebras with respect to c.p.c. order zero maps, see
[14, 3.10] for a very similar statement.

Now let F⊂⊂A be a finite subset and ε > 0. Find a finite dimensional C∗-
algebra F , a c.p.c. map ψ : A → F and c.p.c. order zero maps κ0, . . . , κd :
F → A⊗ U such that

d
∑

j=0

κj ◦ ψ(x) =ε x⊗ 1U for all x ∈ F.

It thus follows that
d

∑

j=0

∑

i=0,1

(idA⊗ϕi) ◦ κj ◦ ψ(x) =ε x⊗ 1Z for all x ∈ F.

Thus we obtain a 2(d + 1)-decomposable approximation

A
idA ⊗1Z

//

ψ
&&
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼ (A⊗Z)∞

F

∑d
j=0

∑
i=0,1(idA ⊗ϕi)◦κj

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠
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for F up to ε. This finishes the proof. �

Corollary 3.2. For any unital C∗-algebra A, we have

dim+1
nuc(A⊗O∞) ≤ 4 dim+1

nuc(A⊗O2).

Proof. By 2.5, there is an action β : Z2 y O2 with Rokhlin dimension 1 such
that O2 ⋊β Z2

∼= Ost
∞ ⊗M2∞ . Define the action α = idA⊗β : Z2 y A⊗O2.

Then

A⊗Ost
∞ ⊗M2∞

∼= (A⊗O2)⋊α Z2.

Moreover, it is clear that dimRok(α) ≤ dimRok(β) = 1. Since Ost
∞⊗Z ∼= Ost

∞,
we get

dim+1
nuc(A⊗Ost

∞)
3.1
≤ 2 dim+1

nuc(A⊗Ost
∞ ⊗M2∞)

= 2dim+1
nuc((A⊗O2)⋊α Z2)

1.3
≤ 2 dim+1

Rok(α) dim
+1
nuc(A⊗O2)

≤ 4 dim+1
nuc(A⊗O2).

By Brown’s theorem, Ost
∞ is stably isomorphic to O∞, see 2.4. Since nuclear

dimension is invariant under stable isomorphism (see [17, 2.8]), we are done.
�

For the rest of this section, we would like to present a more direct approach
to this dimensional inequality, not using group actions. This even allows us
to improve the final estimate.

Theorem 3.3. For any C∗-algebra A, we have the inequality

dim+1
nuc(A⊗O∞) ≤ 2 dim+1

nuc(A⊗O2).

Proof. Since O∞ is strongly self-absorbing and O2 absorbs O∞, we may
assume A ∼= A ⊗ O∞. Let F⊂⊂A be a finite set of contractions, ε > 0 and
let h ∈ O∞ be a positive element with spectrum equal to [0, 1]. Since O∞

has real rank zero (see [11, 4.1.1]), we can find k ∈ N, mutually orthogonal
non-trivial projections p1, . . . , pk ∈ O∞ and numbers 0 ≤ λ1 ≤ . . . ≤ λk ≤ 1
such that

h =ε

k
∑

i=1

λipi.

Observe that we automatically have λ1 ≤ ε and λi+1 − λi ≤ ε for i =
1, . . . , k − 1.
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Find a projection 0 6= qk ≤ pk with [qk]0 = 0 ∈ K0(O∞) and set
p̃k := qk. Let 0 ≤ j ≤ k − 2 and assume that we have already con-
structed p̃k, . . . , p̃k−j. Find a non-trivial projection qk−j−1 ≤ pk−j−1 with
[qk−j−1]0 + [pk−j − p̃k−j]0 = 0 ∈ K0(O∞), and define

p̃k−j−1 := pk−j − p̃k−j + qk−j−1.

By construction, all p̃i have trivial class in K0(O∞). If h̃0 :=
∑k

i=1 λip̃i, we
can conclude

k
∑

i=1

λipi − h̃0 =

k
∑

i=1

λipi −

k
∑

i=1

λip̃i

= λ1(p1 − q1) +

k−1
∑

i=1

(λi+1 − λi)(pi+1 − qi+1).

This implies h =2ε h̃0 and gives an approximation of h by a positive linear
combination of pairwise orthogonal projections with trivial K0-classes. By
[11, 4.2.3], O2 embeds unitally into the corner p̃iO∞p̃i for each i. As O∞

is purely infinite and simple, all p̃i are Murray-von Neumann equivalent,
see [2, 1.4]. With k0 = k, the above embeddings extend to an injective
∗-homomorphism

ι̃0 :Mk0 ⊗O2 → O∞ with ι̃0(eii ⊗ 1) = p̃i.

Clearly, h̃0 is contained in the image of ι̃0. Analogous considerations for 1−h
lead to a natural number k1, an injective ∗-homomorphism ι̃1 :Mk1 ⊗O2 →

O∞ and a positive contraction h̃1 ∈ im(ι̃1) satisfying 1− h =2ε h̃1.
Since the statement is trivial in the case that the nuclear dimension of

A ⊗ O2 is infinite, we may assume dimnuc(A ⊗ O2) = d < ∞. Since O2
∼=

Mki ⊗ O2 for i = 0, 1, let ιi : O2 → O∞ be the injective ∗-homomorphism

corresponding to ι̃i and set hi := ι−1
i (h̃i) ∈ O2 for i = 0, 1.

There exist finite dimensional C∗-algebras Ei,0, . . . , Ei,d, c.p.c. maps ηi :
A⊗O2 → Ei,0 ⊕ . . . ⊕ Ei,d and c.p.c. order zero maps κi,j : Ei,j → A⊗O2

such that for all a ∈ F

(⋆)
d

∑

j=0

κi,j ◦ ηi(a⊗ hi) =ε a⊗ hi

holds. Define a c.p.c. map

ψ : A→
⊕

i=0,1

d
⊕

j=0

Ei,j via ψ = (η0 ⊕ η1) ◦ (idA⊗h0 ⊕ idA⊗h1),
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and c.p.c. order zero maps ϕ̃i,j : Ei,j → A⊗O∞ via ϕ̃i,j := (idA⊗ιi) ◦ κi,j.
Using the estimate (⋆), we get

(

∑

i=0,1

d
∑

j=0

ϕ̃i,j

)

◦ψ(a) =
∑

i=0,1

idA⊗ιi

(

d
∑

j=0

κi,j ◦ ηi(a⊗ hi)
)

=2ε

∑

i=0,1

idA⊗ιi(a⊗ hi)

= a⊗ (h̃0 + h̃1)

=4ε a⊗ 1.

for all a ∈ F . As A is O∞-absorbing, [16, 2.7] implies that there exists a
∗-homomorphism σ : A⊗O∞ → A satisfying

σ(a⊗ 1) =ε a for all a ∈ F.

Define c.p.c. order zero maps ϕi,j := σ ◦ ϕ̃i,j. We get

(

∑

i=0,1

d
∑

j=0

ϕi,j

)

◦ψ(a) = σ





(

∑

i=0,1

d
∑

j=0

ϕ̃i,j

)

◦ψ(a)



 =6ε σ(a⊗ 1) =ε a

for all a ∈ F . Since F⊂⊂A and ε > 0 were arbitrary, this shows that
dimnuc(A⊗O∞) ≤ 2(d + 1)− 1 and completes the proof. �

This reproduces the result of [10, Section 7] about finite nuclear dimension
of Kirchberg algebras. Note that no UCT assumption is needed.

Corollary 3.4. For every Kirchberg algebra A, we have dimnuc(A) ≤ 3.

Proof. Because of [17, 2.8], we may assume that A is unital. It has also been
shown in [17] that dimnuc(O2) = 1. The assertion now follows directly from
3.3 and Kirchberg’s absorption theorems (see [8])

A ∼= A⊗O∞ and A⊗O2
∼= O2.

�

One of the strengths of 3.3 lies in the fact that no simplicity assumptions
are needed. In fact, there are plenty of highly non-simple examples that we
can treat. This is because O2-absorbing C∗-algebras make up a very small
class compared to O∞-absorbing C∗-algebras. We can illustrate this nicely
on bundles.

Theorem 3.5. Let X be a compact metrizable space. Let A be an O∞-
absorbing, continuous C(X)-algebra whose fibres are Kirchberg algebras. Then
A has finite nuclear dimension. (In fact, we have that dimnuc(A) ≤ 7.)

Proof. If we apply Kirchberg’s classification of O2-absorbing C∗-algebras by
their prime ideal spaces, we get A⊗O2

∼= C(X)⊗O2.
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Now it follows from [9, 3.7] that there is a one-dimensional, compact
metric space Y and an embedding ι : C(Y ) → C(X)⊗O2 such that

C(X) ⊗ 1O2
⊂ ι(C(Y )) ⊂ C(X) ⊗O2.

In particular, the nuclear dimension of the canonical embedding idC(X)⊗1O2
:

C(X) → C(X) ⊗O2 is at most one. From this, it follows that

dim+1
nuc(C(X)⊗O2) = dim+1

nuc(idC(X)⊗O2
⊗1O2

)

≤ dim+1
nuc(idC(X)⊗1O2

) · dim+1
nuc(O2)

= 2 · 2 = 4.

In particular, this yields

dim+1
nuc(A) = dim+1

nuc(A⊗O∞)
3.3
≤ 2 dim+1

nuc(A⊗O2) = 8.

�

Corollary 3.6. Let X be a compact metrizable space of finite covering di-
mension. Let A be a continuous C(X)-algebra whose fibres are Kirchberg
algebras. Then A has finite nuclear dimension.

Proof. It follows from [1, 5.11] that A is automatically O∞-stable. Apply
3.5 to get the statement. �

Question 3.7. Do nuclear, O2-absorbing C∗-algebras always have finite
nuclear dimension? In particular, the case of non-Hausdorff primitive ideal
spaces is an intriguing open problem.
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