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Abstract: We survey the role of reduction by symmetry in the large deformation
diffeomorphic metric mapping framework for registration of a variety of data types
(landmarks, curves, surfaces, images and higher-order derivative data). Particle relabelling
symmetry allows the equations of motion to be reduced to the Lie algebra allowing the
equations to be written purely in terms of the Eulerian velocity field. As a second use of
symmetry, the infinite dimensional problem of finding correspondences between objects can
be reduced for a range of concrete data types, resulting in compact representations of shape
and spatial structure. Using reduction by symmetry, we describe these models in a common
theoretical framework that draws on links between the registration problem and geometric
mechanics. We outline these constructions and further cases where reduction by symmetry
promises new approaches to the registration of complex data types.

Keywords: image registration; reduction by symmetry; large deformation diffeomorphic
metric mapping (LDDMM); isotropy subgroups; jet matching

1. Introduction

Registration, the task of establishing correspondences between multiple instances of objects, such
as images, landmarks, curves and surfaces, plays a fundamental role in a range of computer vision
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applications, including shape modelling [1], motion compensation and optical flow [2], remote
sensing [3] and medical imaging [4]. In the subfield of computational anatomy, establishing inter-subject
correspondences between organs allows the statistical study of organ shape and shape variability [5].
Examples of the fundamental role of registration include quantifying developing Alzheimer’s disease by
establishing correspondences between brain tissue at different stages of the disease [6]; measuring the
effect of chronic obstructive pulmonary disease on lung tissue after removing variability caused by the
respiratory process [7]; and correlating the shape of the hippocampus to schizophrenia after inter-subject
registration [8].

In this paper, we survey the role of reduction by symmetry in diffeomorphic registration and
deformation modelling, linking symmetry as seen from the field of geometric mechanics with the image
registration problem. All of our calculations will be formal and void of functional analytic detail,
although citations will be used when available. We focus on large deformations modelled in subgroups
of the group of diffeomorphic mappings on the spatial domain in the context of large deformation
diffeomorphic metric mapping (LDDMM) [1,9–11]. Connections with geometric mechanics [12,13]
have highlighted the role of symmetry, and properties that were previously known to be connected with
the specific data types have been described in a common theoretical framework [14]. We wish to describe
these connections in a form that highlights the role of symmetry and points towards future applications of
the ideas.

1.1. Symmetry and Information

One of the main reasons symmetry is useful in data analysis and numerics is its ability to reduce the
complexity of information that represents data. Lower information complexity can lead to more stable
statistical analysis and the reduced need of computational resources.

As a toy example, consider a spinning top. Upon choosing a reference configuration, the orientation
of the top is given by a rotation matrix, i.e., an element R ∈ SO(3) (see Figure 1). To describe the
direction of the tip of the top, it suffices to provide the orientation matrix R. However, R is contained
in SO(3), a three-dimensional space, while the space of possible directions is the two-sphere, S2, which
is only of dimension two. Therefore, providing the full matrix R is an over-representation of the tip
direction. It suffices to solely provide the vector R · k ∈ S2 where k = (0, 0, 1) is the direction of
the tip in a reference configuration. Note that if R̃ · k = k, then R · k = R · R̃ · k. Therefore, given
only the direction k′ = R · k, we can only reconstruct R up to an element R̃, which preserves k. The
subgroup of rotations that preserve k can be identified with SO(2). Specifically, this identification comes
from perceiving a rotation about k as a rotation of the plane, which is perpendicular to k. This insight
allows us to express the space of directions S2 as a homogeneous space S2 ≡ SO(3)/ SO(2). In terms
of information, we can cartoonishly express this by:

“orientation” = “direction of tip” + “orientation around the tip”

This picture is typical for many group quotients. Generally speaking, if X is a manifold and G acts
freely and properly on X , then:

dim(X) = dim(X/G) + dim(G)
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When X is infinite dimensional, this formula is less insightful. However, X/G is smaller than X in
that there exists a surjective map from X to X/G with non-trivial level sets. Reduction by symmetry
can be implemented when a problem posed on X has G symmetry and can be rewritten as a problem
posed on X/G. As X/G is smaller than X , reduction by symmetry can yield more stable subsequent
statistical analysis of observed data and more tractable algorithms, as will be shown later in the article.
This reduction is particularly dramatic when dim(X) =∞ and dim(X/G) <∞.

reference
configuration

current
configuration

tip
tip

Figure 1. A diagram relating a top in the reference configuration to its current configuration
via a rotation matrix R ∈ SO(3).

1.2. Symmetry in Registration

Registration of objects contained in a spatial domain, e.g., the volume to be imaged by a scanner,
can be formulated as the search for a deformation that transforms both domain and objects to establish
an inter-object match. The data available when solving a registration problem is generally insufficient
for determining the displacement of every point of the domain. This is the case when images to be
matched have areas of constant intensity and no derivative information can guide the registration. For
example, the “best” deformation for matching the two discs in Figure 2 is ambiguous, except at the
boundary of the discs, where the images are non-constant. Similarly, when 3D shapes are matched based
on the similarity of their surfaces, the deformation of the interior cannot be derived from the available
information. In these cases, the deformation model is over-complete, and a range of deformations can
provide equally adequate matches for the data. The registration problem or the registration cost-function
is thus symmetric with respect to the subset of transformations just described. When the deformation
model is a Lie group, the deformations for which the registration is symmetric form a subgroup. The
quotient by this subgroup of symmetries of the registration cost-function can provide vastly more
compact representations. This situation arises in several cases with the LDDMM framework: when
registering images, only displacements orthogonal to the level lines of an image are needed, and when
registering shapes, the information left in the quotient is supported on the shape surface only.
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Figure 2. A registration of two discs of different sizes (a,b) with one example of a warp that
brings (b) into correspondence with (a) visualized by its effect on an initially regular grid (c).
Using symmetry, the dimensionality of the registration problem can be reduced from infinite
to finite. In this case, six parameters of a one-jet particle (see Section 5.4) in the centre of the
moving image encode the entire deformation. The six parameters can roughly be described
as a position in R2, a scaling, a stretch, a shear and a rotation. (a) Fixed image; (b) moving
image; (c) warp.

1.3. Content and Outline

Although a degree of comfort with differential geometry will be assumed, it is the aim of this paper to
make the role of symmetry in registration and deformation modelling clear to the non-expert in geometric
mechanics and symmetry groups in image registration. We begin the paper by presenting the background
for the registration problem and the large deformation approach before outlining some necessary notions
from differential geometry. For more information on the Riemannian geometry behind the LDDMM
approach to image registration, we refer the reader to [5]. We continue by describing how reduction by
symmetry leads to an Eulerian formulation of the equations of motion when reducing to the Lie algebra.
The symmetry of dissimilarity measures allows additional reductions, and we use isotropy subgroups to
reduce the complexity of the registration problem further. Lastly, we survey the effect of symmetry in a
range of concrete registration problems. The paper ends with concluding remarks.

2. Registration

The registration problem consists of finding correspondences between objects that are typically
point sets (landmarks), curves, surfaces, images or more complicated spatially-dependent data, such
as diffusion weighted images (DWI). The problem can be approached by letting M be a spatial domain
containing the objects to be registered. M can be a compact finite dimensional differentiable manifold
without boundary or Rd itself with d = 2, 3. It is common to consider manifolds with boundaries, as
well. In such cases, care must be taken with regards to boundary conditions. For example, vector-fields
must be tangential to the boundary. Here, we consider only manifolds without a boundary.

A map ϕ : M → M can deform or warp the domain by mapping each x ∈ M to ϕ(x). The
deformation encoded in the warp will apply to the objects in M , as well as the domain itself. For
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example, if the objects to be registered consist of point sets {x1, . . . , xN}, xi ∈ M , the set will be
mapped to {ϕ(x1), . . . , ϕ(xN)}. For surfaces S ⊂ M , ϕ similarly results in the warped surface ϕ(S).
Because those operations are associative, the mapping ϕ acts on {xi} or S, and we write ϕ · {xi} and
ϕ · S for the warped objects. An image is a function I : M → R, and ϕ acts on I as well, in this
case by composition with its inverse ϕ · I = I ◦ ϕ−1; see Figure 3. For this, ϕ must be is invertible,
and commonly, we restrict to the set of invertible and differentiable mappings Diff(M). For various
other types of data objects, the action of a warp on objects can be defined in a manner similar to that of
point sets, surfaces and images. This fact relates a range registration problems to the common case of
finding appropriate warps ϕ, which bring the objects into correspondence. Different shape instances can
be realized by letting warps act on a base shape, and a class of shape models can thereby be obtained by
using deformations as shape representations [1].

Figure 3. A warp ϕ ∈ Diff(M) acts on an image I : M → R by composition with the
inverse warp, ϕ ·I = I ◦ϕ−1. Given two images I0, I1 : M → R, image registration involves
finding a warp ϕ, such that ϕ · I0 is close to I1 as measured by a dissimilarity measure
F (ϕ · I0, I1).

The search for appropriate warps can be formulated in a variational formulation with an energy:

E(ϕ) = R(ϕ) + F (ϕ) (1)

where F is a dissimilarity measure of the difference between the deformed objects and R is a
regularization term that penalizes unwanted properties of ϕ, such as spatial irregularity. If two objects
o1 and o2 are to be matched, F can take the form F (ϕ · o0, o1) using the action of ϕ on o0; for image
matching, an often used dissimilarity measure is the L2-difference or sum of square differences (SSD)
having the form F (ϕ · I0, I1) =

∫
M
|I0 ◦ ϕ−1(x)− I1(x)|2dx.

The regularization term can take various forms often modelling physical properties, such as
elasticity [15], and derivatives of ϕ are often penalized to ensure smoothness. For some choices of
R, existence and analytical properties of minimizers of Equation (1) have been derived [16]; however,
in general, it is difficult to ensure that solutions are diffeomorphic by penalizing ϕ in itself. The
free-form-deformation (FFD; [17]) and related approaches model the deformation by a displacement
vector field u on M = Rd, so that ϕ(x) = x + u(x). Smoothness is here ensured by the choice of basis
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functions, e.g., B-splines, or by applying a regularization term on u. Smooth and invertible mappings
can be obtained by integrating flows [9,11] to obtain one-parameter families or paths of mappings ϕt,
t ∈ [0, 1]. The warp ϕ0 at t = 0 is here the identity mapping id ∈ Diff(M), and the dissimilarity is
measured at the endpoint ϕ1. The time evolution of ϕt can be described by the differential equation:

d

dt
ϕt(x) = ut(ϕt(x)) (2)

with the flow field ut being a vector field on M . Numerically, the map ϕ can be represented by how it
maps a finite set of points, and a numerical scheme might simply implement Euler-integration on each
point, i.e., “xi+1 7→ xi + h · ut(xi)” with time-step size 0 < h � 1. A relaxation of this idea is now
a standard method in optical flows [18]. The space of flow fields is denoted by V . In the LDDMM [1]
framework, the regularization is applied to the flow field and integrated over time giving the energy:

E(ϕ) =

∫ 1

0

‖ut‖2
V dt+ F (ϕ1) (3)

Here, the time-dependent diffeomorphism ϕt is related to ut through Equation (2). If the norm ‖ · ‖V
that measures the irregularity of ut is sufficiently strong (e.g., Hk with k > d

2
+ 1), then ϕt will be

a diffeomorphism for all t [19]. This approach thus gives a direct way of enforcing properties of the
generated warp: instead of regularizing ϕ directly, the analysis is lifted to a normed space V that is much
easier control. The energy E in Equation (3) has the same minimizers as the geometric formulation of
LDDMM used in the next section.

Direct approaches to solving the optimization problem in Equation (3) must handle the fact that the
problem of finding a warp is now expanded to that of finding a time-dependent family of warps. This
is a huge increase in dimensionality. This formulation of registration is thus very difficult to represent
numerically and to optimize and analyse statistically. For several data types, it has been shown how
optimal paths for Equation (3) have specific properties that reduce the dimensionality of the problem,
making practical solutions feasible. In the next section, we outline the geometric framework that is
needed when we, in the later sections, use reduction by symmetry to describe these data-dependent
results in a common theoretical framework.

3. Notions from Differential Geometry

In this section, we will introduce a number of notions from differential geometry in a fairly informal
manner. We will use conventions from [20,21] where a more rigorous understanding of differential
geometry can be found.

We will assume that the reader has at least an intuitive picture of the notion of a smooth manifold M .
For the purpose of this paper, M will either be assumed to be compact without a boundary or Rn. The
tangent bundle of M is the space of velocity vectors tangential to M . Notationally, the tangent bundle
of M , denoted TM , is the set of pairs (x, v) where x ∈M and v is a vector tangential to M at the point
x (see Figure 4). A vector-field is a continuous map u : M → TM , such that u(x) ∈ TM is a vector
above x for all x ∈M . We will denote the space of vector-fields by X(M).
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Figure 4. The tangent bundle TM of the manifold M consists of pairs (x, v) of points
x ∈ M and tangent vectors v ∈ TxM . It is a fibre bundle over M with fibres TxM for each
x ∈M.

Given a vector-field u ∈ X(M), we may consider the initial value problem:x(0) = x0

dx
dt

= u(x(t))

for t ∈ [0, 1]. Given an initial condition x0, the point x1 = x(1) given by solving this initial value
problem is uniquely determined if it exists. Under many circumstances (e.g., if M is compact or if
M = Rd and ‖u(x)‖ grows sub-linearly), an x1 exists for each x0, and there is a continuous invertible
map Φu

t : x0 ∈ M 7→ x1 ∈ M , which we call the flow of u. Given a time-dependent vector-field,
ut ∈ X(M) for t ∈ [0, 1], we can consider the initial value problem with dx

dt
= ut(x(t)). This will yield

a flow map, Φu
t0,t1

which is the flow from time t = t0 to t = t1. If ut is smooth, the flow map will be
smooth, as well, in particular a diffeomorphism. We denote the set of diffeomorphisms by Diff(M).

Conversely, let ϕt ∈ Diff(M) be a time-dependent diffeomorphism. For any x ∈M , we observe that
ϕt(x) is a curve in M . If this curve is differentiable we may consider its time-derivative, dϕt

dt
(x) ∈ TM ,

which is a vector above the point ϕt(x) ∈ M . From these observations, it follows that dϕt

dt
[ϕ−1
t (x)] is a

vector above x. Therefore, the map ut : M → TM , given by ut(x) :=
(
d
dt
ϕt
)

[ϕ−1
t (x)], is a vector-field

called the Eulerian velocity field of ϕt.
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As will be described shortly, the Eulerian velocity field contains less data than dϕt

dt
. This reduction

in data can be viewed from the perspective of symmetry. Given any ψ ∈ Diff(M), the curve ϕt can be
transformed to the curve ϕt ◦ ψ. We observe that:

ut :=
dϕt
dt
◦ ϕ−1

t =
dϕt
dt
◦ ψ ◦ ψ−1 ◦ ϕ−1

t

=

(
d

dt
(ϕt ◦ ψ)

)
◦ (ϕt ◦ ψ)−1 .

Thus, ϕt and ϕt ◦ψ both have the same Eulerian velocity fields. In other words, the Eulerian velocity
field, ut, is invariant under particle relabellings. More precisely, we may view Diff(M) as a manifold
in its own right, and view dϕt

dt
as a vector in the infinite-dimensional tangent bundle T Diff(M) above

the “point” ϕt ∈ Diff(M). Thus, the vector dϕt

dt
contains both velocities and a base diffeomorphism ϕt.

Given ut and ϕt, we can reconstruct dϕt

dt
via dϕt

dt
= ut ◦ ϕt. As has been shown, we can also construct ut

from dϕt

dt
by its own definition. However, we cannot reconstruct dϕt

dt
from ut, which is why ut contains

less data.
Finally, we will denote some linear operators on the space of vector-fields. Let Φ ∈ Diff(M), and let

u ∈ X(M). The push-forward of u by Φ is the vector-field given by:

Φ∗u(x) := DΦ|Φ−1(x) · u(Φ−1(x))

In local coordinates (x1, . . . , xn), this looks like:

[Φ∗u]i(x) =
n∑
j=1

(
∂j|Φ−1(x) Φi

)
uj(Φ−1(x))

By inspection, we see that Φ∗ is a linear operator on X(M). One can view Φ∗u as “u in a new
coordinate system”, because any geometric property of u is also inherited by Φ∗u. For example, if S is
invariant under u, then Φ(S) is invariant under Φ∗u. We define the pull-back by Φ∗u := (Φ−1)∗u. Note
that Φ∗(Φ∗(u)) = u.

As Φ∗ is a linear operator, a well-defined operator exists, which is dual to Φ∗. Let X(M)∗ denote the
dual space to X(M), i.e., the set of linear maps X(M) → R, which are continuous with respect to a
chosen vector-space topology on X(M). Given m ∈ X(M)∗, we define Φ∗m ∈ X(M)∗ by the identity:

〈Φ∗m,Φ∗u〉 := 〈m,u〉 (4)

for all u ∈ X(M), where 〈m,u〉 denotes the evaluation of m on v. We can define Φ∗m := (Φ−1)∗m,
which yields the identity:

〈Φ∗m,u〉 = 〈m,Φ∗u〉

In local coordinates, we may representm as a one-form density, given bymi(x)dxi⊗(dx1∧· · ·∧dxn)

with components m1(x), . . . ,mn(x). In this local coordinate description, the i-th component of the
push-forward looks like:

[Φ∗m]i(x) := det(DΦ−1)|x∂iΦj|Φ−1(x) ·mj(Φ
−1(x))
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Finally, we define the Lie derivative. Let w ∈ X(M). The Lie derivative operator, with respect to w,
is the linear operator £w : X(M)→ X(M) defined by:

£w[u] =
d

dε

∣∣∣∣
ε=0

(Φw
ε )∗u

Again, as £w is a linear operator on X(M), we can define a dual operator on X(M)∗. If m ∈ X(M)∗,
we can define £w[m] ∈ X(M)∗ by the equation:

〈£w[m], u〉+ 〈m,£w[u]〉 = 0 (5)

for all u ∈ X(M).
We conclude the section with a table of notation for the reader’s convenience, see Table 1.

Table 1. Notation.

Notion Notation
manifold M

tangent bundle TM

the group of diffeomorphisms Diff(M)

the space of vector-fields X(M)

the push-forward of u ∈ X(M) with respect to Φ ∈ Diff(M) Φ∗u

the push-forward of m ∈ X(M)∗ with respect to Φ ∈ Diff(M) Φ∗m

The Lie derivative (w.r.t. u ∈ X(M)) £u

the dual space to X(M) X(M)∗

Evaluation of m ∈ X(M)∗ on u ∈ X(M) 〈m,u〉

4. Reduction by Symmetry in LDDMM

In this section, we will present necessary conditions satisfied by local extremizers of the variational
problem Equation (3). The resulting conditions will first involve the computation of a curve in Diff(M),
as well as its time-derivative in T Diff(M). We then invoke a Diff(M) symmetry of the problem to reduce
this computation to a computation on X(M) instead of T Diff(M) ∼= Diff(M) × X(M). Secondly, we
describe how the symmetry of the dissimilarity measure allows further reductions.

4.1. Reduction to the Lie Algebra

The variational formulation Equation (3) of LDDMM is equivalent to minimizing the energy:

E = d(id, ϕ) + F (ϕ) (6)

where d : Diff(M) × Diff(M) → R is a Riemannian distance metric on Diff(M) induced by the norm
‖·‖V , id is the identity diffeomorphism, and F : Diff(M)→ R is a dissimilarity measure, i.e., a function
measuring the disparity between the deformed template and the target object.

Example 1. Given images I0, I1 ∈ L2(M), we consider the dissimilarity measure:

F (ϕ) = ‖(I0 ◦ ϕ−1)− I1‖2
L2(M)
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In this article, we will consider the metric on connected components of Diff(M) given by:

d(ϕ0, ϕ1) = inf
u∈C0([0,1],X(M))

Φv
0,1◦ϕ0=ϕ1

(∫ 1

0

‖ut‖dt
)

where ut denotes a one-parameter family of vector fields and ‖ · ‖ is a norm on X(M), the Lie algebra
of Diff(M). The norm is generally assumed to be admissible, i.e., embedded in C1

0(M,Rn+k) for
sufficiently large k, so that a constant C exists satisfying ‖u‖ ≥ C‖u‖1,∞ for all u ∈ X(M) ([1],
Chapter 9). In the case where M 6= Rn, we can define ‖u‖1,∞ chart-wise by a partition of unity (e.g., see
the construction of Hk norms on M in [22]) or intrinsically in terms of the Riemannian gradient. Both
choices would yield identical topologies, and so, this choice has no significance as far as the article is
concerned. From now on, we will overload notation and let X(M) denote the set of Ck vector fields with
finite norm. For finite k, this makes X(M) a Banach space, and it breaks the Lie algebra structure. The
consequences of this breakage will not be explored here, and we will continue to treat X(M) formally
as a Lie algebra. We will later be using the space of homeomorphisms generated by X(M), which is a
subspace ofCk-diffeomorphisms. Again, we will overload the notation and call this space Diff(M), even
though this is usually reserved for smooth diffeomorphisms. In the case where M = Rd, we assume that
our norm is such that decay conditions at infinity for u ∈ X(M) arise naturally as a result of requiring
the norm to be finite. If ‖ · ‖ is induced by an inner-product, the inner-product is formally a Riemannian
metric on Diff(M) given by: ∥∥∥∥dϕtdt

∥∥∥∥2

φt

:=

∥∥∥∥dϕtdt ◦ ϕ−1
t

∥∥∥∥2

and d is the Riemannian distance with respect to this metric. The norm is often defined in terms of
an operator P : X(M) → X(M)∗ as ‖u‖2 = 〈P [u], u〉, and the assumed admissibility implies that
(X(M), ‖ · ‖) has a reproducible kernel Hilbert space structure (RKHS; [1], Chapter 8). For example,
we could consider M = R, P = dx ⊗ (1 − ∂2

x), and the vector-field u(x) = exp(−|x|) is mapped to
the one-form density dx ⊗ δ, where δ is the Dirac delta distribution (see [23]. In particular, in the case
that M = Rn, a matrix-valued kernel function K : Rn × Rn → Rn×n exists satisfying the reproducing
property 〈P [K(·, x)a], u〉 = aTu(x) for all x ∈ Rn and a ∈ Rn (see [24]). We will denote RKHSs by V
and the norms by ‖ · ‖V .

Given P , minimizers of E Equation (6) must satisfy:
mt = (Φut

t,1)∗m1 = P [ut]

∂tΦ
u
t,1 = −ut ◦ Φu

t,1

〈m1, w〉 = d
dε

∣∣
ε=0

F (Φw
ε ◦ Φu

0,1) , ∀w ∈ X(M) .

(7)

That Equation (7) is a necessary condition satisfied by the minimizers of Equation (6) (under certain
analytic assumptions) is stated and proven in [1] (Proposition 11.6) for the case of M = Rn. The proof
is based on the definition of the curve energy Equation (6) as a sum a Riemannian distance d and the
dissimilarity measure F . Minimization of the Riemannian distance d yields a search for a geodesic in
Diff(M), because geodesics are distance minimizing. The corresponding geodesic equations are given
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by the first two lines of Equation (7). The term F only penalizes the end-point of the geodesic, and the
minimization condition manifests as the third line of Equation (7).

Issues regarding the well-posedness of Equation (7) are non-trivial, because P is merely injective, but
not bijective, and so, there is no guarantee that P can be inverted on a given mt ∈ X(M)∗ at each time
in order to obtain a vector-field ut ∈ X(M). Fortunately, safety guards for well-posedness are known
(e.g., [19], Theorem 1, or [25]).

Using Equation (7) for computational purposes is difficult because Diff(M) is a non-linear infinite
dimensional space. Moreover, the dissimilarity measure F only comes into play at time t = 1, and the
distance function is an integral over the vector-space X(M). It would be beneficial if we could rewrite
the extremizers in terms of the Eulerian velocity field u and the flow at t = 1. In fact, this is often the
case. One (formally) must take the time-derivative of the term “(Φu

t,1)∗m(1)” and apply Equation (5).
Explicitly, this computation is performed as follows. Let w ∈ X(M), and observe:

〈∂tmt, w〉 =

〈
d

dt
(Φu

t,1)∗m(1), w

〉
=

〈
m,

d

dt
(Φu

t,1)∗w

〉
= 〈m,£ut [w]〉 = −〈£ut [m], w〉

As w is arbitrary, we find ∂tmt + £ut [mt] = 0. This allows us to reformulate Equation (7) as:∂tmt + £ut [mt] = 0,mt = P [ut] ∀t ∈ [0, 1]

d
dε
|ε=0

[
F (Φw

ε ◦ Φu
0,1)
]

+ 〈P [u1], w〉 = 0 ,∀w ∈ X(M)
(8)

The advantage of this formulation is that the bulk of the computation occurs on the vector-space
X(M) rather than on the space T Diff(M). Registration algorithms based on Equation (8) differ from
the algorithm proposed by Beg et al. in [26]. In [26], a gradient descent on the time-dependent Eulerian
vector field ut is used to minimize the curve energy. The algorithm is posed on the velocity field ut
instead of the momentum field mt as Equation (8) suggests. The momentum at time t is retrieved by a
transport equation similar to the first equation in Equation (7). The evolution Equation (8) effectively
allows one to search over the space of initial conditions, X(M)∗, rather than over the larger space of
curves, C1([0, 1];X(M)).

This reduction of the problem from T Diff(M) given in Equation (7) to the problem over space of
vector-fields, X(M) given in Equation (8) is the first instance of reduction by symmetry. In particular,
this corresponds to the fact that the space of vector-fields X(M) is identifiable as a quotient space:

X(M) ≡ T Diff(M)/Diff(M)

Additionally, the map (ϕt,
dϕt

dt
) ∈ T Diff(M) 7→ dϕt

dt
◦ ϕ−1

t ∈ X(M) is the quotient projection.

4.2. Isotropy Subgroups

The reduction to dynamics on T Diff(M) to dynamics on X(M) occurs primarily because the distance
function is Diff(M) invariant. However, one cannot completely abandon Diff(M), because the solution
requires one to compute the Time 1 flow, Φu

0,1. Fortunately, there is a second reduction, which allows us
to avoid computing Φu

0,1 in its entirety. This second reduction corresponds to the invariance properties
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of the dissimilarity measure F . Let GF ⊂ Diff(M) denote the set of diffeomorphisms, which leave F
invariant, i.e.:

GF := {ψ ∈ Diff(M) | F (ϕ ◦ ψ) = F (ϕ),∀ϕ ∈ Diff(M)}

One can readily verify that GF is a subgroup of Diff(M), and so, we call GF the isotropy subgroup
of F .

Having defined GF , we can now consider the homogeneous space Q = Diff(M)/GF , which is the
quotient space induced by the action of the right composition of GF on Diff(M). This quotient space is
“smaller” in the sense of the amount of data required to describe an element of it. In terms of maps, this
can be seen by defining the map ϕ ∈ Diff(M) 7→ q = [ϕ]/GF

∈ Q, where [ϕ]/GF
denotes the equivalence

class of ϕ. We call this mapping the quotient projection, because it sends Diff(M) to Q surjectively.
While these notions are theoretically quite complicated, often they manifest less so in practice.

Example 2. In this example, we consider a simple aspect of the landmark matching problem. Let
M ⊂ Rn be the closure of some open set. Let x1, x2, y1, y2 ∈ M with x1 6= x2, and consider the
dissimilarity measure:

F (ϕ) = ‖ϕ(x1)− y1‖2 + ‖ϕ(x2)− y2‖2

We see that:

GF ≡ {ψ ∈ Diff(M) | ψ(x1) = x1, ψ(x2) = x2}

and:

Q = Diff(M)/GF ≡ {(z1, z2) ∈M ×M | z1 6= z2} = M ×M −∆M×M

where ∆M×M denotes the diagonal of M × M . The quotient projection is ϕ ∈ Diff(M) 7→
(ϕ(x1), ϕ(x2)) ∈M ×M −∆M×M

Note that Diff(M) is infinite dimensional, while Q is of dimension 2 dim(M). Two examples of
diffeomorphisms contained in GF are shown in Figure 5.

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

Figure 5. Examples of elements of the isotropy subgroup GF in Example 2 visualized by
their effect on an initially square grid. The isotropy subgroup leaves the dissimilarity measure
F invariant by not moving the points x1 and x2.
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Example 3. In this example, we consider the matching problem for greyscale images. Let
I0, I1 ∈ Hk(M) be images. There is a natural action of Diff(M) on Hk given by sending each image
I ∈ Hk(M) to I ◦ ϕ ∈ Hk(M). We could consider the matching function F : Diff(M)→ R given by:

F (ϕ) = ‖(I0 ◦ ϕ−1)− I1‖Hk

This function measures the difference between a deformed version of I0 and a fixed image, I1. The
isotropy subgroup GF is the group of images that preserve 00. Such a diffeomorphism would preserve
each of the level lets of I0, but could permute the points within a given level set.

If one is able to understand Q, then one can use this insight to reformulate the dissimilarity measure
F as a function on Q, rather than Diff(M). In particular, there exists a unique function FQ : Q → R
defined by the property FQ([ϕ]/GF

) = F (ϕ). Again, this is useful in the sense of data, as illustrated in
the following example.

Example 4. Consider the dissimilarity measure F of Example 2. The function, FQ : Q→ R is:

FQ(q1, q2) = ‖q1 − y1‖2 + ‖q2 − y2‖2

Finally, note that Diff(M) acts upon Q by the left action:

[ϕ]GF
∈ Diff(M)/GF

ψ∈Diff(M)7−→ [ψ ◦ ϕ]/GF
∈ Diff(M)/GF

Usually, we will simply write ψ · q for the action of ψ ∈ Diff(M) on a given q ∈ Q. This means that
X(M) acts upon Q infinitesimally, as it is the Lie algebra of Diff(M).

Example 5. Consider the setup of Example 2. Here, Q = M × M − ∆M×M , and the left action of
Diff(M) is given by:

ψ · (q1, q2) = (ψ(q1), ψ(q2))

for ψ ∈ Diff(M) and q = (q1, q2) ∈ Q. The infinitesimal action of u ∈ X(M) on Q is:

u · (q1, q2) = (u(q1), u(q2)) ∈ TqQ

These constructions allow us to rephrase the initial optimization problem using a reduced curve
energy. Minimization of E is equivalent to minimization of:

EQ =

∫ 1

0

‖ut‖dt+ FQ (q(1))

where q(1) is obtained by integrating the ODE, dq(t)
dt

= ut · q(t) with the initial condition q(0) = [id]/GF
,

where id ∈ Diff(M) is the identity transformation. We see that this curve energy only depends on the
Eulerian velocity field and the equivalence class q(1). Minimizers of EQ must necessarily satisfy:∂tmt + £ut [mt] = 0 , mt = P [ut]

〈m1, w〉 = −DF (q(1)) · (w · q(1)) , ∀w ∈ X(M)
(9)

A geometric derivation of this formula can be found in [13] (Lemma 2.8, (2.12), and (2.13)). Again,
the solution only depends on the Eulerian velocity and q(1). For this reason, we see that theGF symmetry
of F provides a second reduction in the data needed to solve our original problem.
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4.3. Orthogonality

In addition to reducing the amount of data that we must keep track of, there is an additional
consequence to the GF -symmetry of F . In particular, there is a potentially massive constraint satisfied
by the Eulerian velocity u.

To describe this, we must introduce an isotropy algebra. Given q(t) = [Φu
0,t]/GF

, we can define the
(time-dependent) isotropy algebra:

gq(t) = {w ∈ X(M) | w · q(t) = 0}

This is nothing, but the “Lie algebra” associated with the isotropy group Gq(t) = {ψ ∈ Diff(M) |
ψ ·q(t) = q(t)}. The use of quotes here is deliberate. If we let X(M) denote an RKHS obtained from the
space of vector-fields, then some of these are permitted to be non-smooth, which means that the standard
Lie bracket of vector-fields does not close.

It turns out that the velocity field ut that minimizes E (or EQ) is orthogonal to gq(t) with respect
to the chosen inner-product. Intuitively, this is quite sensible, because velocities that do not change
q(t) do not alter the data and simply waste control effort. Equivalently, said from the perspective
Lagrange-multipliers, we know that the Lagrange-multipliers used to enforce optimality should point
in a direction orthogonal to those which leave the cost functional unaltered. These variations on the
same statement are formalized below.

Proposition 1. Let u satisfy Equation (8) or Equation (9). Then, m = P [u] annihilates gq(t).

Proof. Let u be the solution to Equation (9). We will first prove that u1 is orthogonal to gq(1). Let
w1 ∈ gq(1). We observe:

〈P [u1], w1〉
by (9)
= − d

dε

∣∣∣∣
ε=0

FQ(Φw(1)
ε · q(1))

However, w1 leaves q(1) fixed, so Φ
w(1)
ε · q(1) = 0. Therefore, 〈P [u1], w1〉 = 0. Let wt = [Φu

t,1]∗w1. In
coordinates, this means:

wit(x) = ∂j|[Φu
t,1]−1(x) [Φu

t,1]iwjt
(
1, [Φu

t,1]−1(x)
)

One can directly verify that wt ∈ gq(t) for all t ∈ [0, 1]. Denoting mt = P [ut], as in Equation (9),
we find:

d

dt
〈P [ut], wt〉 =

d

dt
〈mt, wt〉 = 〈∂tmt, wt〉+ 〈mt, ∂twt〉

= 〈−£ut [mt], wt〉+ 〈mt,−£ut [wt]〉 = 0

The last equality follows from Equation (5). Thus, 〈P [ut], wt〉 is constant. We have already verified
that at t = 1, this inner-product is zero, and therefore, 〈P [ut], wt〉 = 0 for all time. That w1 is an arbitrary
element of gq(1) makes wt an arbitrary element of gq(t) at each time. Thus, ut is orthogonal to gq(t) for
all time.

At this point, we should return to our example to illustrate this idea.
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Example 6. Again, consider the setup of Example 2. In this case, q(t) = (q1(t), q2(t)) ∈ M ×M −
∆M×M . The space gz(t) is the space of vector-fields that vanish at q1(t) and q2(t). Therefore, ut is
orthogonal to q(t) if and only if mt = P [ut] satisfies:

〈mt, v〉 = p1 · v(z1(t)) + p2 · v(z2(t))

for some covectors p1, p2 ∈ X(M)∗ and for any v ∈ X(M). In other words:

mt = p1(t)⊗ δq1(t)(·) + p2 ⊗ δq2(t)(·)

where δx(·) denotes the Dirac delta functional centred at x.

This orthogonality constraint allows one to reduce the evolution equation on X(M) to an evolution
equation on Q, which might be finite dimensional if GF is large enough. In particular, there is a
horizontal lift, h↑ : TQ→ X(M), uniquely defined by the conditions h↑(q, q̇) · q = 0, and h↑(q, q̇) ⊥ gq

with respect to the chosen inner-product on vector-fields.

Example 7. Consider the setup of Example 2 with M = Rn. Then, Q = Rn × Rn − ∆Rn×Rn . Let
K : Rn × Rn → Rn×n be the reproducing kernel of P . Then, h↑ : TQ→ X(Rn) is given by:

h↑(q, q̇)(x) = K(x− q1) · p1 +K(x− q2) · p2

where p1, p2 ∈ Rn are such that p1 +K(q1 − q2)p2 = q̇1 and K(q2 − q1)p1 + p2 = q̇2.

One can immediately observe that h↑ is injective and linear in q̇. In other words, h↑(q, ·) : TqQ →
X(M) is an injective linear map for fixed q ∈ Q. Because the optimal ut is orthogonal to gq(t), we may
invert h↑(q(t), ·) on ut. In particular, we may often write the equation of motion on TQ, rather than on
X(M). This is a massive reduction if Q is finite dimensional. In particular, the inner-product structure
on X(M) induces a Riemannian metric on Q given by:

gq(v1, v2) = 〈P [h↑(q, v1)], h↑(q, v2)〉.

The equations of motion in Equations (8) and (9) map to the geodesic equations on Q.

Proposition 2. Let u extremize E or EQ. Then, there exists a unique trajectory q(t) ∈ Q, such that
u = h↑(dq(t)

dt
). Moreover, q(t) is a geodesic with respect to the metric g.

Proof. Let u minimize E. Thus, u satisfies Equation (9). By the previous proposition, ut is orthogonal
to gq(t). As h↑(q(t), ·) : Tq(t)Q → X(M) is injective on g⊥q(t), there exists a unique q̇(t), such that
h↑(q(t), q̇(t)) = ut. Note that E can be written as:

E =

∫
‖h↑(q(t), q̇(t))‖V dt+ F (q(1)) =

∫
gq(q̇, q̇)

1/2dt+ F (q(1))

Thus, minimizers of E correspond to geodesics in Q with respect to the metric g.
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If we let H : T ∗Q → R be the Hamiltonian induced by the metric on Q, we obtain the most
data-efficient form or Equations (8) and (9). Minimizers of E (or EQ) are:

(q, p)(t) ∈ T ∗Q satisfies Hamilton’s equations

p(1) = −DFQ(q)

q(0) = [e]/GF

(10)

We see that this is a boundary value problem posed entirely on Q. If Q is finite dimensional, this is a
massive reduction in terms of data requirements.

Example 8. Consider the setup of Example 2 with M = Rn. The metric on Q = M ×M −∆M2 is most
easily expressed on the cotangent bundle T ∗Q. If K is the matrix valued kernel of P , the metric on T ∗Q
takes the form:

g∗q (p, p
′) =

2∑
i,j=1

pTi K(qi − qj)p′j

4.4. Descending Group Action

A related approach to defining distances on a space of objects to be registered consists of defining an
object space O upon which Diff(M) acts transitively (this means that for any o1, o2 ∈ O, there exists a
ϕ ∈ Diff(M) such that ϕ · o1 = o2) with distance:

dO(o1, o2) = inf
ϕ∈Diff(M)

{d(id, ϕ) |ϕ · o1 = o2}

Here, the distance on O is defined directly from the distance in the group acting on the objects; see
for example [1,5]. With this approach, the Riemannian metric descends from Diff(M) to a Riemannian
metric on O, and geodesics on O lift by horizontality to geodesics on Diff(M). The quotient spaces Q
obtained by reduction by symmetry and their geometric structure correspond to the object spaces and
geometries defined with this approach. Intuitively, reduction by symmetry can be considered a removal
of redundant information to obtain compact representations, while letting the metric descend to the object
space O constitutes an approach to defining a geometric structure on an already known space of objects.
The resulting solutions are equivalent to the ones presented in this article, because O ∼= Diff(M)/Go,
where Go = {ψ ∈ Diff(M) | ψ(o) = o} for some fixed reference object o ∈ O.

5. Examples

Here, we present a number of concrete examples of how reduction by symmetry can reduce the infinite
dimensional registration problem over Diff(M) to lower, in some cases finite, dimensional problems. In
all examples, the symmetry of the dissimilarity measure with respect to a subgroup of Diff(M) gives a
reduced space by quotienting out the isotropy subgroups.
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5.1. Landmark Matching

The space Q used in the examples in Section 4 constitutes a special case of the landmark matching
problem, where sets of landmarks Q = {(x1, . . . , xN)|xi ∈ M, xi 6= xj ∀i 6= j} are placed into spatial
correspondence trough the left action ϕ · (x1, . . . , xN) = (ϕ(x1), . . . , ϕ(xN)} of Diff(M) by minimizing
the dissimilarity measure F (ϕ) =

∑N
i=1 ‖ϕ(xi) − xi‖2. The landmark space Q arises as a quotient of

Diff(M) from the isotropy group GF , as in Example 2.
Reduction from Diff(M) to Q in the landmark case has been used in a series of papers starting

with [27]. Hamilton’s equations (Equation (10)) take the form:

q̇i =
N∑
j=1

K(qi − qj)pj , ṗi = −
N∑
j=1

(DK(qi − qj)pj)T pi

on T ∗Q, where DK denotes the spatial derivative of the reproducing kernel K. Generalizing the
situation in Example 6, the momentum field is a finite sum of Dirac measures

∑N
j=1 pj ⊗ δqj , and

the Eulerian velocity field is the corresponding finite linear combination of the kernel evaluated at
qi: u(·) =

∑N
j=1K(· − qj)pj . Registration of landmarks is often in practice done by optimizing

over the initial value of the momentum p in the ODE to minimize E, a strategy called shooting [28].
Using symmetry, the optimization problem is thus reduced from an infinite dimensional time-dependent
problem to an N dim(M) dimensional optimization problem involving integration of a 2N dim(M)

dimensional ODE on T ∗Q.

5.2. Curve and Surface Matching

The space of smooth non-intersecting closed parametrized curves in Rn is also known as the space of
embeddings, denoted Emb(S1,Rn). The parametrization can be removed by considering the right action
of Diff(S1) on Emb(S2,Rn) given by:

c ∈ Emb(S1,Rn)
ψ∈Diff(S1)7→ c ◦ ψ ∈ Emb(S1,Rn)

Then, the quotient space Gr(S1,Rn) := Emb(S1,Rn)/Diff(S1) is the space of unparameterized curves.
The space Gr(S1,Rn) is a special case of a non-linear Grassmannian [29], and it has a manifold structure
under certain conditions on the space of embeddings and the space of diffeomorphisms [30].

When the parametrization is not removed, embedded curves and surfaces can be matched with the
current dissimilarity measure [31,32]. If M is a volume manifold, then the objects are considered
elements of the dual space of Ωk(M), the space of differential k-forms on M . In the surface case, a
bounded submanifold S ⊂ M can be seen as an element of [Ωk(M)]∗ by its evaluation on a k-form,
w ∈ Ω2(M), given by:

S(w) :=

∫
S

w|S (11)

where w|S ∈ Ωk(S) is the restriction of w to S. The dual space (Ωk(M))∗ can be equipped with a
norm that enables surfaces to be quantitatively compared as elements of the vector-space (Ωk(M))∗.
Note that the evaluation Equation (11) does not depend on the parametrization of S, as it is written in
a coordinate-free form. Coordinate-based formulations of Equation (11) are available in [31,32]. This
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technique is computationally much more tractable than using the Hausdorff distance, which requires
pairwise comparisons between all points between two surfaces.

The isotropy groups for curves and surfaces generalize the isotropy groups of landmarks by consisting
of warps that keep the objects fixed, i.e.,

GF ≡ {ψ ∈ Diff(M) | ψ(S) = S} .

The momentum field will be supported on the transported curves/surfaces ϕ(t).S for optimal paths for
E in Diff(M).

5.3. Image Matching

Images can be registered using either the L2-difference defined in Example 1 or with other
dissimilarity measures, such as mutual information or the correlation ratio [33,34]. The similarity will
be invariant to any infinitesimal deformation orthogonal to the gradient of dissimilarity measure. In the
L2 case, this is equivalent to any infinitesimal deformation orthogonal to the level sets of the moving
image [35]. The momentum field thus has the form p(t) = α(t)∇ϕ(t).I0 for a smooth function α(t)

on M (see Figure 6), and the registration problem can be reduced to a search over the scalar field α(t)

instead of vector field p(t).
Minimizers for E follow the PDE [5]:

u̇t =

∫
M

K(· − y)α(y)∇mt(y)dy , ṁt = −∇mT
t ut , α̇ = −∇ · (αut) (12)

with mt representing the deformed image at time t.
In particular, the isotropy group of a source image f0 ∈ C∞(M) is the subgroup of diffeomorphisms,

which preserve the level sets of f0. The quotient space Diff(M)/Iso(f0) can be identified with the orbit
of f0 by diffeomorphisms, i.e., Diff(M)/Iso(f0) ∼= Orb(f0) := {ϕ∗f0 | ϕ ∈ Diff(M)}. This orbit
is difficult to identify with a more concrete object, in contrast to, e.g., the case of landmark matching.
However, it can be characterized by various properties. For example, for a function f ∈ Orb(f0) and
any c ∈ f0(M) ⊂ R, the level sets f−1(c) and f−1

0 (c) have the same topology.

Figure 6. In image matching, the gradient of the L2-difference will be orthogonal to level
lines of the image, and symmetry implies that the momentum field will be orthogonal to the
level lines, so that p(t) = α(t)∇ϕ(t).I0 for a time-dependent scalar field α.
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5.4. Jet Matching

In [14,36], an extension of the landmark case has been developed where higher-order spatial
information is advected with the landmarks. The spaces of jet-particles arise as extensions of the reduced
landmark space Q by quotienting out smaller isotropy subgroups known as jet-groups. A thorough
account of jet-groups, including Lie group and algebra structures, can be found in [37] (Chapter 4). We
provide a brief introduction here. Let G(0) be the isotropy subgroup for a single landmark:

G(0) := {ψ ∈ G | ψ(q) = q}

Let now k be a positive integer. For any k-differentiable map f from a neighbourhood of q, the k-jet
of f is denoted J (k)

q (f). In coordinates, J (k)
q (f) consists of the coefficients of the k-th order Taylor

expansions of f aboutx. The higher-order isotropy subgroups are then given by:

G(k) := {ψ ∈ G(0) | J (k)
q ψ = J (k)

q id}

That is, the elements of G(k) fix the Taylor expansion of the deformation ϕ up to order k. The
definition naturally extends to finite numbers of landmarks, and the quotients Q(k) = G/G(k) can be
identified as the sets:

Q(0) = {(q1, . . . , qN) | qi ∈M}

Q(1) = {((q(0)
i , q

(1)
i ), . . .) | (q(0)

i , q
(1)
i , . . .) ∈M ×GL(d)}

Q(2) = {((q(0)
i , q

(1)
i , q

(2)
i ), . . .) | (q(0)

i , q
(1)
i , q

(2)
i , . . .) ∈M ×GL(d)× S1

2}

with S1
2 being the space of rank (1, 2) tensors symmetric in the lower indices. Intuitively, the space

Q(0) is the regular landmark space with information about the position of the points; the one-jet space
Q(1) carries for each jet information about the position and the Jacobian matrix of the warp at the jet
position; and the two-jet space Q(2) carries in addition the Hessian matrix of the warp at the jet position.
The momentum for Q(0) in coordinates consists of N vectors representing the local displacement of
the points. With the one-jet space Q(0), the momentum in addition contains d × d matrices that can be
interpreted as locally linear deformations at the jet positions [36]. In combination with the displacement,
the one-jet momenta can thus be regarded as locally affine transformations. The momentum fields for
Q(2) add symmetric tensors encoding local second order deformation. The local effect of the jet-particles
is sketched in Figure 7.

When the dissimilarity measure F is dependent not just on positions, but also on higher-order
information around the points, reduction by symmetry implies that optimal solutions for E will be
parametrized by k-jets in the same way as Q(0) parametrizesoptimal paths for E in the landmark
case. The higher-order jets can thus be used for landmark matching when the dissimilarity measure
is dependent on the local geometry around the landmarks. For example, matching of the first order
structure, such as image gradients, leads to first-order jets, and matching of local curvature leads to
second-order jets.
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Figure 7. With discrete image matching, the image is sampled at a regular grid Λh,
h > 0, and the image matching PDE (12) is reduced to an ODE on a finite dimensional
reduced space Q. With the approximation F (0) (13), the momentum field will encode local
displacement, as indicated by the horizontal arrows (top row). With a first order expansion,
the solution space will be jet space Q(1), and locally affine motion is encoded around
each grid point (middle row). The O(hd+2) approximation F (2) includes second order
information, and the system reduces to the jet space Q(2) with second order motion encoded
at each grid point (lower row).

5.5. Discrete Image Matching

The image matching problem can be discretized by evaluating the L2-difference at a finite number of
points. In practice, this always happens when the integral

∫
M
|I0 ◦ ϕ−1(x) − I1(x)|2dx is evaluated

at finitely many pixels of the image. In [36,38], it is shown how this reduces the image matching
PDE (12) to a finite dimensional system on Q when the integral is approximated by pointwise evaluation
at a grid Λh:

F (0)(ϕ) ≈
∑
x∈Λh

hd|I0(ϕ−1(x)− I1(x)|2 (13)

where h > 0 denotes the grid spacing. F (0) approximates F to order O(hd), d = dim(M). The reduced
space Q encodes the position of the points ϕ−1(x), x ∈ Λh, and the lifted Eulerian momentum field is a
finite sum of point measures p =

∑
x∈Λh

ax ⊗ δϕ−1(x). For each grid point, the momentum encodes the
local displacement of the point.

In [38], a discretization scheme with higher-order accuracy is in addition introduced with an O(hd+2)

approximation F (2) of F . The increased accuracy results in the entire energy E being approximated
to order O(hd+2). The solution space in these cases becomes the jet-space Q(2). For a given order of
approximation, a corresponding reduction in the number of required discretization points is obtained.
The reduction is countered by the increased information encoded in each two-jet. The momentum
field thus encodes both local displacement, local linear deformation and second order deformation; see
Figure 7. The discrete solutions will converge to solutions of the non-discretized problem as h→ 0.
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5.6. DWI/DTI Matching

Image matching is invariant with respect to variations parallel to the level lines of the images.
With diffusion weighted images (DWI) and the variety of models for the diffusion information (e.g.,
diffusion tensor imaging (DTI) [39], Gaussian mixture fields [40]), first or higher-order information can
be reintroduced into the matching problem. In essence, by letting the dissimilarity measure depend on
the diffusion information, the isotropy subgroup of the matching problem becomes smaller.

The exact form of the of DWI matching problem depends on the diffusion model and how Diff(M)

acts on the diffusion image. In [41], the diffusion is represented by the principal direction of the diffusion
tensor, and the data objects to be matched are thus vector fields. The action by elements of Diff(M) is
defined by:

ϕ · I(x) =
‖I ◦ ϕ−1‖
‖DϕI ◦ ϕ−1‖

DϕI ◦ ϕ−1 .

The action rotates the diffusion vector by the Jacobian of the warp, keeping its length fixed. Similar
models can be applied to DTI with the preservation of principle direction scheme (PPD, [42,43]) and to
GMF-based models [44]. The dependency on the Jacobian matrix implies that a reduced model must
carry first order information in a similar fashion to the one-jet space Q(1); however, any irrotational part
of the Jacobian can be removed by symmetry. The full effect of this has yet to be explored.

As in the case of image matching, the quotient can be identified with the orbit of the source data
under diffeomorphisms.

5.7. Fluid Mechanics

Incidentally, the equation of motion:

∂tmt + £u[mt] = 0 , ut = K ∗mt

is an eccentric way of writing Euler’s equation for an inviscid incompressible fluid if we assume
ut ∈ X(Rn) is initially in the space of divergence free vector-fields and K∗ is the Riemannian flat
map (which implies that mt and ut can be identified as functions on Rn) [45]. This fact was exploited
in [46] to create a sequence of regularized models to Euler’s equations by considering a sequence of
kernels, such that the operatorK∗ (viewed as a map to one-form densities) converges to a surjection onto
the annihilator gradient vector-fields (this is written as a projection onto divergence free vector-fields
in [46]). Moreover, if one replaces Diff(M) by the subgroup of volume preserving diffeomorphisms
Diffvol(M), then (formally) one can produce incompressible particle methods using the same reduction
arguments presented here. In fact, jet-particles were independently discovered in this context as a means
of simulating fluids in [47]. It is notable that [47] is a mechanics paper, and the particle methods that
were produced were approached from the perspective of reduction by symmetry without any knowledge
of the related work being done in image registration.
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In [48], one of the kernel parameters in [46], which controls the compressibility of the u, was taken
to the incompressible limit. This allowed a realization of the particle methods described in [47]. The
constructions of [48] are the same as presented in this article, but with Diff(M) replaced by the group
of volume-preserving diffeomorphisms of Rd. Velocity fields induced by first order jet-particles are
visualized in Figure 8.
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Figure 8. Velocity fields induced by first order incompressible jet-particles.

6. Discussion and Conclusions

The information available for solving the registration problem is in practice not sufficient for uniquely
encoding the deformation between the objects to be registered. Symmetry arises in both particle
relabelling symmetry that gives the Eulerian formulation of the equations of motion and in symmetry
groups for specific dissimilarity measures.

For landmark matching, reduction by symmetry reduces the infinite dimensional registration problem
to a finite dimensional problem on the reduced landmark space Q. For matching curves and surfaces,
symmetry implies that the momentum stays concentrated at the curves and surfaces allowing a reduction
by the isotropy groups of warps that leave the objects fixed. In image matching, symmetry allows
reduction by the group of warps that do not change the level sets of the image. Jet-particles arise from
smaller isotropy subgroups and, hence, larger reduced spaces Q(1) and Q(2) that encode locally affine
and second order information.

Reduction by symmetry allows these cases to be handled in one theoretical framework. We
have surveyed the mathematical construction behind the reduction approach and its relation to the
above-mentioned examples. As data complexity rises both in terms of resolution and structure, symmetry
will continue to be an important tool for removing redundant information and achieving compact
data representations.
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