
u n i ve r s i t y  o f  co pe n h ag e n  

Protection against Chlamydia trachomatis infection and upper genital tract
pathological changes by vaccine-promoted neutralizing antibodies directed to the VD4
of the major outer membrane protein

Olsen, Anja W.; Follmann, Frank; Erneholm, Karin Susanne; Rosenkrands, Ida; Andersen,
Peter

Published in:
Journal of Infectious Diseases

DOI:
10.1093/infdis/jiv137

Publication date:
2015

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Olsen, A. W., Follmann, F., Erneholm, K. S., Rosenkrands, I., & Andersen, P. (2015). Protection against
Chlamydia trachomatis infection and upper genital tract pathological changes by vaccine-promoted neutralizing
antibodies directed to the VD4 of the major outer membrane protein. Journal of Infectious Diseases, 212(6),
978-989. https://doi.org/10.1093/infdis/jiv137

Download date: 08. apr.. 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Copenhagen University Research Information System

https://core.ac.uk/display/269258965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1093/infdis/jiv137
https://curis.ku.dk/portal/da/publications/protection-against-chlamydia-trachomatis-infection-and-upper-genital-tract-pathological-changes-by-vaccinepromoted-neutralizing-antibodies-directed-to-the-vd4-of-the-major-outer-membrane-protein(704c4ba8-b2e4-4c2d-9eaf-cd3dd1804434).html
https://curis.ku.dk/portal/da/publications/protection-against-chlamydia-trachomatis-infection-and-upper-genital-tract-pathological-changes-by-vaccinepromoted-neutralizing-antibodies-directed-to-the-vd4-of-the-major-outer-membrane-protein(704c4ba8-b2e4-4c2d-9eaf-cd3dd1804434).html
https://curis.ku.dk/portal/da/publications/protection-against-chlamydia-trachomatis-infection-and-upper-genital-tract-pathological-changes-by-vaccinepromoted-neutralizing-antibodies-directed-to-the-vd4-of-the-major-outer-membrane-protein(704c4ba8-b2e4-4c2d-9eaf-cd3dd1804434).html
https://curis.ku.dk/portal/da/publications/protection-against-chlamydia-trachomatis-infection-and-upper-genital-tract-pathological-changes-by-vaccinepromoted-neutralizing-antibodies-directed-to-the-vd4-of-the-major-outer-membrane-protein(704c4ba8-b2e4-4c2d-9eaf-cd3dd1804434).html
https://doi.org/10.1093/infdis/jiv137


M A J O R A R T I C L E

Protection Against Chlamydia trachomatis
Infection and Upper Genital Tract Pathological
Changes by Vaccine-Promoted Neutralizing
Antibodies Directed to the VD4 of the Major
Outer Membrane Protein
Anja W. Olsen,1 Frank Follmann,1 Karin Erneholm,1,2 Ida Rosenkrands,1 and Peter Andersen1

1Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, and 2Section for Veterinary Reproduction and
Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark

The VD4 region from the Chlamydia trachomatis major outer membrane protein contains important neutralizing
B-cell epitopes of relevance for antibody-mediated protection against genital tract infection. We developed a mul-
tivalent vaccine construct based on VD4s and their surrounding constant segments from serovars D, E, and
F. Adjuvanted with cationic liposomes, this construct promoted strong immune responses to serovar-specific
epitopes, the conserved LNPTIAG epitope and neutralized serovars D, E, and F. Vaccinated mice were protected
against challenge, with protection defined as reduced bacterial numbers in vagina and prevention of pathological
changes in the upper genital tract. Adoptive transfer of serum and T-cell depletion experiments demonstrated a dom-
inant role for antibodies and CD4+ T cells in the protective immune response. Integrating a multivalent VD4 con-
struct into the sequence of the major outer membrane protein resulted in a protective and broadly neutralizing
vaccine. Our findings emphasize the important role of antibodies in protection against Chlamydia trachomatis.

Keywords. broadly neutralizing Ab; VD4; Chlamydia trachomatis; vaccine.

Chlamydia trachomatis is the causative agent of sexually
transmitted disease and eye infections. Worldwide, it is
estimated that 100 million persons are infected with
genital C. trachomatis [1]. The infection can be con-
trolled by antibiotic therapy, but the high prevalence
of asymptomatic cases suggests that disease control
requires an effective Chlamydia vaccine. There is accu-
mulating evidence that an ideal vaccine would need to
elicit both cell-mediated and humoral immunity; in
particular, the importance of their interplay is becom-
ing increasingly clear [2–5]. If both arms of the immune

system are promoted by a vaccine, the primary role of
neutralizing antibodies will be to reduce the initial in-
fectious load; once they are intracellular, remaining bac-
teria can be targeted by a bactericidal cell-mediated
immune (CMI) response.

The majority of preclinical vaccines evaluated medi-
ate protection predominantly through T cells with no
neutralizing antibodies [5–8]. Until now there has only
been convincing data on the effect of neutralizing anti-
bodies targeted to 3 surface-exposed antigens: Porin B
[9], polymorphic membrane protein D, [10] and, in par-
ticular, the major outer membrane protein (MOMP).
MOMP is highly immunogenic in humans and animals
and has been studied in detail as a vaccine candidate (as
a natively purified protein vaccine, as a recombinantly
expressed protein vaccine and as a DNA-vaccine) (re-
viewed by Farris and Morrison [5]). Vaccination with
MOMP has provided promising but unfortunately
also variable, results ascribed mostly to the fact that
the recombinant MOMP (rMOMP) immunogen does
not mimic the native structure of the protein [11].
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Therefore, although it clearly has potential, full-size MOMP
has so far not been a feasible vaccine candidate, and several at-
tempts have been made to construct a vaccine based on selected
regions rich in neutralizing target epitopes (eg, the variable do-
mains [VDs]) [12–17]. In particular, the VD4 region has at-
tracted interest, because it was shown to contain the highly
conserved species-specific epitope LNPTIAG embedded in the
central part of the variable region [18, 19]. Importantly, this
conserved epitope in the VD4 region can elicit a broadly
cross-reactive immune response able to neutralize multiple se-
rovars; among them, the most prevalent serovar (Sv) D, SvE,
SvF, and SvG [13, 20], and is nonconformational, in contrast
to other epitopes in MOMP. Previous attempts to construct
peptide vaccines representing the VD4 region generated anti-
bodies with some functional capability (measured by means
of in vitro neutralization), but this did not translate into in
vivo protective efficacy [13, 15–17, 21].

The objective of the current study was to analyze the poten-
tial of a vaccine promoted neutralizing antibody response to the
MOMP VD4 region. We demonstrate that a multivalent vaccine
based on VD4 segments from different serovars raises a high-
titered antibody response that neutralizes the most prevalent
serovars, reduces early C. trachomatis infection in the mouse
model, and prevents pathological changes.

MATERIALS AND METHODS

Cultivation and Harvesting of C. trachomatis
Chlamydia trachomatis SvD (UW-3/Cx; American Type Cul-
ture Collection [ATCC] VR-885), SvE (BOUR; VR-348B), SvF

(IC-Cal-3; ATCC VR-346), and SvG (UW-57/Cx) were propa-
gated in Hela 229 cells (ATCC) and purified as described else-
where [22]. After purification the pellet was resuspended
in sucrose-phosphate-glutamate (SPG) buffer and stored at
−80 ◦C. Serovar typing of the bacteria were confirmed by chro-
mosomal DNA extraction, polymerase chain reaction amplifi-
cation and sequencing of the gene, and flanking regions of
ompA. The inclusion-forming units (IFUs) of the batches
were quantified by titration in McCoy cells, and the protein
concentrations were determined by means of bicinchoninic
acid protein assay (Pierce).

Antigen and Fusion Protein Preparation Methods
Recombinant proteins (extVD4E, extVD4F, Hirep1, Hirep2,
CTH522 [Figure 1], and rMOMP) were produced as follows.
Based on the amino acid sequences (GenBank) with an added
N-terminal histidine tag, synthetic DNA constructs were codon
optimized for expression in Escherichia coli, followed by inser-
tion into the pJexpress 411 vector (DNA2.0). To avoid disulfide
bridge formation during recombinant production, all cysteines
were exchanged with serines. Purification was done essentially
as described elsewhere [23], and VD4292–308, VD4

E, and VD4F

(Figure 1A) were produced as synthetic peptides (GeneCust).
The 9mer biotinylated peptide library was produced by Mimo-
topes, and the 20mer peptides by GeneCust (Supplementary
Table 1).

Animal Protocol
Female B6C3F1 and C3H/HeNmice, 6–8 weeks of age, were ob-
tained from Harlan Laboratories and C3H/HeJ mice from The

Figure 1. Overview of the different VD4-based constructs. A, Sequences of the VD4-derived constructs used in the present study. The bar is a schematic
overview of the VD4 region; dark gray represents the conserved regions, and light gray the variable regions. In the serovar F and G sequences, the cysteine
has been replaced with a serine. B, Composition of fusion molecules.
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Figure 2. Fine specificity of the antibody response after vaccination with constructs representing variable length of the major outer membrane protein (MOMP)
VD4 region. A, B6C3F1 mice were immunized with the VD4292–308 peptide (n = 4), polypeptides covering the VD4 region (VD4

E [30 amino acids] and VD4F [31
amino acids]) (n = 4), or recombinant proteins that included the surrounding constant region (extVD4E [67 amino acids]) and extVD4F [68 amino acids]) (n = 4) or
full-length recombinant MOMP (rMOMP; n = 8). After vaccination, serum samples from immunized mice were pooled and diluted 1:200 and the fine
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Jackson Laboratory. The mice were housed under standard en-
vironmental conditions and provided standard food and water
ad libitum. The use of mice is guided by the regulations set for-
ward by animal protection committees and the Danish Ministry
of Justice and in compliance with European Community Direc-
tive 86/609.

Histopathology
Micewere anesthetized and euthanized by cervical dislocation. At
necropsy, the entire reproductive tracts were taken out and fixed
in formalin. After fixation, the tissue was processed and embed-
ded in paraffin according to standard procedures. Thereafter, 3–
4-µm sections were cut to include the uterine horns, oviducts,
and ovaries in the same section. The sections were mounted on
Superfrost glass (Hounisen, Denmark) and stained with hema-
toxylin-eosin. The sections were assessed blindly by a pathologist.

Immunization
Mice were immunized 3 times with 14 days between immuniza-
tions. The polypeptides were emulsified in cationic adjuvant
formulation 1 (CAF01) and administered simultaneously via
both subcutaneous and intranasal routes. The vaccines consist-
ed of 5 µg of antigen emulsified in 250 µg of dimethyldioctade-
cylammoniumbromide and 50 µg of trehalose-6,6-dibehenate
(CAF01). Control groups were naive mice or mice receiving
CAF01 alone without antigen. For intranasal infection, mice re-
ceived 1 × 106 IFUs of C. trachomatis SvD.

Chlamydia-Specific Cellular Responses
Splenocytes were isolated from 4 mice per group 2 weeks after
the last vaccination. Single-cell suspensions were prepared from
individual spleens. All cell cultures were grown in Nucleon mi-
crotiter plates (Nunc), as described elsewhere [8]. The amounts
of secreted interferon γ were determined using enzyme-linked
immunosorbent assay (ELISA) in readings from 4 individual
mice, as described elsewhere [24]. For fluorescence-activated
cell sorter analysis, splenocytes were stimulated for 1 hour
with 5 µg/mL Hirep1 at 37°C and 5% carbon dioxide and
subsequently incubated for 5 hours at 37°C with 10 µg/mL bre-
feldin A (Sigma-Aldrich). The intracellular cytokine staining
procedure was essentially as described elsewhere [25]. All anti-
bodies were purchased from BD Pharmingen or eBiosciences.

Measurement of Antibody Levels in Serum and Vaginal Washes
ELISA reactivity against the 9mer overlapping biotinylated pep-
tide panel spanning the extVD4 region of SvE, and SvF (Supple-
mentary Table 1) was investigated. Briefly, ELISA plates were

coated with streptavidin, incubated with biotinylated peptides,
blocked with skim-milk powder, and washed, and then the nor-
mal ELISA procedure was followed, as described elsewhere [8].
Vaginal wash samples were collected by flushing the vagina with
100 µL of sterile phosphate-buffered saline and treated with
Bromelain (Sigma). Antigen-specific immunoglobulin (Ig) G1,
IgG2a, and IgA were detected, as described elsewhere [8].

Neutralization Assays
In Vitro Neutralization Assays
The assay was performed essentially as described elsewhere
[26]. Briefly, HaK cells were grown to confluence in 96-well
flat-bottom microtiter plates. The Chlamydia stocks were dilut-
ed and mixed 1:1 with heat-inactivated and diluted serum. The
suspension was inoculated onto HaK cells in duplicates and in-
cubated for 24–48 hours. Inclusions were visualized by staining
with polyclonal rabbit anti-rCT043 serum, followed by Alexa
488–conjugated goat anti-rabbit immunoglobulin (Life Tech-
nologies). Cell staining was done with propidium iodide (Invi-
trogen). The results were calculated as the percentage reduction
in mean IFUs relative to control serum samples. A reduction of
≥50% relative to the control was defined as neutralizing.

In Vivo Neutralization
Two experiments were performed. First, C. trachomatis SvD
diluted to 8 × 107/mL in SPG buffer was mixed 1:1 with heat-
inactivated and sterile-filtered serum from Hirep1- and rMOMP-
vaccinated mice and control mice. After 30 minutes at 37°C, the
mice were infected with 10 µL of the inoculum (total, 4 × 105

bacteria per mouse). They were swabbed on days 3, 7 and 10
after infection, and IFUs were quantified, as described under
Vaginal Challenge and Vaginal Chlamydial Load.

Passive Transfer of Immune Serum
Serum samples were isolated from 18 (experiment 1) or 24 (ex-
periment 2) mice previously vaccinated 3 times with Hirep1/
CAF01 (experiment 1), and either Hirep1/CAF01 or rMOMP/
CAF01 (experiment 2). In both experiments, mice vaccinated
with CAF01 alone and naive mice were included. The serum
samples were heat-inactivated, sterile filtered, and transferred
intravenously and intraperitoneally to 6–8 mice. As controls,
a pool of mice receiving serum from control mice and naive
mice was used. Three days after serum transfer the mice were
challenged with C. trachomatis SvD and swabbed as described
under Vaginal Challenge and Vaginal Chlamydial Load. The re-
sults are shown as a pool of the 2 experiments.

Figure 2 continued. specificity of the immunoglobulin (Ig) G antibody response was studied using a panel of biotinylated overlapping peptides (9mer with
8–amino acid overlap) representing the extVD4 region from either serovar (Sv) E or SvF. The IgG antibody response or each peptide is depicted at amino acid
5 in each of the 9mer peptides and given as the optical density at 450–620 nm (OD450–620). B, In vitro neutralization of SvE and SvF. Serum samples pooled
for each group were titrated, mixed with a fixed concentration of bacteria, inoculated onto a HaK cell monolayer, and fixed, and inclusions were counted.
Dotted lines represent the reciprocal 50% neutralization titer.
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T-Cell Subpopulation Depletion
Mice were depleted of CD4+ and/or CD8+ T cells, essentially as
described elsewhere [8]. Two injections of 400 µg purified anti-
CD4, anti-CD8 (2 × 200 µg) or a mixture of CD4+ and CD8+

antibodies (400 µg of each) were injected at days 7 and 4 before
infection, followed by injections of 200 µg at day 1 before and
day 2 after infection. The CD4+ and CD8+ T-cell depletions
were verified by fluorescence-activated cell sorter analysis of pe-
ripheral blood mononuclear cells at day 1 after infection using a
fluorescein isothiocyanate–conjugated anti-CD4 antibody
(clone RM4-4) and a phycoerythrin-conjugated anti-CD8 anti-
body (clone 53-6; BD Biosciences).

Vaginal Challenge and Vaginal Chlamydial Load
At 10 and 3 days before C. trachomatis SvD challenge, the estrus
cycle was synchronized by injection of 2.5 mg of medroxyproges-
terone acetate (Depo-Provera; Pfizer). Six weeks after the final vac-
cination, the mice were challenged intravaginally with 4–8 × 105

IFUs of C. trachomatis SvD or 1 × 106 IFUs of C. trachomatis SvF.
Vaginal swab samples were obtained at 3, 7, and 10 days after
infection. Infectious load was assessed as described elsewhere
[8]. Inclusions were enumerated by fluorescence microscopy.
Culture-negative mice were assigned the lower cutoff of 4
IFUs per mouse.

Statistical Analysis
GraphPad Prism 6 software was used for data handling, analysis,
and graphic representation. Statistical analysis was performed
using the Kruskal–Wallis test followed by the Dunn’s post test
or the Mann–Whitney test.

RESULTS

Enhancing the Magnitude of the Immune Response to the
LNPTIAG Region by Optimizing the Length of the VD4 Region
The VD4 region and its surrounding membrane anchor are re-
ported to contain numerous T- and B-cell epitopes [27, 28].We
therefore analyzed the influence of including in the immuno-
gens different parts of this surrounding region on the specificity
and magnitude of the antibody response to the VD4 epitopes.
We tested peptides and proteins of increasing length and com-
pared the immune responses. Peptides representing the neutral-
izing LNPTIAG epitopes (VD4292–308: 17 amino acids) and the
complete VD4 region of SvE (VD4E: 30 amino acids) and SvF
(VD4F: 31 amino acids) were compared with recombinant pro-
teins representing extended VD4 regions (extVD4E: 67 amino
acids and extVD4F: 68 amino acids), which include the con-
served membrane anchoring residues (Figure 1A). Responses
were compared with responses to immunization with full-length
rMOMP. The antigens were administered in CAF01, a liposome
adjuvant, demonstrated elsewhere to induce a strong immune re-
sponse that balances the humoral and CMI response [29].

Postvaccination antibody responses were analyzed against the
VD4 region, using a biotinylated peptide library with panels of
overlapping peptides (9mer with 8–amino acid overlap) (Sup-
plementary Table 1). No specific antibodies were induced by
rMOMP, the VD4 epitope, or the peptide covering the complete
VD4 region, whereas the extVD4E region (67 amino acids) in-
duced a strong response that mapped to the LNPTIAG region
(Figure 2A) The extVD4F sequence also induced a response to
LNPTIAG but at a much lower level than the SvE construct. The
response against the LNPTIAG region correlated with the abil-
ity to neutralize a C. trachomatis SvE and SvF infection in vitro
(Figure 2B). No neutralizing antibody response was promoted
by rMOMP, the peptides representing the LNPTIAG epitope
or the VD4 region, whereas the extended constructs, especially
the extVD4E, induced high titers of neutralizing antibodies.

Broadly Neutralizing Antibody Responses and Protection
Against Vaginal Infection and Upper Genital Tract Pathological
Changes Promoted by a Fusion of the VD4 Region From Different
Serovars
To investigate whether it is possible to expand the recognition
pattern and include VD4 regions from multiple serovars, we
designed a molecule that incorporated the extended VD4 region
from SvD, SvE, and SvF into a single multivalent construct
(heterologous immuno-repeat 1; Hirep1). This construct was
very immunogenic and induced a strong and diverse response
directed to numerous B- and T-cell epitopes, in both the con-
served and specific regions of VD4 from SvE and SvF (Figure 3A
and Supplementary Table 1). In addition to interferon γ, the
T cells promoted by this construct expressed interleukin 2,
tumor necrosis factor α, and interleukin 17 in various combi-
nations, and polyfunctional T cells that expressed more than
one cytokine dominated the overall response. The antibody re-
sponse was characterized by IgG1/IgG2a antibodies in the
serum samples and relatively high levels of IgG1 and IgA in
the vaginal wash samples (Figure 3B and C). The antibody re-
sponse to Hirep1 efficiently neutralized SvD, SvE, and SvF,
which were represented in the construct (Figure 3D).

We continued by investigating and characterizing the Hirep1
protective efficacy in a genital C. trachomatis SvD challenge
model. We evaluated the influence of the infectious dose and
the strain of mice to allow detection of neutralizing antibodies
without excessive innate immune activation (Supplementary
Figure 1). The mouse strain B6C3F1 (C57Bl/6J × C3H/HeN)
and a dose of 4–8 × 105 IFUs per mouse were selected, because
the relatively low inoculum provided a protective window for
the monitoring of adaptive immunity found in mice with the
C3H background (Supplementary Figure 1), combined with
a strong response to the chlamydial MOMP VDs reported
elsewhere for mice with the C57Bl/6J background [16]. Mice
vaccinated with Hirep1/CAF01 had 100–200-fold reduced chla-
mydial shedding at days 3 and 10 after infection, compared with
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the control mice (Figure 4A). The same tendency was seen at
day 7, although at this point the protection did not reach stat-
istical significance compared with unvaccinated controls. The
early protection at day 3 was found against both SvD and SvF
genital challenge (Figure 4B).

The reproductive tracts were histopathologically assessed. In-
fected unvaccinated mice had substantial oviduct pathology,
whereas Hirep1-vaccinated mice had no pathological changes.
The pathological changes in the unvaccinated micewas character-
ized by moderate to severe lymphocyte infiltration of the oviduct
wall with dense filling of debris and neutrophils in the lumen of
the oviduct (pyosalpinx) (Figure 4C, top left panel). In the

affected oviducts, degenerative changes were found in the epithe-
lium, with blunting of villi and interspersed leucocytes. The mice
also had a very pronounced lymphocyte infiltration in the mes-
osalpinx and ovarian bursa (Figure 4C, top right panel). None of
these changes were seen in Hirep1-vaccinated mice. Mild to
moderate lymphocyte accumulation and glandular cysts were ob-
served in the uterine horns from mice in both groups.

Hirep1 Protection is Mediated Through Early Antibody and CMI
responses
To further investigate the relative role of neutralizing antibodies
and T-cell responses in the protective response observed in

Figure 3. Immune responses induced with a multivalent vaccine based on extVD4 from serovar (Sv) D, SvE, and SvF (Hirep1). A, Serum samples from 16
mice per group were pooled, and the fine specificity of antibody responses analyzed using the biotinylated peptide library. Insets show VD4-specific in-
terferon (IFN) γ responses; bars represent mean and standard errors of the mean for 4 mice. *P < .05 (Mann–Whitney test for comparison against peptide
responses in naive mice). B, Splenocytes from 4 mice were isolated, stimulated with Hirep1 and analyzed with intracellular flow cytometry. The frequency of
CD4+ T cells producing any combination of IFN-γ, tumor necrosis factor (TNF) α, interleukin 2 (IL-2), or interleukin 17 (IL-17) was analyzed using Boolean
gating. C, Serum samples (n = 16–18) and vaginal wash samples (n = 16) were serially diluted and added to Hirep1-coated plates and antigen-specific IgG1,
IgG2a, and IgA were analyzed by means of enzyme-linked immunosorbent assay. Individual points represent median optical density values (with interquar-
tile range) at each titration step. D, In vitro 50% reciprocal neutralization titers to SvD, SvE, and SvF (pool of serum from 16 mice) (for details, see Figure 2).
Abbreviations: Ig, immunoglobulin; OD450–620, optical density at 450–620 nm.
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the vaccinated animals, a group of mice was vaccinated with
Hirep1, rMOMP, or adjuvant alone. Serum samples from vac-
cinated and control mice were isolated, pooled within the group,
and adoptively transferred into naive recipient mice, followed
by challenge 3 days later. The transfer of serum from Hirep1-
immunized animals resulted in a 100-fold reduction in IFUs,
whereas serum from animals immunized with rMOMP showed
no protective effect (Figure 5A). The role of antibodies was also
confirmed by in vivo neutralizing experiments, in which C. tra-
chomatis SvD was preincubated with serum samples from vac-
cinated and control mice before challenge. Serum samples from
Hirep1-vaccinated mice almost completely ablated the ability of
C. trachomatis to establish a genital tract infection, whereas
serum samples from rMOMP-immunized mice had no influ-
ence on bacterial numbers (Figure 5B).

To further characterize the effector mechanism responsible
for the early protection (day 3), Hirep1-vaccinated mice were
depleted of CD4+ and/or CD8+ T cells before challenge (4 injec-
tions, at days 7, 4, and 1 before and day 2 after infection), and
protection was assessed at day 3 after infection. Hirep1 vaccina-
tion reduced the bacterial numbers almost 100-fold. Depleting
both T-cell subsets still reduced the number of bacteria approxi-

mately 10-fold compared with controls. The CD8+ T-cell deple-
tion had no influence on protection, but CD4+ T-cell depletion
reduced the protection to a level comparable to that in the
CD4+/CD8+-depleted group. Taken together, these observa-
tions confirm the importance of antibodies in the early protec-
tion promoted by Hirep1 vaccination but suggest that the CD4+

T-cell response also plays a role (Figure 5C).

VD4 Specific Broadly Neutralizing Antibodies Obtained by
Integrating a Multivalent VD4 Construct Into rMOMP
We continued by investigating whether the powerful neutralizing
ability of Hirep1 could be transferred to the MOMP molecule by
integrating the extVD4s from SvD, SvE, SvF, and SvG into the se-
quence of rMOMP. We hypothesized that by combining the neu-
tralizing antibodies against VD4 with the numerous protective
T-cell epitopes localized in the remaining part of rMOMP, we
would improve protection. First we designed a construct that in
addition to SvD, SvE, and SvF included also the extVD4 region
from SvG (Hirep2; Figure 1B). Compared with Hirep1, this
construct induced similar levels of protection and neutralizing
antibody titers (Supplementary Figure 2). After confirmation of
its biological activity, Hirep2 was integrated into a version of

Figure 4. Hirep1-induced protection and pathological changes after genital Chlamydia trachomatis challenge. A, B6C3F1 mice were vaccinated with
Hirep1 and 6 weeks later challenged with 4 × 105 inclusion-forming units (IFUs) of C. trachomatis serovar (Sv) D. Data are presented as log10 IFUs, and
each point represents the median number (and interquartile range [IQR]) recovered from vaginal swab samples at days 3, 7, and 10 after infection, from a
pool of 4 identically designed individual experiments (Hirep1, n = 36; controls, n = 40). *P < .05; ‡P < .001. Mann–Whitney test. B, Hirep1-vaccinated mice
were challenged with C. trachomatis SvD and SvF bacteria. The IFU values are displayed as scattered plots with the medians and IQRs depicted (n = 8–16
per group). Mann–Whitney test was used for comparison among groups. *P < .05; †P < .01. C, Histological sections of oviducts and ovaries from a naive
mouse (upper panels) and a Hirep1-vaccinated mouse (lower panels). The walls of the oviducts are denoted with double-headed arrows, the oviduct lumens
with asterisks, and the ovarian bursae with line segments. Abbreviation: Ov, ovary.
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rMOMP and truncated at the cysteine-rich N-terminus to facili-
tate recombinant production (rMOMP34–259-Hirep2: CTH522)
(for the design, see Figure 1). CTH522 was compared with
rMOMP in a genital SvD challenge experiment. Compared with

vaccination with rMOMP, CTH522 induced high levels of neu-
tralizing antibodies against the 4 serovars SvD, SvE, SvF, and
SvG (Figure 6A) and provided significant protection at both
early and later time points (Figure 6B).

Figure 5. The role of specific antibodies in protection promoted by Hirep1 and recombinant major outer membrane protein (rMOMP). A, Adoptive transfer
of protection against Chlamydia trachomatis serovar (Sv) D with Hirep1- and rMOMP-specific serum. Hirep1- and rMOMP vaccinated mice were bled, and
serum samples were isolated, heat inactivated, sterile filtered, and transferred to naive recipient mice 3 days before infection. Three days after transfer,
mice were challenged with 4 × 105 inclusion-forming units (IFUs) of C. trachomatis SvD. Data are presented as log10 IFUs, and each point represents the
median number (and interquartile range [IQR]) recovered from vaginal swab samples at days 3, 7, and 10 after infection (Hirep1, n = 16; rMOMP, n = 6;
controls, n = 31). Results represent a pool of 2 individual experiments. The Dunn’s multiple comparison test was used for comparisons among groups.
†P < .01. B, In vivo neutralization of SvD with Hirep1 and rMOMP-specific serum. C. trachomatis SvD was incubated with heat-inactivated serum samples
from vaccinated and control mice before infection (4 × 105 IFUs per mouse). In vivo neutralization was assessed by means of Chlamydia culture at days 3, 7,
and 10 after challenge. Data are presented as log10 IFUs, and each point represents the median number (and IQR). Results represent a pool of 2 individual
experiments. The Dunn’s multiple comparison test was used for comparison among groups *P < .05. C, Mice were depleted of CD4+ and CD8+ T cells by
injection of monoclonal antibodies (anti–mouse CD4 [clone GK1.5] and/or anti–mouse CD8 [clones YTS156 and YTS169]) at days 7, 5, and 1 before and day
2 after infection. Protection was assessed at day 3 after infection. Each point represents the number of IFUs recovered from vaginal swab samples, and lines
represent the median and IQR (n = 8). The Mann–Whitney test was used for comparisons among groups. *P < .05; †P < .01.
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DISCUSSION

This study was focused on the vaccine potential of a neutral-

izing antibody response against C. trachomatis infection. Our

first aim was to optimize an antigen molecule based on the

VD4 region by increasing the size of the variable VD4 segment

(containing the neutralizing linear LNPTIAG epitope), to a

molecule that includes T- and B-cell epitopes from the con-

served segments (extVD4s) [27, 28]. We showed that recombi-

nant full-length MOMP does not target the VD4 region and

that antibodies are non-neutralizing, in contrast to our opti-

mized constructs that induce robust levels of neutralizing anti-

bodies. This is in agreement with findings in a seminal study by

Su and Caldwell [13],which demonstrated that a 17 amino acids

VD4-derived peptide covering the LNPTIAG epitope needs T-

cell help, which could be provided by fusing with a T-cell epi-

tope. This important observation stimulated extensive research

wherein peptides from the VD4 region were used either alone,

fused to other regions such as VD1, or mixed with T-cell epi-

topes to potentiate the antibody response [13, 15–17, 21, 30]. All

these constructs generated antibodies with some neutralizing

ability, but, importantly they did not translate into in vivo pro-

tective efficacy against genital chlamydial challenge [13, 17].

Compared with these classic observations, our approach gives
rise to a response that differ in both magnitude and breadth of
the antibody response and by the fact that a strong T-cell re-
sponse is promoted in addition to the humoral response. We
make the important observation that the antibody response is
potentiated and expanded by combining closely related but dif-
ferent VD4 inserts into a single multivalent construct. The mul-
tivalent Hirep constructs based on VD4s from SvD, SvE, and
SvF promoted a strong antibody response that both amplified
the response to the LNPTIAG region shared by the inserts
and also increased the breadth of the response to include recog-
nition of several serovar-specific VD4 antibody epitopes, some
of which have been described elsewhere [20, 21]. Antibodies
have received renewed focus as mediators of protective immu-
nity against C. trachomatis infection. Although knockout and
depletion models have failed to demonstrate a significant role
of antibodies in the natural immune response during primary
infection [31], their involvement in protection against reinfec-
tion and as part of an adaptive acquired immune response is be-
coming increasingly clear [32–35].

Our findings demonstrate that when a high-titered neutraliz-
ing antibody response is obtained, immune serum samples
can adoptively protect recipient mice against a primary chal-
lenge. To our knowledge, this is the first time that an in vitro

Figure 6. In vitro neutralization titers and protection induced by vaccination. B6C3F1 mice were vaccinated with CTH522 (n = 16) or recombinant major
outer membrane protein (rMOMP; n = 16) (controls, n = 36). A, In vitro neutralization of serovars D, E, F, and G (for details, see Figure 2). B, Six weeks later,
the mice were challenged with Chlamydia trachomatis serovar D. Values represent median numbers of inclusion-forming units (IFUs) (with interquartile
ranges) recovered from vaginal swab samples at days 3, 7, and 10 after infection. The Dunn’s multiple comparison test was used for comparison among
groups. *P < .001.
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neutralization effect has been translated into in vivo protection
by vaccination, highlighting the importance of antibody-
mediated protection against this pathogen. To promote both
systemic and mucosal antibody responses, we chose a vaccina-
tion protocol wherein the mice were simultaneously vaccinated
subcutaneously and intranasally. Comparing this vaccination
strategy with the subcutaneous route, we observed increased
levels of local IgA in vaginal secretions, but not a statistically sig-
nificant difference between the 2 protocols, when we assessed
the level of neutralizing serum antibodies or protection against
genital challenge (results not shown). This, together with the
observation that adoptive transfer of antibodies can induce
early protection against challenge, suggests that systemic neu-
tralizing antibody is sufficient for genital tract protection in
our mouse model.

Importantly, the Hirep1 vaccine has a pronounced impact on
controlling the ascending infection and completely protects in-
fected mice against upper genital tract pathology (Figure 4).
This finding is in agreement with the classic observations that
adoptive transfer of a large amount of MOMP-specific mono-
clonal antibody can reduce pathology [36] and suggests that an-
tibody elimination of the infectious inoculum reduces the
bacterial numbers. Pathology as a readout has been the subject
of discussion in the mouse model using human strains for
challenge. A concern is that in the mouse model, C. trachomatis
infection may be eliminated predominantly by innate mecha-
nisms before the bacteria ascend to the upper part of the genital
tract, preventing a meaningful readout of adaptive immune re-
sponses and pathological changes [37].

In the present study we have therefore tested the influence
of the inoculating dose and strain of mice (Supplementary
Figure 1), and have used the B6C3F1 strain and a dose of 4–
8 × 105 IFUs per mouse throughout our studies to maximize
the “protective window” and minimize the contribution of in-
nate immune activation [38]. This model allows the monitoring
of early vaccine-promoted adaptive immunity, measured as a
reduction in both bacterial numbers and upper genital tract
pathological changes. Hirep1-vaccinated mice had significantly
less neutrophil infiltration in their genital tracts than control
mice, again supporting the notion that adaptive immunity
and not innate inflammation controls infection in vaccinated
mice. Clearly, the mouse model using Chlamydia muridarum
infection is a preferable model for evaluating Chlamydia path-
ogenicity in the upper genital tract, but for vaccine studies this
strain suffer from the major limitation that many of the antigens
differ from human serovars; for example, the neutralizing epi-
tope that is the subject of the present study is lacking.

Our depletion study suggests an important synergistic role of
CD4+ T cells promoted by the CAF01 liposomal adjuvant sys-
tem, in addition to the neutralizing antibody response. The
CMI response seen after CAF01 immunization is dominated
by multifunctional Th1/Th17 cells promoted by the C-type

lectin incorporated into the CAF liposomes, and this phenotype
seems independent of the choice of antigen [25, 39–41]. The
CD4+ T cells may have a direct effector function, as reported
for MOMP-specific Th1 cells [6], or may also accelerate the
early mucosal immune responses and IgA secretion [42]. The
Th17 response promoted by CAF01 has been suggested to be
important for the C. trachomatis protection promoted by vac-
cines based on this adjuvant [41], in support of the need for
a vaccine and an adjuvant, that promotes both CMI and humor-
al responses to a C. trachomatis vaccine.

Although clearly very susceptible to conformational changes,
the extVD4 from SvD, SvE, SvF, and SvG could be integrated
into the sequence of rMOMP (CTH522). This molecule benefits
from both the VD4 neutralizing epitopes and numerous T-cell
epitopes in MOMP [27, 28, 43–45]. CTH522 neutralized SvD,
SvE, SvF, and SvG, which represent up to 90% of the human
C. trachomatis prevalence [46–50], suggesting that a vaccine
based on this method could have a tremendous impact on the
global C. trachomatis epidemic.
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