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Individual variation and repeatability of methane production
from dairy cows estimated by the CO2 method in automatic
milking system

M. N. Haque†, C. Cornou and J. Madsen

Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Groennegaardsvej 2, DK-1870 Frederiksberg C, Denmark

(Received 20 August 2014; Accepted 7 April 2015)

The objectives of this study were to investigate the individual variation, repeatability and correlation of methane (CH4)
production from dairy cows measured during 2 different years. A total of 21 dairy cows with an average BW of 619 ± 14.2 kg and
average milk production of 29.1 ± 6.5 kg/day (mean ± s.d.) were used in the 1st year. During the 2nd year, the same cows were
used with an average BW of 640 ± 8.0 kg and average milk production of 33.4 ± 6.0 kg/day (mean ± s.d.). The cows were housed in
a loose housing system fitted with an automatic milking system (AMS). A total mixed ration was fed to the cows ad libitum in both
years. In addition, they were offered concentrate in the AMS based on their daily milk yield. The CH4 and CO2 production levels of
the cows were analysed using a Gasmet DX-4030. The estimated dry matter intake (EDMI) was 19.8 ± 0.96 and 23.1 ± 0.78
(mean± s.d.), and the energy-corrected milk (ECM) production was 30.8 ± 8.03 and 33.7 ± 5.25 kg/day (mean± s.d.) during the 1st

and 2nd year, respectively. The EDMI and ECM had a significant influence (P< 0.001) on the CH4 (l/day) yield during both years. The
daily CH4 (l/day) production was significantly higher ( P< 0.05) during the 2nd year compared with the 1st year. The EDMI
(described by the ECM) appeared to be the key factor in the variation of CH4 release. A correlation ( r = 0.54) of CH4 production was
observed between the years. The CH4 (l/day) production was strongly correlated ( r = 0.70) between the 2 years with an adjusted
ECM production (30 kg/day). The diurnal variation of CH4 (l/h) production showed significantly lower ( P< 0.05) emission during
the night (0000 to 0800 h). The between-cows variation of CH4 (l/day, l/kg EDMI and l/kg ECM) was lower compared with the
within-cow variation for the 1st and 2nd years. The repeatability of CH4 production (l/day) was 0.51 between 2 years. In conclusion, a
higher EDMI (kg/day) followed by a higher ECM (kg/day) showed a higher CH4 production (l/day) in the 2

nd year. The variations of
CH4 (l/day) among the cows were lower than the within-cow variations. The CH4 (l/day) production was highly repeatable and,
with an adjusted ECM production, was correlated between the years.
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Implications

Daily methane (CH4) production is different between
cows. CH4 production mainly depends on the feed intake,
which is related to the milk production. The variation of CH4
production remained even after the standardization of
the feed intake and milk yield. This animal variation can most
likely be used to select cows with low CH4 production as
a long-term mitigation approach. For the selection of
the correct low CH4 emitting cows, it is important that the
measured low emission can be repeated. This experiment

shows that the ranking of the cows can be repeated over
different years.

Introduction

The livestock sector represents a significant source
of greenhouse gas (GHG) emissions worldwide, generating
carbon dioxide (CO2), methane (CH4) and nitrous oxide
throughout the production process. This sector is often
the focus of study because of its large impact on the
environment. A recent report by Gerber et al. (2013) descri-
bed that the majority of CH4 emissions occurred from
the livestock sector as a result of enteric fermentation† E-mail: naha@sund.ku.dk
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and feed production. In the livestock sector, cattle are
the highest contributors of GHG emissions; the GHG
emissions from cattle account for 65% of the GHG emissions
from the livestock sector (4.6 Gt CO2 eq). Of the total
emissions, cattle emit the most enteric CH4, that is,
~77%, followed by the other domesticated species
(Gerber et al., 2013). Another consideration in addition
to environmental pollution is that between 2% and 12%
of the ingested gross energy is lost through CH4 emiss-
ion (Johnson and Johnson, 1995); this loss of energy
could potentially be used by the animals. The CH4 emissions
from the animals vary according to the level of feed
intake, type of carbohydrate, type of feed processing, addi-
tion of lipids, alteration of rumenal microflora
(Johnson and Johnson, 1995) and measurement techniques
(Vlaming et al., 2008). In addition, it can also vary as a result
of the genetic variation of the animals (Pinares-Patiño et al.,
2013). One of the earlier studies using a standard respiration
chamber reported a CV of 7% for within-animal variation for
CH4 production and of 7% to 8% for between-animal var-
iation (Blaxter and Clapperton, 1965). More recently, several
authors reported a CV of 4.3% for within-animal variation
and 17.8% for between-animal variation using open-circuit
calorimetry (Grainger et al., 2007). Using the SF6 technique,
Vlaming et al. (2008) mentioned a wider range of variation in
CH4 emissions for two different diets (6.91% to 10.09% for
within cow and 6.23% to 27.79% for between cow). More-
over, under grazing conditions, Lassey et al. (1997), Boadi
et al. (2002) and McNaughton et al. (2005) reported
between-animal variations of 11.5%, 15.5% and 25% CV,
respectively, using the SF6 technique. In a comparative study
using two different techniques, Grainger et al. (2007) men-
tioned a higher within-cow variation (CV = 19.6%) for SF6
techniques compared with the chamber technique (CV =
17.8%). To date, most studies have estimated the animal
variation in CH4 production, either by using the traditional
chamber technique or SF6 techniques, where handling and
confinement of the animals is required. A drawback of these
methods is that they might have an influence on the normal
metabolism of the animals. In this study, we assume that
the animal should be free from any influential factors to
understand individual variability in CH4 production. We
hypothesize that CH4 production resulting from animal var-
iation would be lower if the measurements are taken from
their natural environment. In the dairy industry, automatic
milking systems (AMS) reduce human involvement and
interactions with cows, thus allowing the cows to have free
movement. Therefore, under this condition, normal feeding
and milking behaviour as well as rumen metabolism and gas
production can be expected. The ‘CO2 method’, a newly
developed technique for CH4 estimation, was used in this
study. This method is non-invasive and measures the CH4
production from cows by keeping them in their natural
environment. The objectives of this study were (i) to inves-
tigate individual variation and CH4 production repeatability
measured in an AMS and (ii) to investigate the correlation of
CH4 production of individual cows during 2 different years.

Material and methods

Animals, experimental design and feeding
A total of 21 dairy cows with an average BW of 619±14.2 kg
and average milk production of 29.1± 6.5 kg/day (mean± s.d.)
were used in the 1st year. Among the total number of cows, 14
were primiparous and seven were multiparous in the 1st year.
The cows were in the same lactation stage, with an approx-
imate calving interval of 12 months. During the 2nd year, the
same cows were used, with an average BW of 640±8.0 kg and
average milk production of 33.4± 6.0 kg/day (mean± s.d.). The
cows were housed in a loose housing system that had adequate
ventilation and was fitted with an AMS. The study was con-
ducted without interfering with the feeding and management
planned by the farm. During both years, the measurements were
taken from the same cows in the same AMS. The experimental
period was 7 days in the 2nd week of May each year. The cows
were offered a total mixed ration (TMR) ad libitum (Table 1) in
both years. In addition to the TMR, they were offered concentrate
in the AMS based on their daily average milk production. The
TMR was allocated in the morning at ~0700 h, and at ~1500 h,
the remaining feed residuals were mixed andmoved closer to the
cow. A total of 57 cows were milked in the AMS; of these 57, 23
cows were common in both years. Among the common cows,
two cows showed abnormal milking behaviour. One cow had
just calved and only visited the AMS for 3 of the 7 days of
measurements. The other cow visited the AMS once per day and
was treated for lameness. These two cows were therefore
excluded from the analysis; thus, 21 cows were studied.

Gas measurement
The CH4 and CO2 production levels of the cows was analysed
using a continuous gas analyser, the ‘Gasmet DX-4030’
(Gasmet Technologies Oy, Helsinki, Finland), based on
Fourier transformed IR. The inlet filter of the Gasmet was
fitted on the feeding pen of the AMS to obtain concentrated
breath samples from individual cows. The breath samples
pass through the inlet filter and then through the Gasmet to
determine the concentration of CH4 and CO2. The measure-
ments were performed every 15 s over 24 h for
7 consecutive days during milking in the AMS. Each indivi-
dual cow visited the AMS at least two times per day (ranging
from 1 to 4, average 2.54). Before the first measurement, the
Gasmet was calibrated with standard gases to check
the accuracy of the measurements. The Gasmet was
disconnected for 10 min randomly during each measurement
day to obtain the barn concentration of CH4 and CO2. The
average of this concentration was used as a correction factor
for the entire experimental period to obtain the actual breath
concentration of CH4 and CO2. The measurements were
remotely monitored via the internet using TeamViewer.

Calculations
Identification numbers and the entrance and exit times of
each individual cow were recorded in a computer connected
to the AMS. These data were matched with the breath ana-
lysis data from the Gasmet. All of the calculations regarding
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the CH4 estimation were performed according to the CO2
method (Madsen et al., 2010). The protocol of the method is
described in the following three steps.
Step I: Calculation of the CH4 : CO2 ratio. The CO2 method

uses the measured CH4 : CO2 ratio from the breath sample
analysis of the individual cows. The average barn
concentrations of CH4 (23.2 and 25.8 ppm) and CO2
(495.8 and 625.5 ppm) were obtained during measurements
in the 1st and 2nd year, respectively. These concentrations
were subtracted from the exhaled concentrations to get the
corrected CH4 and CO2 (ppm) of the individual cows. The
data that were below 400 ppm for the corrected CO2 were
removed to avoid the influence of samples that contained a
very low concentration of CH4 and CO2 (ppm). The ratio
between CH4 and CO2 (CH4 : CO2) was thereafter calculated.
Step II: Calculation of the total CO2 production per day. To

calculate the total CO2 production from the individual cows,
it is necessary to first calculate the total heat production
(HP). The HP of the cows was calculated according to
equation (1) using the cows’ body mass, milk production and
number of days pregnant as described by CIGR (2002).
Thereafter, the total CO2 production per day was calculated
according to Pedersen et al. (2008), as shown in equation (2).
Step III: CH4 estimation. The amount of CH4 was calcu-

lated according to equation (3). This uses the CH4 : CO2 ratio

(described in step I) multiplied by the total CO2 production
per day (described in step II) and results in the amount of CH4
produced.
The concentrate intake in the AMS was measured indivi-

dually on a daily basis while the TMR intake was considered
to be a herd average. The total estimated dry matter intake
(EDMI, kg/day) was calculated by adding the individually
recorded concentrate dry matter intake (DMI) (kg/day) to the
corrected TMR dry matter intake (kg/day) using equation (4)
according to Kristensen and Ingvartsen (2003). In this case,
a supplementation rate of 0.5 was considered for the
concentrate intake. The actual energy-corrected milk (ECM,
kg/day) was calculated using equation (5), according to
Sjaunja et al. (1991). Standardized CH4 production and
CH4 : CO2 ratios were calculated at the adjusted 30 (kg/day)
ECM level according to equations (6) and (7).

HPðwattÞ ¼ 5:6 ´ BW0:75 + ½ðY ´ 22Þ + ð1:6 ´ 10�5 ´ P3Þ�
(1)

CO2ðLÞ ¼ HPU ´ 180 ´ 24 (2)

CH4ðLÞ ¼ CO2 ´
CH4

CO2
(3)

TMRDMIðkgÞ ¼ a + 0:5 b�cð Þ +d (4)

ECMðkgÞ ¼Y ´ ð0:383´milkfat + 0:242 ´milkprotein
+ 0:7832Þ=3:14 ð5Þ

Standardized CH4ðLÞ ¼ CH4 + 30�ECMð Þ ´q (6)

Standardized
CH4

CO2
ratio ¼ CH4

CO2
+ 30�ECMð Þ ´ s (7)

where a is the average TMR intake; b the average con-
centrate intake; c the concentrate intake of the individual
cows during the experimental periods; d the correction factor
for the lactation number; d = − 1.61 was used for first lac-
tation and d = 0.39 was used for the second and
subsequent lactations; HP the heat production of the ani-
mals; BW0.75 the metabolic BW of the animals; Y the milk
yield of the cows; P the number of days the cows were
pregnant; s the slope of the regression of CH4 : CO2 ratio as a
function of ECM in each year separately; q the slope of the
regression of CH4 as a function of ECM in each year sepa-
rately; HPU = heat producing unit HP

1000; 180 = L of CO2/HPU
per h; ECM the energy-corrected milk.

Statistical analyses
Data were analysed with linear mixed models using the lmer
function fitted by the restricted maximum likelihood from the
package ‘lme4’ (Bates and Sarkar, 2009) using R software
(R Development Core Team, 2013). An extension package
‘lmerTest’ was used to obtain the P value directly from the
lmer function (Kuznetsova et al., 2012). Individual 24-h mean
emissions were considered for the interpretation of the
results. The analyses focused on making inferences on the

Table 1 Feed allocation and nutrient composition of diet over the
2 years

Ingredients
1st year (DM,

kg/day)
2nd year (DM, kg/

day)

Total mixed ration
Rapeseed cake 1.6 1.3
Soybean decorticated 1.4 1.0
Clover grass silage 3.4 2.9
Maize silage 9.0 10.7
Ryegrass straw 0.6 1.4
Urea – 0.1
Beet pulp – 0.9
Vitamin mineral premix 0.2 0.2

Concentrate supplied in AMS
Concentrate 4.0 4.2

Nutrient intake1

Energy (MJ/kg DM)2 7.6 6.3
MEI (MJ/cow per day) 153.0 146.0
AAT (g/MJ) 13.0 16.0
PBV (g/kg DM) 5.0 8.0
Fatty acid (g/kg DM) 35.0 28.0
NDF (g/kg DM) – 342.1
Starch (g/kg DM) 212.3 199.1
Calcium total (g/day) 147.0 143.0
Total phosphorus (g/day) 84.6 78.3
Magnesium total (g/day) 58.2 56.0

AMS = automatic milking system; DM = dry matter; MEI = metabolizable
energy intake; AAT = amino acids absorbed in the small intestine; PBV =
protein balance in the rumen.
1Nutrient and energy values were calculated using the Danish feed stuffs table
(Møller et al., 2000).
2Net energy for feed utilization (Nørgaard et al., 2011).
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individual variation and repeatability of CH4 production
(l/day, l/kg EDMI and l/kg ECM). The models were fitted on
the yearly data subset. The BW, EDMI, ECM, parity and
days of pregnancy were included as fixed effects in the
primary model that was fitted with the maximum likelihood
method. Cows and the number of visits to the AMS
were included as random effects. The final model (equation
(6)) was confirmed by the stepwise elimination of
non-significant variables. The significance of the fixed effects
was assessed by F-ratio tests, and the significance of the
random effects was assessed by likelihood-ratio tests. Model
validations were performed with ANOVA based on the
Akaike Information Criterion. The model residuals were
checked for normality by visual inspection of qqplots. The
final model is:

yj ¼ μ +Xβj +Xγj + δj +Cj + εj (8)

where yj is the response variable y = (CH4 (l/day), CH4 (l/kg
EDMI), CH4 (l/kg ECM) and CH4 : CO2 ratio) of cow j and µ the
overall mean. The fixed effects are the Xβj = EDMI (kg/day)
of cow j; Yγj = ECM (kg/day) of cow j; δj = parity of cow j;
Cj = random effect of cow j and εj are the residual errors.
Model estimates were extracted using the glht function from
the ‘multcomp’ package (Hothorn et al., 2008). The CVs of
CH4 production between cows (CVbc) and within cow (CVwc)
were calculated from the variance components of the model
(equation (8)) using equations (9) and (10). The variance
components were defined as the ratio of the individual ran-
dom effect (σ2α) and the variance of the random error (σ2ε) to
the estimated mean ðxÞ.

CVbc ¼ σα
x

´ 100 (9)

CVbc ¼ σε
x

´ 100 (10)

The variance components from the same model (equation (8))
were used to obtain the repeatability (R) within a given year,
calculated as the proportion of between-animal variation with
respect to the total variance as:

R ¼ σ2α
σ2α + σ2ε

(11)

The differences of CH4 production between the 2 years were
assessed by the following model:

yij ¼ μ + λi +Xβij +Yγij + δj +Cj + εij (12)

where λi is the year of measurement with i = 1 : 2 years; Xβij the
EDMI (kg/day) of year i and cow j; Yγi the ECM (kg/day) of year i
and cow j; δj the parity of cow j; Cj the random effect of cow and
εij are the residual errors. The between-year repeatability (R2) of
CH4 production was calculated using the variance components of
the model fitted with EDMI (kg/day), ECM (kg/day) and parity as
fixed effects and the year of the measurements as the random
effect.
Yearly data subsets of the daily mean emissions during

milking were considered for the visualization of the diurnal

variation of CH4 production following the model (equation (13)).

yij ¼ μ + ∂i +Xβj +Yγj + δj +Cj + εij (13)

where μ is the overall mean; ∂i the hours of measurements in a
day with i = 1:24 h; Xβj the EDMI (kg/day) of cow j; Yγj the
ECM (kg/day) of cow j; δj the parity of cow j; Cj the random
effect of cow j and εij are the residual errors.

Results

Feed intake, milk and CH4 production in 2 years
BW (kg), milk production (kg/day), ECM (kg/day) and EDMI
(kg/day) were higher during the 2nd year compared with the
1st year (Table 2). The CH4 production (l/day) was positively
correlated with the ECM (kg/day) in both years (Figure 1a).
A correlation was observed between CH4 production (l/day)
and EDMI (kg/day) during the 1st year (Figure 1b). However,
CH4 production (l/day) and EDMI (kg/day) were not
correlated during the 2nd year (Figure 1b). The CH4
production (l/kg ECM) revealed a negative correlation with
the ECM (kg/day) in both years (Figure 1c). However, no
correlation was found when the amount of CH4 (l/kg EDMI)
was plotted against the EDMI (kg/day) (Figure 1d).

Variation of CH4 production in 2 years
CH4 production, along with its variability and repeatability,
were obtained from the fitted model (equation (6)) using the
yearly data subsets (Table 3). The daily production of CH4
(l/day and l/kg ECM) was significantly lower (P< 0.05) in the
1st year compared with the 2nd year. However, CH4 (l/kg
EDMI) was similar in both years. The between-cow variation
of CH4 emissions (l/day, l/kg EDMI and l/kg ECM) was lower
(CVbc = 8.8% to 9.1%) than the within-cow variation
(CVwc = 15.7 to 16.4) during the 1st year. The range of the
variation during the 2nd year was narrower (CVbc = 5.9 to
6.1 and CVwc = 8.6 to 9.1) compared with that of the
1st year. Similarly, variations of the CH4 : CO2 ratios were
lower during the 2nd year (CVbc = 6.2 and CVwc = 8.8)
compared with the variations during the 1st year (CVbc = 8.4
and CVwc = 15.9).

Table 2 BW, milk production and feed intake of the cows during the
2 years of measurement

Parameters 1st year 2nd year

BW (kg) 619.9 ± 14.2 640.0 ± 8.0
Milk yield (kg/day) 29.1 ± 6.5 33.4 ± 6.0
ECM (kg/day) 30.8 ± 8.0 33.7 ± 5.3
TMRI (DM, kg/day) 15.8 ± 0.5 18.9 ± 0.5
CI (DM, kg/day) 4.0 ± 1.0 4.2 ± 1.6
EDMI (kg/day) 19.8 ± 1.0 23.1 ± 0.8

ECM = energy-corrected milk; TMRI = total mixed ration intake; DM = dry
matter; CI = concentrate intake; EDMI = estimated dry matter intake.
Values indicated arithmetic means and standard deviations (mean ± s.d.).
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Correlation of CH4 production between 2 years
The individual mean emissions over 7 days were used to
establish the correlation of CH4 emissions between years. A
correlation (r = 0.54) was observed in the CH4 emission
between the 2 years in the actual ECM (kg/day) production
(Figure 2a). This correlation was increased (r = 0.70) when it
was calculated with an adjusted ECM production (30 kg/day)
(Figure 2b). The yearly difference of CH4 (l/day) in the actual
ECM (kg/day) production was more (P = 0.008) compared
with the difference in the adjusted ECM production
(P = 0.01). However, the CH4 : CO2 ratio was significantly
(P< 0.001) different between years in both the actual and
adjusted ECM (kg/day) production. The correlation of the
CH4 : CO2 ratio between years was slightly increased
(r = 0.80) in the adjusted ECM compared with the value
(r = 0.78) of the actual ECM production (Figure 2c and d).

Repeatability of CH4 production
The within-year repeatability (R) of CH4 production (l/day,
l/kg EDMI and l/kg ECM) was lower (0.35 to 0.37) during
the 1st year than in the 2nd year (0.40 to 0.41). The observed
repeatability between years (R2) was 0.51 to 0.45 for
the same parameters (Table 3). Likewise, the CH4 : CO2
ratio was more repeatable in the 2nd year (0.41) compared
with the observed R during the 1st year (0.34), whereas
the resultant R2 of the CH4 : CO2 ratio was 0.45 (Table 3).

Diurnal variation of CH4 production
The diurnal variations of CH4 (l/h) in 2 different years
are shown in Figure 3. During the 2nd year, the diurnal
variation indicated declining emissions between 0000
and 0800 h, with the lowest emission at 0800 h. The
emissions reached a peak at ~0900 h and continued
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Figure 1 Regression analysis of the CH4 production, ECM and EDMI of individual cows over the 2 years. The figure on the left-hand side (a and c)
displays CH4 (l/day and l/kg ECM) according to ECM (kg/day); whereas the right-hand side (b and d) plots CH4 (l/day and l/kg EDMI) according to EDMI
(kg/day). The r = Pearson’s correlation coefficient and P values indicate the significance of the correlation test. ECM = energy-corrected milk;
EDMI = estimated dry matter intake.

Table 3 Variation and repeatability of the CH4 production of the cows over 2 years

1st year 2nd year

Parameters Estimates1 CVbc (%) CVwc (%) R Estimates1 CVbc (%) CVwc (%) R R2

CH4 (l/day) 445.50 8.80 15.67 0.36 569.88 5.88 8.60 0.41 0.51
CH4 (l/kg EDMI) 23.73 9.12 15.70 0.37 23.70 6.01 8.57 0.41 0.49
CH4 (l/kg ECM) 14.86 8.96 16.36 0.35 17.10 6.10 9.05 0.40 0.45
Ratio 0.08 8.38 15.94 0.34 0.09 6.22 8.78 0.41 0.45

CVbc = coefficient of variation for between-cow variation; CVwc = coefficient of variation for within-cow variation; R = repeatability within a year; R2 = repeatability
between the 2 years; EDMI = estimated dry matter intake; ECM = energy-corrected milk; Ratio = CH4 and CO2 ratio.
1Estimates from the model.

Individual variation of CH4 production in dairy cows

5



with the same magnitude up to 1600 h. The CH4 production
at this time ranged from 24 to 27 l/h. After 1600 h, the
emissions declined. During the 1st year, a sudden drop in
CH4 (l/h) was observed at 1200 h. However, the rest of the
hours followed a similar pattern, with more variable emis-
sions over time.
When the CH4 emissions (l/h) were aggregated into time

intervals (0000 to 0600 h = night; 0601 to 1200 h=morning;
1201 to 1800 h = afternoon and 1801 to 2359 h = evening),
a significant difference (data were not shown) was found over

6-h intervals (P = 0.01) during the 2nd year. However,
during the 1st year, the CH4 (l/h) emissions were not different,
except for lower emissions at night (P = 0.02).

Discussion

The results of this study have implications for the selection of
cows with low CH4 production for breeding purposes. CH4
production was quantified from 2 different years for the
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Figure 2 Methane production and CH4 : CO2 ratios of the individual cows over the 2 years. The left-hand side (a and c) shows the mean CH4 (l/day) and
CH4 : CO2 ratios at the actual ECM production; whereas the right-hand side (b and d) visualizes the standardized CH4 (l/day) and CH4 : CO2 ratios
calculated at 30 (kg/day) ECM production. The r = Pearson’s correlation coefficient and P values indicate the significance of the correlation test.
ECM = energy-corrected milk.
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Figure 3 Diurnal variation of CH4 release (l/h) over the 2 years of measurements.
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same cows in a commercial dairy farm that were provided a
similar diet in both years. Data from the same cows mea-
sured over 2 years were used to test different aspects of the
variability in CH4 production over time.

Key source of variation for CH4 production
Concentration of breath samples. The estimation of CH4
production using breath samples of cows indicates con-
siderable variation. The concentration of the breaths
collected by the inlet filter of the GASMETTM depends on the
nose position of the cows. More importantly, the
concentration of CH4 depends on whether the breaths and/or
the eructations come from the rumen. This study showed a
higher CV of the individual breath concentration (Figure 4a).
The same evidence was described by Haque et al. (2014a) in
a previous study. The substantial variation among the indi-
vidual breath concentrations are a reflection of normal
biological rhythms. In this connection, Garnsworthy et al.
(2012a) stated a certain variation in eructation frequency,
and the CH4 concentration in eructation is correlated with
the differences in daily CH4 emissions. Unlike the respiration
chamber technique, the non-invasive methods for CH4 esti-
mation considered samples that had ambient exposure.
Hence, some changes in the concentrations might occur. The
average concentration of CO2 in breath typically ranges from
30 000 to 50 000 ppm. To obtain a typical breath con-
centration through a sampling inlet is very sporadic and is
mostly influenced by the physiology of the animals and the
exposure of the breath samples to the ambient air. However,
trapping 2% to 3% of breath samples through the sampling
device was suggested to be sufficient for a reasonably pre-
cise CH4 estimation from ruminants (Madsen et al., 2010). In
terms of variation, the individual breath concentrations show
very large fluctuations that often mislead CH4 estimations.
As shown in Figure 4, the CV gradually decreased when the
visit-average (Figure 4b) or day-average (Figure 4c) data
were considered. Moreover, a CV of 10.2% was found using
period average data for 21 cows (Figure 4d). In this case,
there is no repetition of the measurements for individual
cows; hence, it is not possible to calculate within- and
between-cow variations. However, these data can still be
used to establish CH4 production with 4.5% precision
(s:e: ¼ CV ´ x=

ffiffiffiffiffiffiffiffiffi

n�1
p

, i.e., 0:102´ 570=
ffiffiffiffiffiffiffiffiffiffiffi

21�1
p

= 13) for
the diet when measuring for 7 days on 21 cows. To be precise
in the CH4 estimation through breath sample analysis using
the CO2 method, it is important to consider the mean of
several individual samples, such as the emission levels
per visit or per day.

EDMI and ECM production. Most of the studies agreed
that DMI is a key factor in daily CH4 emission
(Blaxter and Clapperton, 1965; Johnson and Johnson, 1995;
Grainger et al., 2007); a second key factor is determined by
the digestibility of the diet (Blaxter and Clapperton, 1965;
Johnson and Johnson, 1995) and the amount of concentrate
or lipid supplement (Beauchemin, 2009). In this study, the
EDMI and ECM had a significant influence on CH4 yield

during both years. The effect was most likely because the
increased amount of EDMI was mediated by the increased
body mass and ECM production. Therefore, in a commercial
farming situation, where recording individual DMI is rare, the
ECM can be used to explain the variation of CH4 production.
Higher ECM production and EDMI (kg/day) in the 2nd year
resulted in significantly (P< 0.05) higher CH4 (l/day). The CH4
(l/kg EDMI) was similar in both years, which supports the fact
that more CH4 is produced at a higher EDMI. In this con-
nection, Boadi and Wittenberg (2002) also mentioned that
64% of the variation in CH4 production is explained by the
DMI. The results of this study are also in line with several
recent findings where diet effects on CH4 emissions were
investigated (Beauchemin, 2009; Doreau et al., 2011). In
addition, Grainger et al. (2007) and Garnsworthy et al.
(2012b) described similar results where DMI was mentioned
as the primary determinant of CH4 production. Moreover, the
negative correlation between CH4 (l/kg ECM) and the
amount of ECM (kg/day) in this study revealed a reduced
amount of CH4 per unit of product in the same line as the
results previously described by Tamminga et al. (2007).

Levels of variation. In a typical feed evaluation study using a
respiration chamber, the animal variation of CH4 production
is minimized by a fixed amount of feed provided to the ani-
mals. Nevertheless, significant variation among the animals
remained. A large scale CH4 measurement study with 215
dairy cows (Garnsworthy et al., 2012b) indicated a between-
cow variation of 23% (CV), whereas the within-cow variation
was 6%. Based on the same data and using a mixed model,
the reported variance components were 18.9% between
cows and 11.5% within cows. Individual animal variations of
26.6% and 25.3% have been reported for dairy and beef
heifers with ad libitum and restricted feeding, respectively
(Boadi and Wittenberg, 2002). Blaxter and Clapperton (1965)
analysed the results of 23 investigations in which sheep were
offered the same amount of the same diet in contrast with
another 30 investigations in which the intake was scaled
according to the BW. In both analyses, the reported CV in
CH4 emission were 7% to 8% between animals and 5% to
7% within animals. The results from 16 calorimetric studies
in dairy cows with ad libitum feeding showed a wider range
of CV (3% to 34%) in CH4 production (Ellis et al., 2010). This
large variation in CH4 emission was due to the wide range of
DMI. Using a respiration chamber and SF6 tracer technique to
measure CH4 production from lactating dairy cows that were
fed ad libitum, Grainger et al. (2007) reported within- and
between-cow variations of 6.1% and 19.6% for SF6 techni-
ques and of 4.3% and 17.8% for the chamber techniques,
respectively. Furthermore, in a study using the SF6 technique
with four non-lactating dairy cows, Vlaming et al. (2008)
indicated within- and between-cow variations of 6.91% to
10.09% and 6.23% to 27.79% in two diets, respectively.
A wide range of individual cow variations of CH4 emissions
(22% to 67%) were reported in a recent study with 1964
cows from 21 commercial farms (Bell et al., 2014).
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In the current study, the observed variation in CH4 (l/day)
emissions between cows (5.9% to 8.8%) during 2 years is
lower than those reported earlier. The range of within-cow
variation (8.6% to 15.5%) over 2 years is considerably
wider than the values reported by Grainger et al. (2007)
and Garnsworthy et al. (2012b). However, the within-cow
variation in the 2nd year is in the same magnitude as
mentioned by Vlaming et al. (2008).
Compared to the standard respiration chamber

(Blaxter and Clapperton, 1965), the current study resulted
in similar levels of between-cow variations and higher levels
of within-cow variations. The slightly wider range of within-
cow variations that were reported in this study might be
linked to the greater range of EDMI and ECM production,
which are assumed to be the key determinants of CH4
production. However, it is also related with the breath
sampling length and frequency. In the present analysis only
1 day averages are used to calculate the variances, whereas a
previous study showed that 5 days measurements in the
AMS are needed to generate a precise CH4 estimation from
individual dairy cows (Haque et al., 2014a). Moreover,
continuous measurements resulting from 8 h of placing
sheep in individual pens revealed a reliable CH4 estimation
(Haque et al., 2014b). To achieve the precise variation in CH4
production, further study is needed to assess whether the
breath sampling length and frequency is enough.

Repeatability and correlation of CH4 production over 2 years.
Repeatability expresses the total variation that is repro-
ducible among repeated measures of the same subject
(Nakagawa and Schielzeth, 2010). In this study, the repeat-
ability of CH4 (l/day) emissions was 0.36 and 0.41 during the
1st and 2nd years, respectively. The repeatability of CH4
emissions in the 1st year was slightly lower presumably
because of the higher within-cow variation. This result is
similar to earlier findings in dairy cows and sheep (Vlaming
et al., 2008; Pinares-Patiño et al., 2013). In agreement with
the present study, the repeatability of the CH4 : CO2 ratio in
Holstein cows was 0.37 (Lassen et al., 2012), which is con-
sidered to be an effective measure for the estimation of CH4
production. Contrary to the present study, Pinares-Patiño
et al. (2011) reported very low repeatability (0.16) in sheep
where CH4 was measured using a chamber technique to rank
the animals according to their emission rate.
A substantial variation in CH4 (l/day) emissions was

observed among individual cows during the 2 years. This
variation was most likely caused by the differences in
the EDMI and ECM between the 2 years. However, with
the adjusted ECM production (30 kg/day), the CH4 emissions
were strongly correlated between the years. This correlation
of CH4 (l/day) is probably related to genetic variation,
that is, the heritability of CH4 production that was
previously mentioned by Lassen et al. (2012) and
Pinares-Patiño et al. (2013). The latter also stated that even
after adjustment for feed intake or ECM, the trait will be
repeatable. It is important to mention that cows normally
show varying levels of production that ultimately results in a

variable CH4 production. Therefore, the estimation of CH4 at
a adjusted/standardized production is necessary in a herd,
especially when ranking the cows based on CH4 production
over different time spans. The observed correlation of CH4
production from individual cows in the current study could be
used as an index in CH4 mitigation strategies by selecting
low-emitter cows for the breeding process. It is worth noting
that when dealing with a large number of animals for CH4
measurements, there will always be some individuals who
are different from others because of oestrus, lameness or any
other problems that affect normal feed intake, physiology,
body activity or metabolism; consequently, these result in
variations in CH4 production. Therefore, these factors should
be taken into consideration.

Diurnal variation. A sudden drop in CH4 emissions (l/h) at the
1200 h during the 1st year is surprising and is therefore not
comparable with other reports. This is most likely the result
of a fewer number of cows that visited the AMS at that
specific hour, consequently producing a lower number of
observations. However, the diurnal pattern of CH4 (l/h) in the
2nd year showed identical results to the results described
by Garnsworthy et al. (2012b). Some other methods for
CH4 estimation, such as polytunnels grazing animals
(Lockyer, 1997) and point source dispersion in grazing
animals (McGinn et al., 2011), showed a comparable diurnal
pattern. The diurnal variation is most likely linked with the
animal’s behaviour, digestive physiology and ambient con-
dition (Garnsworthy et al., 2012b), especially feeding beha-
viour. In the current study, feed was always available to the
cows, the daily feed allocation was distributed at ~0700 h,
and at ~1500 h, the remaining feed residuals were mixed
and moved towards the cow. This might lead to synchronized
feeding behaviour at a specific time. However, the milking
time was widely different for every cow in the AMS, where
milking was performed throughout a 24-h period. Therefore,
the diurnal pattern might be more related to the feeding time
rather than the milking time. The influence of the milking
time could be considered for other methods where milking is
performed, for example, twice a day at a fixed time.

Conclusions

On a herd average basis, daily CH4 production was
significantly higher in the 2nd year as a result of a higher
EDMI (kg/day). The CH4 emission per kg EDMI was similar
throughout the 2 years. The study indicates that the key
factor of variation in CH4 production is EDMI; this key factor
can also be described by ECM production. When measuring
for a short period of time, for example, a visit in the AMS or in
a single day, the variation in CH4 (l/day) emission between
cows was lower than within cows. The diurnal pattern of CH4
(l/h) production was influenced by the feeding behaviour of
the cows and was lowest from 0000 to 0800 h. The CH4
production (l/day) was 51% repeatable over the 2 years.
Individual cow variations over an average of 7 days show a

Individual variation of CH4 production in dairy cows
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strong positive correlation, especially when CH4 production
is standardized using ECM in both years. This relation of CH4
from individual cows between the 2 years shows a potential
opportunity for the selection of low CH4 emitter cows.
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