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Abstract. The Euclidean Steiner tree problem asks for a network of
minimum total length interconnecting a finite set of points in d-dimensional
space. For d ≥ 3, only one practical algorithmic approach exists for this
problem — proposed by Smith in 1992. A number of refinements of
Smith’s algorithm have increased the range of solvable problems a lit-
tle, but it is still infeasible to solve problem instances with more than
around 17 terminals. In this paper we firstly propose some additional
improvements to Smith’s algorithm. Secondly, we propose a new algo-
rithmic paradigm called branch enumeration. Our experiments show that
branch enumeration has similar performance as an optimized version of
Smith’s algorithm; furthermore, we argue that branch enumeration has
the potential to push the boundary of solvable problems further.

Keywords: Steiner tree problem, d-dimensional Euclidean space, exact
algorithm, computational study

1 Introduction

Given a finite set of n points N in a d-dimensional space Rd, (d ≥ 2), the
Euclidean Steiner tree problem (ESTP) asks for a network T ∗ of minimum length
interconnecting N . The vertices of T ∗ corresponding to points of N are called
terminals while possible additional vertices in T ∗ are called Steiner points. T ∗

necessarily is a tree, and is referred to as a Euclidean minimum Steiner tree
(EMST) for N . The ESTP in the plane (d = 2) has a history that goes back
more than two centuries [4], and is known to be NP-hard [9], even when the
terminals are restricted to lie on two parallel lines [16]. The generalisation to
more than two dimensions was introduced by Bopp [3] in 1879; more recent
mathematical treatments can be found in [10, 13]. The problem in Rd, d ≥ 3,
has applications to areas such as phylogenetics [6, 7, 5] and to the structure and
folding of proteins [18, 20].

An EMST T ∗ can be viewed as a union of full EMSTs whose terminals have
degree 1. Steiner points in T ∗ (in any dimension) have degree 3. The three
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incident edges at a Steiner point are co-planar and each pair meets at an angle
of 120o. These degree conditions imply that full EMSTs spanning k terminals,
1 ≤ k ≤ n, have k − 2 Steiner points.

The first exact algorithms for the ESTP in the plane (R2) were based on
the following common framework [12]. Subsets of terminals are considered one
by one. For each subset, all its full EMSTs are determined and the shortest is
retained. Several tests are applied to these retained full EMSTs to decide if they
can belong to an EMST for N . Surviving full EMSTs are then concatenated in
all possible ways to obtain trees spanning N . The shortest of them is T ∗.

The main bottleneck in this approach is the generation of full EMSTs. It has
been observed [24] that substantial improvements can be obtained if full RMSTs
are generated simultaneously across various subsets of terminals. Very powerful
geometrical pruning tests identifying non-optimal full EMSTs can then be ap-
plied not after but during their generation. As a consequence of this speed-up,
the concatenation of full EMSTs became a bottleneck of the EMST compu-
tation. A remedy was based on the observation that the concatenation of full
EMSTs can be formulated as a problem of finding a minimum spanning tree
in a hypergraph with terminals as vertices and subsets spanned by full EM-
STs as hyperedges [21]. In practice, this problem can be solved efficiently using
branch-and-cut techniques. The dramatic improvements of both the generation
and concatenation of full EMSTs led to the development of GeoSteiner [22, 23,
25] which can routinely solve problem instances with thousands of terminals in
R2 in a reasonable amount of time. A similar methodology has been applied to
other metrics and generalisations [11, 15, 26, 27].

Significantly less improvement has been made on exact algorithms for the
problem in Rd, d ≥ 3. Currently, only one practical algorithmic approach exists.
It was proposed by Smith [19] in 1992. A couple of recent contributions [8, 14],
all based on Smith’s algorithm, have pushed the boundary of solvable problems
a little, but in practice it is still infeasible to solve problems for d ≥ 3 with more
than 17 terminals.

As observed by Fampa and Anstreicher [8], the bounds used in [19] do not
correspond to rigorous lower bounds on the solution values of these problems, but
are instead obtained from putatively near-optimal solutions. In addition, when a
node fails to fathom the algorithm has no means to estimate the objective values
associated with its potential children. As a result the terminal nodes are added
in a fixed order, even though varying the order has the potential to substantially
reduce the size of the branch-and-bound tree.

Our Contribution. In this paper we first describe and evaluate some im-
provements to Smith’s algorithm. Then we describe a novel exact algorithm, a
so-called a branch enumeration approach. The branch enumeration algorithm de-
viates significantly from Smith’s algorithm. One of the advantages of the branch
enumeration algorithm is that it is possible to apply stronger pruning tests early
in the enumeration, e.g. based on the notion of bottleneck Steiner distances. We
evaluate our new branch enumeration algorithm and our improved version of
Smith’s algorithm experimentally on a set of benchmark instances.
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GeoSteiner [22, 23, 25] in the Euclidean plane can be viewed as a branch
enumeration (to obtain a superset of full Steiner trees in the optimal solution)
followed by the concatenation of these full Steiner trees (using branch and cut to
solve the minimum spanning tree problem in a hypergraph). Prunning techniques
in GeoSteiner are extremely powerful and make it possible to efficiently prune
nonoptimal full Steiner trees. A branch enumeration algorithm has also been
suggested to compute Steiner minimum trees in Hamming metric space [1]. Our
approach to find Steiner minimum trees in high-dimensional Euclidean spaces is
similar. However, pruning techniques in the Hamming metric space seem to be
much stronger than in high-dimensional Euclidean spaces (but far from being as
strong as in GeoSteiner when applied to the problems in the Euclidean plane).

Organisation of the Paper. In Section 2 we present some preliminaries on
the ESTP. Smith’s algorithm is introduced in Section 3. Its improvements are
discussed in Section 4. Then in Section 5 we describe the branch enumeration
algorithm. Computational results are presented in Section 6, and concluding
remarks are given in Section 7.

2 Preliminaries

Consider a tree T in Rd that interconnects a set N of n points. We assume that
T consists of a set of vertices (a superset of N) and a set of edges (straight line
segments) connecting pairs of vertices. The length of T , denoted by |T |, is the
sum of its edge lengths. The length of an edge (u, v) connecting points u and v
is denoted by |uv|. The given points of N are called the terminals, and the other
vertices, if any, are called Steiner points (see Fig. 1). The ESTP is to determine
the shortest tree T ∗ for N . Steiner points in T ∗ have degree 3 while terminals
have degree at most 3. Any tree satisfying these degree constraints is called a
Steiner tree for N .

1

2

3

4
5

1 2 3 4 5

Fig. 1: The EMST of five terminals in R2. The terminals are shown as filled black
circles, and the Steiner points are shown as smaller red circles. The topology T ∗
of T ∗ is shown to the right. Terminal 4 is connected to a Steiner point by a
zero-length edge and therefore the Steiner point overlaps with terminal 4.

A Steiner topology T of a Steiner tree T for N is a specification of the inter-
connections in T , disregarding the positions of its vertices. Any Steiner topology
can be transformed into a full Steiner topology (FST) where all terminals have
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degree 1. If T has a terminal t adjacent to two vertices v1 and v2, a new Steiner
point s connected to t, v1 and v2 is added. If T has a terminal t adjacent to
three vertices v1, v2 and v3, a pair of Steiner points s1 and s2 is added. Steiner
point s1 is connected to s2, v1 and t. Steiner point s2 is connected to s1, v2 and
v3.

The shortest Steiner tree for a given topology, T , is called a relatively min-
imal tree (RMT) of T . It always exists and is unique [12]. Its Steiner points
may overlap with terminals and with other Steiner points because of zero length
edges. Clearly, T ∗ is an RMT for its FST T ∗. Unfortunately, T ∗ is not known
beforehand. Unless P=NP, the only feasible way to find it seems to be the enu-
meration of all FSTs, the determination of their RMTs and the selection of the
shortest one as T ∗.

The bottleneck edge between two terminals ti and tj of N is the longest edge
on the path from ti to tj in the minimum spanning tree of N . The length of the
bottleneck edge between ti and ti is referred to as the bottleneck distance and is
denoted by β(ti, tj). Bottleneck distances can be determined in polynomial time
in a preprocessing phase. It is well-known [12] that no edge on a path between
a pair of terminals ti and tj in the EMST can be longer than β(ti, tj).

Consider a FST T for N . Let s be any of its Steiner points. Let ri, rj and
rk denote its adjacent vertices. When s is deleted, T breaks into three rooted
binary trees or branches Bi, Bj and Bk rooted at ri, rj and rk, respectively, see
Fig. 2. Note that roots have degree 2 unless they are terminals. Furthermore
the branches are disjoint in the sense that they do not share any terminals. The
depth of a terminal in a branch is the number of edges separating it from the
root of the branch.

Consider the FST Ti obtained by splicing away a non-terminal root ri of Bi

and connecting its adjacent vertices with each other. For notational convenience,
let RMT(Bi) denote RMT(Ti). Similar splicing away can be applied to non-
terminal roots of Bj and Bk.

A pair of disjoint branches Bi and Bj rooted at respectively ri and rj can
be combined into a branch B = Bi ⊕ Bj by adding a new Steiner point r as a
root of B adjacent to ri and rj .

A triplet of disjoint branches Bi, Bj and Bk rooted at respectively ri, rj and
rk can be combined into a FST T = Bi⊕Bj⊕Bk by adding a new Steiner point
r adjacent to ri, rj and rk.

A new algorithm based on the enumeration of branches rather then the enu-
meration of FSTs for N will be described in Section 5. Root splicing will be used
to prune branches that cannot be in the FST T ∗ of the EMST T ∗ of N . Disjoint
triplets of the remaining feasible branches (whose union spans N) will generate
feasible FSTs of N , including T ∗.

3 Smith’s algorithm (Smith)

Smith’s algorithm [19] enumerates FSTs of N . RMTs are then determined for
each such FST. The shortest RMT encountered is an EMST T ∗ of N . The
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Fig. 2: Left: A FST that has been split in 3 branches Bi, Bj , and Bk by removing
the Steiner point s. Right: The RMTs of each branch.

enumeration of FSTs is achieved by the following expansion procedure. Terminals
are assumed to be in some fixed order t1, t2, . . . , tn. Assume that a FST Tk for
t1, t2, . . . , tk, 3 ≤ k < n, is given. Note that only one FST exists for k = 3.
Expand Tk into 2k−3 FSTs, each with k+1 terminals, by inserting a new Steiner
point sk−1 into every edge e of Tk. In each expanded FST, sk−1 is adjacent to
tk+1 and to the two vertices of e. This expansion process stops when k = n. It
can be shown that every FST of N corresponds to exactly one unique sequence of
such expansions. As described, the FSTs are generated in a breadth-first fashion.
However, in order to obtain RMTs for all n terminals as quickly as possible, FSTs
in [19] are generated in the best-first manner.

Given a FST T ofN , arbitrary initial positions are assigned to its n−2 Steiner
points. These positions are then recomputed iteratively by solving a system of
d(n − 2) equations with d(n − 2) unknowns (corresponding to the locations of
Steiner points). It can be shown [19] that the length of the tree reduces with
each iteration and converges to RMT(T ). The iterative procedure terminates if
edges meet at Steiner points at angles within the interval [2π/3 − ε, 2π/3 + ε]
for an arbitrarily small constant ε > 0. The reader is referred to [17] for the
justification that a good approximation on the angles gives a good approximation
of the length.

This iterative procedure can also be applied during the expansion process. Let
Tk be a FST spanning k terminals, 3 ≤ k < n. Determine RMT(Tk). Suppose
that it is not shorter than the shortest RMT of all n terminals encountered
so far. The expansion of Tk can be stopped since any such expansion can only
increase the lengths of RMTs of expanded FSTs. This algorithm will be referred
to as Smith.

Two improvements for Smith have previously been suggested. Fampa and
Anstreicher [8] used a conic formulation for finding a lower bound on a particular
topology that eliminates the need to explicitly compute RMTs of children in the
branch-and-bound tree. This was used to tighten lower bounds and guide the
search. In the result-section we denote this method Smith-Fampa. Laarhoven
and Anstreicher suggested a series of geometric criteria based on Voronoi-regions,
bottleneck distances and lune-properties that could be used to discard partial
topologies. Additionally they suggested exploring terminals starting with the
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one furthest from the point set centroid and going toward the center. In the
result-section we denote this method Smith-Laarhoven.

4 Smith’s modified algorithm (Smith∗)

Smith’s algorithm adds terminals in fixed but arbitrary order when expanding
FSTs. If the low index terminals are close to each other, the corresponding FSTs
will have short RMTs. As a consequence, the expansion procedure will rarely
stop before k = n. It has been suggested to index the terminals by their non-
decreasing distance to their centroid [14]. We suggest a different distance-based
indexing. Terminals t1, t2 and t3 have to maximize the sum of their pairwise
distances. The terminal tk, k = 4, 5, . . . , n, is farthest away from t1, t2, . . . , tk−1.

To obtain a reasonable upper bound (needed to stop the expansion process),
the FST TM of the minimum spanning tree of N is determined. This is achieved
by introducing c−1 Steiner points at terminals of degree c, c ≥ 1. If c ≥ 3, there
are several ways of interconnecting these c−1 Steiner points with each other and
with the terminal. In the current implementation, an arbitrary interconnection
pattern is chosen. The length of RMT(TM ) yields a good upper bound, denoted
by UB, on the length of T ∗. Given such good upper bound, the expansion of
FSTs in the depth-first manner is no longer essential. Best-first expansion based
on the lower bound together with the distance-based ordering of terminals results
in the generation of fewer FSTs. This method is referred to as Smith∗.

The quality of lower bounds could be improved by using the conic formula-
tions from the Smith-Fampa-method [8]. While smaller number of FSTs would
be generated, the computation time increases significantly. Geometric criteria
based on the lune-properties combined with the bottleneck distances were also
used to speed up the expansion process by eliminating non-optimal FSTs [14].
However, the extra time spent on geometric computations makes the improve-
ments minimal when compared to the distance-based sorting of terminals. None
of these improvements are therefore included in the Smith∗ algorithm.

5 Branch enumeration algorithm (Branch)

The approach of GeoSteiner [22] seems at first sight to be applicable to the
ESTP in Rd, d ≥ 3. GeoSteiner has two phases. In the generation phase, full
Steiner trees for all FSTs of all subsets of terminals are generated. Naturally, full
Steiner trees that cannot be in T ∗ are pruned away. When FSTs are generated
across different subsets, there are large groups of them that are very similar. The
power of GeoSteiner rests partly in its ability to generate full Steiner trees with
similar FSTs in a common pass and partly in its ability to prune away partially
constructed FSTs. In the concatenation phase, GeoSteiner selects a subset of
not pruned full Steiner trees that span all terminals and has the minimum total
length. This problem can be formulated as the minimum spanning tree problem
in a hypergraph. While this problem is NP-hard, a branch-and-cut algorithm
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seems to be quite efficient to solve problem instances involving full Steiner trees
not pruned away during the generation phase.

Unfortunately, this is not the case. First of all, the generation of full Steiner
trees for all subsets of terminals in Rd, d ≥ 3, is much more difficult than in R2.
The determination of a full Steiner tree of a given FST with more than 3 termi-
nals requires solving high-degree polynomials [19]. As a consequence, iterative
numerical approaches are the only possibility. Such numerical approaches seem
to block the generation of full Steiner trees across various subsets of terminals
(unlike the R2 case). Finally, the geometrical non-optimality tests seem to be
much weaker than in R2.

While the generation of full Steiner trees is very challenging for d ≥ 3, the con-
catenation phase could be applied without any significant modifications. How-
ever, the lack of efficient pruning tests in the generation phase permits a huge
number of non-optimal RMTs to survive causing the branch-and-cut concate-
nation algorithm to choke. These congestion problems become more and more
serious as d grows.

The branch enumeration algorithm that is proposed here can be seen as a
compromise between the approach used by GeoSteiner (generation of full Steiner
trees of all subsets of terminals) and the numerical approach of Smith [19] de-
scribed in Section 3 (generation of RMTs for FSTs with n terminals). Rather
than enumerating RMTs for all FSTs for N , branches involving subsets of termi-
nals are generated. Consider a FST T of N . As already mentioned in Section 2,
removing a Steiner point breaks T into 3 branches. As will be seen in Subsec-
tion 5.3, every FST with n terminals contains a Steiner point whose removal
creates three branches with at most bn2 c terminals. This significantly reduces
the number of branches that need to be generated.

The branch enumeration algorithm consists of three phases (see Algorithm 1).
The preprocessing phase computes EMSTs for subsets with up to 8 terminals.
These EMSTs are used in subsequent phases to prune away non-optimal branches
and RMSTs. The second phase generates branches containing up to bn2 c termi-
nals. EMSTs obtained in the preprocessing phase together with RMTs of root
spliced branches are used to prune away branches that cannot be in T ∗. The
third phase generates FSTs with n terminals by concatenating triplets of dis-
joint branches. The iterative procedure described in Section 3 is then used to
determine their RMTs. The shortest RMT encountered is T ∗.

5.1 Preprocessing phase

The maximum size κ of subsets of terminals for which ESMTs are determined in
the preprocessing phase has a large effect on the number of branches that will be
pruned away during their generation described in Subsection 5.2. As branches of
up to size dn2 e are generated, setting κ = bn2 c ensures that for any branch it is
possible to find a disjoint preprocessed tree. However, choosing κ > 8 makes the
preprocessing phase computationally expensive. ESMTs are therefore generated
using Smith∗ for all terminal subsets of size 1, 2, 3, . . . , κ, stored in P, and finally
sorted by non-increasing lengths.
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Algorithm 1 Branch enumeration algorithm

Input: Set N of n terminals in Rd.
Output: ESMT T ∗ of N .
1: Preprocess: Determine EMSTs of all subsets of terminals of size up to

min{8, dn
2
e}, store them in P, and order them by non-increasing length.

2: Generate: Enumerate sets Bk of feasible branches with k terminals, k = 1 . . . bn
2
c

(pruning away non-optimal branches).
3: Concatenate: Combine triplets of disjoint feasible branches spanning N . Compute

corresponding RMTs and let T ∗ be a shortest one.

5.2 Generating branches

Branches are generated by increasing number of spanned terminals. Branches of
size k, k = 1, 2, . . . bn2 c, are stored in a set Bk. It will be shown in Subsection 5.3
that only branches spanning up to bn2 c need to be generated. A single terminal
is a branch containing 1 terminal and is therefore stored in B1. The branches
in Bk, 2 ≤ k ≤ bn2 c, are generated by combining branches in Bl with branches
in Bk−l, l = 1 . . . bk/2c. When l = k − l, care is taken to avoid generation of
duplicate branches.

There are several criteria that can be used to reject a branch Bk = Bl⊕Bk−l.
First of all, Bl and Bk−l must be disjoint. This can be efficiently verified by bit-
wise AND on bit-strings representing subsets of terminals. Similarly, construct-
ing the bitstring of Bk can be efficiently done using bitwise OR.

Assume next that ti is a terminal in Bl while tj is a terminal in Bk−l. Fur-
thermore, assume that the depth of ti in Bl is di and the depth of tj in Bk−l
is dj . Let d = di + dj + 2. Suppose that |titj |/d > β(ti, tj) (see Fig. 3). Then
Bk cannot be a part of T ∗ as it would contain an edge between ti and tj longer
than the bottleneck distance between ti and tj .

||

||

Fig. 3: A branch Bk with terminals ti and tj being d = 4 edges apart cannot
be a part of T ∗ if any of these d edges are longer than the bottleneck distance
β(ti, tj). This will certainly be the case if |titj |/d > β(ti, tj).
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B T+

Fig. 4: The length of RMT(B) added to the EMST of any subset of terminals
disjoint from T is a lower bound on |T ∗|

Finally, suppose that RMT(Bk) spans the set of terminals Nk and the EMST
T+ for some non-empty subset of N \Nk satisfies

|RMT(Bk)|+ |T+| ≥ UB

where UB is an upper bound on the length of T ∗ (see Section 4), then Bk cannot
be a part of T ∗. This is an immediate consequence of the following lemma and
the fact that UB ≥ |T ∗|.

Lemma 1 Let Bk be a branch of T ∗. Let Nk denote the terminals of Bk. Let T
+

be the EMST of a non-empty subset of N \Nk. Then |T ∗| ≥ |RMT(Bk)|+ |T+|.

Proof. If |Nk| = 1 then |RMT(Bk)| = 0 and the inequality trivially holds.
Assume that |Nk| ≥ 2. Let Bk = Bi ⊕ Bj with rk, ri and rj being the roots of
Bk, Bi and Bj respectively. Let T ∗k , T ∗i and T ∗j be the parts of T ∗ corresponding
to Bk, Bi and Bj respectively. Then

|T ∗k | = |T ∗i |+ |rirk|+ |rjrk|+ |T ∗j | ≥ |T ∗i |+ |rirj |+ |T ∗j | ≥ |RMT(Bk)|

where the first inequality is due to the triangle inequality and the second in-
equality is due to the fact that RMT(Bk) is the RMT of the FST obtained by
splicing away rk from Bk. Hence,

|T ∗| = |T ∗k |+ |T ∗ \ T ∗k | ≥ |RMT(Bk)|+ |T+|

since T ∗ \ T ∗k is a tree spanning N \Nk. ut

5.3 Concatenation of branches

Consider a FST T of a set N of n terminals, n ≥ 3. Let s be any of its n − 2
Steiner points. When s (and its three incident edges) are removed, T splits
into three branches Bi, Bj and Bk with respectively ni, nj , and nk terminals,
n = ni + nj + nk. Assume that ni ≥ nj ≥ nk.

Lemma 2 T has a splitting Steiner point s such that ni ≤ nj + nk.
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Algorithm 2 Generate branches containing up to dn2 e terminals

Input: Set N of n terminals in Rd.
Input: Sorted list P of EMSTs for small subsets of N .
Input: An upper bound UB on |T ∗|
Output: Bk, k = 1 . . . dn

2
e

1: B1 ← N
2: for k = 2 to dn

2
e do

3: Bk ← ∅
4: for l = 1 to b k

2
c do

5: for all Bl ∈ Bl do
6: for all Bk−l ∈ Bk−l do
7: if Bl and Bk−l have a common terminal then
8: Bl ⊕Bk−l cannot be a part of T ∗
9: end if

10: for all pairs of terminals (ti, tj), ti ∈ Bl, tj ∈ Bk−1 do
11: Let di and dj denote the depth of ti and tj in respectively Bl and Bk−l.

12: if
|titj |

di+dj+2
> β(ti, tj) then

13: Bl ⊕Bk−l cannot be a part of T ∗
14: end if
15: end for
16: Bk ← Bl ⊕Bk−l

17: Find the longest ESMT T+ ∈ P disjoint from Bk

18: if |RMT(Bk)|+ |T+| ≥ UB then
19: Bk cannot be a part of T ∗
20: end if
21: Add Bk to Bk.
22: end for
23: end for
24: end for
25: end for
26: return Bk, k = 1 . . . dn

2
e

Proof. Assume that ni > nj + nk for every Steiner points in T . Pick a Steiner
point s minimizing ni. Let s′ ∈ Bi denote the Steiner point adjacent to s in T . It
exists since ni ≥ 2. Let n′i, n

′
j , and n′k denote the number of terminals obtained

by splitting T at s′. Then n′i = nj + nk, n′j = x for some x, 0 < x < ni, and
n′k = ni − x. Hence, n′i, n

′
j , and n′k are all less than ni, contradicting the choice

of s. ut

A split of any FST with ni ≥ nj ≥ nk, n = ni + nj + nk and ni ≤ nj + nk is
called a canonical split.

Lemma 3 dn3 e ≤ ni ≤ b
n
2 c in a canonical split of any FST with n terminals.

Proof. To obtain the first inequality, observe that n = ni + nj + nk ⇒ n ≤
3ni ⇒ dn3 e ≤ ni. To obtain the second inequality, observe that ni ≤ nj + nk =
n− ni ⇒ 2ni ≤ n⇒ ni ≤ bn2 c. ut
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Lemma 4 An FST T with n terminals has exactly one canonical split unless
n is even and ni = n/2 in which case T has two canonical splits at adjacent
Steiner points.

Proof. Let Bi, Bj and Bk denote three branches of the canonical split at a
Steiner point s. Consider another Steiner point s′ ∈ T . Assume first that s′ ∈ Bj .
Let n′i ≥ n′j ≥ n′k denote the number of terminals in the branches of this split at
s′. Hence, n′i ≥ ni+nk and n′j+n′k ≤ nj . Now n′i ≥ ni+nk > nj ≥ n′j+n′k implies
that the split is not canonical. Similar argument applies if s′ ∈ Bk. Assume finally
that s′ ∈ Bi. Hence, n′i ≥ nj + nk. Now n′i ≥ nj + nk ≥ ni ≥ n′j + n′k implies
that this split is canonical iff n′i = n′j + n′k. This can happen if and only if
n′i = ni = n/2. Hence, n has to be even and s and s′ must be adjacent in T . ut

It is therefore only necessary to concatenate triplets of disjoint branches
(Bi, Bj , Bk) with n = ni + nj + nk, and whose individual sizes satisfy dn3 e ≤
ni ≤ bn2 c, ni ≤ nj + nk and ni ≥ nj ≥ nk. See Algorithm 3 for a detailed
description of the concatenation of triplets of branches.

Algorithm 3 Concatenate triples of branches to obtain EMST T ∗

Input: Sets of branches Bp, p = 1 . . . bn
2
c

Input: An upper bound UB on |T ∗|
Output: T ∗

1: |T ∗| ← UB
2: for i = bn

2
c to dn

3
e do

3: for j = min{i, n− i− 1} to dn−i
2
e do

4: k ← n− i− j
5: for all disjoint triples of branches Bi, Bj , Bk with Bi ∈ Bi, Bj ∈ Bj and

Bk ∈ Bk do
6: T ← RMT(Bi ⊕Bj ⊕Bk).
7: if |T | < |T ∗| then
8: T ∗ ← T
9: end if

10: end for
11: end for
12: end for
13: return T ∗

6 Computational experiments

Smith’s algorithm (Smith) described in Section 3, its modified version (Smith∗)
described in Section 4 and the branch enumeration algorithm (Branch) de-
scribed in Section 5, were implemented in C++ and run on an Intel Xeon X5550
2.67GHz CPU. All runs were stopped after 24 hours if they had not terminated
or if they consumed more than 10GB of memory.
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Fig. 5: Average CPU-times for Smith, Smith∗, and Branch on instances from
the Carioca set. Each column represents an average for each method run on five
problem instances with a specific set of terminals (n) and dimensions (d). All
values can be found in the appendix tables.

Figure 5 shows average CPU-times for the 40 Carioca instances for each
d = 3, 4, 5 from the OR-library [2] (Carioca set). Tables 3 to 5 in the appendix
shows the CPU times in more details as well as reported lengths of ESMTs and
the total number of RMTs generated by each of the three exact algorithms.
Smith∗ and Branch consistently outperform the original Smith algorithm3. In
a few instances Branch is faster than Smith∗ and for some large instances it
terminates using the prespecified time and memory while Smith∗ does not.

All three algorithms construct RMTs for various subsets of terminals in order
to obtain reasonable lower bounds permitting pruning of non-optimal configu-
rations as early as possible. In particular, Branch computes many such RMTs
with few terminals in its preprocessing and generation phases. Note, that the
very straightforward way that preprocessing is currently done, the RMT of a
particular topology may be computed multiple times. Additionally, the RMT
of two distinct branches may also be equivalent. Using appropriate look-up ta-
bles to avoid redundant RMT computations would no doubt speed up Branch
significantly.

3 For n = 14, d = 4, 5 the average of Smith is lower because only one fast run termi-
nated while Smith∗ and Branch succesfully solved several instances.
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Level Nothing Overlap Bottleneck Lowerbound Preprocessing

8 random terminals in unit cube

2 36 28 21 21 21
3 288 168 121 121 29
4 2 970 1 050 719 719 64
8 1 498 176 21 000 9 596 2 161 743

10 random terminals in unit cube

2 55 45 32 32 32
3 550 360 246 246 50
4 7 040 3 150 2 034 2 034 77
5 100 650 26 460 15 810 15 810 108
10 12 560 296 100 3 508 785 1 183 316 65 609 7 274

Table 1: The effect of different pruning criteria on the number of generated
branches/full topologies in Branch algorithm. The level of a branch is the
number of terminals it contains. ’Nothing’ is a theoretical approach where all
combinations of branches are used in enumeration, including those that overlap.
The Overlap-pruning discards all branches where the same terminal appears
twice. Bottleneck-pruning additionally uses the bottleneck criterion to prune.
Finally, Lowerbound and Preprocessing also calculates lower bounds and com-
pares them with the upper bound even in the branch generation phase. The
Preprocessing pruning strengthens the lower bound of each branch by adding
the lengths of disjoint optimal solutions from the preprocessing phase.

The main reason why Smith∗ and Smith were terminated was because they
consumed all memory of the machine. Even when switching to a depth-first-
search, the size of the branch-and-bound tree grows extremely large. Branch
never used more than 1GB of memory, but for large instances it was stopped
because it exceeded the computation time.

Table 1 illustrates the strength of the different pruning criteria used in
Branch. The ’Nothing’ column indicates the number of branches that are ex-
plored if all pruning is disabled. The ’Preprocessing’ column indicates the num-
ber of branches that are explored when all pruning methods are enabled. Using
RMTs of branches as a lower bound is essential to be able to prune in the final
concatenation phase (bottom rows in the table) but it is only when combined
with tighter lower bounds obtained from the preprocessing stage that branches
can be pruned while being generated.

Table 2 compares our implementation with the three previous algorithms that
solve the d-dimensional geometric Steiner tree problem. The values for Smith-
Fampa and Smith-Laarhoven are taken from [14]. For most instances both
Smith∗ and Branch are superior to the previously suggested algorithms.

Figure 6 illustrates the effects of changing the number of terminal subsets
that are preprocessed. The Branch algorithm was run on three point sets with
d = 3 and n = 12, 13, 14 and different values of κ. In all cases, setting κ = dn/2e
gives the lowest CPU time. Lower values of κ result in very fast preprocessing,
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n 10 10 10
d 3 4 5

Smith Nodes factor 1 1 1
Time factor 1 1 1

Smith-Fampa Nodes factor 33.4 26.9 50.8
Time factor 3.1 2.8 4.4

Smith-Laarhoven Nodes factor 3.5 6.1 3.7
Time factor 3.6 6.4 3.8

Smith∗ Nodes factor 19.9 17.5 6.6
Time factor 17.9 17.2 8.7

BranchEnumeration Nodes factor 12.0 6.5 5.4
Time factor 6.7 4.1 3.5

Table 2: Performance of known Steiner tree algorithms. Numbers indicate the
improvement factor in nodes explored and CPU-time over Smith’s original algo-
rithm.

but weak lower bounds that makes the concatenation phase explode. Larger
values of κ make the lower bound extremely strong, but forces us to spend a
lot of time on preprocessing. As a lot of redundant computations are performed
in the preprocessing phase, this indicates that speeding up preprocessing and
increasing κ might substantially improve the Branch algorithm.

κ

Ti
m

e
 (

s)

3 4 5 6 7 8 9 10

(a) CPU times for n = 12 and varying values of κ
broken down by algorithm phase.

n\κ 5 6 7 8

12 62 25 50 151

13 881 201 166 566

14 1734 467 320 1076

(b) CPU times for different
values of n.

Fig. 6: The CPU time in seconds for 3D instances from the carioca set where
preprocessing finds EMSTs for subsets up to different values of κ. No matter
what n is, setting κ = dn/2e gives the lowest CPU time.
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7 Conclusions

Two new exact algorithms for solving the Euclidean Steiner tree problem in
dimensions d ≥ 3 have been proposed. One is an extension of the seminal al-
gorithm by Smith while the other constructs branches in a bottom-up fashion.
Computational studies show that both methods are faster than the original but
the improved version of Smith’s algorithm is, in general, the fastest.

It is worth noting that the use of branches in the branch enumeration method
provides more specific information about partial solutions than the expanding
topologies in Smith’s algorithm. This property has the potential to expose differ-
ent and possibly stronger methods for fathoming partial solutions early. For in-
stance, Laarhoven and Anstreicher [14] present a combination of lune-properties
and bottleneck distances that could directly be employed and be used to prune
in the very first steps of the enumeration. In general our findings suggest a crit-
ical need to identify tighter lower bounds and geometric criteria for excluding
partial solutions in higher dimensions.
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A CPU-times and RMTs

Smith Smith∗ Branch
n |EMST | #RMTn Time #RMTn Time #RMTn Time

11 2.541 266461 12.45 35109 1.70 12220 4.22
11 3.546 381226 17.23 21112 0.95 21862 4.71
11 3.529 2666177 79.95 158970 8.27 148845 9.09
11 3.309 5009378 162.29 197303 9.75 265267 17.13
11 2.982 241340 7.88 13775 0.65 6542 4.11
12 3.875 860875 43.02 156264 7.85 475670 22.86
12 3.263 339825 10.53 246597 10.77
12 3.321 3936545 105.01 24732 1.26 166962 9.85
12 3.693 8125279 375.75 86517 4.31 45448 9.97
12 3.661 4365068 134.49 252754 13.07 302071 20.61
13 3.564 1961970 102.62 71398 3.87 73115 78.29
13 3.724 54616518 2991.85 3187216 181.23 5669553 314.43
13 3.626 20353108 1134.69 1821346 99.37 660947 98.19
13 3.565 14464700 682.77 230368 13.08 284987 83.95
13 4.367 9092731 478.79 527653 29.34 133436 73.21
14 3.473 12966341 616.46 1665175 87.64 2637107 264.94
14 3.892 107259083 4089.41 2314918 130.17 2687391 283.92
14 3.860 42394933 1502.56 1520088 94.81 1515837 233.63
14 3.605 11348798 519.91 9123679 492.08 1494147 215.48
14 3.230 5406607 280.13 2487723 149.13 954247 189.22
15 4.665 47707291 1998.43 2130561 2446.88
15 4.055 10503611 452.01 2147076 2188.43
15 3.770 67485229 3732.51 13968282 821.38 1228642 1734.18
15 4.103 3413750 183.09 1361275 1385.96
15 4.139 94372427 5567.39 2940214 103.08 1586122 1805.75
16 4.179 13948310 5160.67
16 3.786 759350882 40671.94 1584348 108.33 5949149 3151.75
16 3.552 1221022 76.94 157898 8.75 212651 2830.75
16 4.268 53914726 11954.47
16 4.112 4115230 229.24 174497 4357.57
17 4.512 43870843 18104.04
17
17 4.386 90512048 5944.10 40448925 16745.82
17 4.591 14748128 6422.63 104393953 33863.29
17 4.611 45414606 2651.16 27710754 15807.81
18 4.308 10114736 14975.10

Table 3: Results for 40 R3 instances from the Carioca set (OR-library). |EMST |
is the length of the ESMT, #RMTn is the number of RMTs spanning all n ter-
minals, CPU-times are given in seconds. Runs were terminated if not completed
within 24 hours or if more than 10GB of memory was consumed.
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Smith Smith∗ Branch
n |EMST | #RMTn Time #RMTn Time #RMTn Time

11 4.196 2653541 106.21 84562 4.53 129898 11.96
11 4.572 1577114 60.15 238176 12.41 137842 12.73
11 4.400 6866738 269.13 933794 43.62 1066283 42.54
11 4.467 2179711 80.26 249430 12.61 372108 22.56
11 3.810 5401750 204.54 651595 34.65 742649 47.12
12 4.499 1358219 77.01 868184 45.58 718526 33.83
12 4.108 2844281 96.36 163953 8.20 485954 30.64
12 4.457 6394703 361.40 689008 40.31 1951142 78.97
12 3.956 2941309 106.91 410684 22.36 1664688 106.03
12 4.878 2927978 99.89 3107617 173.44 2539988 134.24
13 4.608 4217958 261.24 5952932 360.57 573853 167.14
13 4.954 10816253 667.42 2000521 118.75 1448689 185.54
13 4.682 7607968 458.00 6674205 400.90 926393 137.94
13 4.370 138575435 7650.75 1732209 97.52 689137 127.59
13 5.714 219847871 13005.2 14141777 848.55 13504454 743.19
14 4.695 30353322 1324.98 10853721 661.23 8911065 690.57
14 5.855 552626254 32571.56 698994929 45412.74
14 5.380 21074819 1298.95 101160633 6358.15
14 5.150 108992640 6501.49 69683339 4679.52
14 4.724 69179844 3851.82 28554566 1764.20 18667881 1276.67
15 6.368 193164286 11463.78 24916803 4768.98
15 5.450 50261733 2746.36 15900685 3876.42
15 5.481 687329526 41045.07 59948283 9698.79
15 4.899 68498588 9414.35
15 6.099 75309029 3427.54 33923065 7091.67
16
16 6.001 99524746 6506.57 66656972 19353.38
16 5.473 21102561 1544.40 60277544 15059.90
16 6.063 384038792 69976.54
16 6.057 392290942 21782.06

8
Table 4: Results for 40 R4 instances from the Carioca set (OR-library). |EMST |
is the length of the ESMT, #RMTn is the number of RMTs spanning all n ter-
minals, CPU-times are given in seconds. Runs were terminated if not completed
within 24 hours or if more than 10GB of memory was consumed.
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Smith Smith∗ Branch
n |EMST | #RMTn Time #RMTn Time #RMTn Time

11 6.041 22061862 798.89 1577566 88.65 1707972 93.84
11 5.296 2192475 102.07 487525 26.64 145065 14.43
11 5.469 7015527 283.44 183401 10.32 349738 16.26
11 5.669 1824529 65.00 180453 10.30 113892 12.79
11 5.409 9175378 414.81 2558029 149.60 1113385 56.13
12 6.172 16493717 707.46 6253602 395.81 19205551 888.96
12 6.367 117516757 7541.55 17115895 1068.84 36061327 1750.61
12 5.230 41428379 2607.68 13446000 828.73 7925996 332.07
12 5.788 88731048 5367.68 10167397 635.79 18831564 968.08
12 5.148 9519295 414.74 384853 22.00 480960 34.68
13 5.913 500757535 32004.39 83968773 5243.99 58216112 3424.88
13 5.673 809127726 46876.66 64076185 4156.59 76465689 4063.95
13 6.675 320123483 21188.48 265897472 17061.29 54068880 3230.20
13 6.050 420308274 27330.79 131073163 8451.16 47090941 2688.19
13 5.554 125795826 8274.69 20432479 1377.52 7651268 535.88
14 6.855 592423734 39638.54 185109707 128554.4
14 7.009 74717871 15188.03 147314600 9759.52 135459705 9413.68
14 5.823 94747344 6556.67 369239423 23361.14
14 7.014 935384901 66659.38
14 6.578 844179767 55843.35 539736839 38110.09
15 6.389 211366906 25707.46
15
15 6.941 254261617 28765.72
15 5.588 242292152 15752.26 24793442 7022.37
15 7.015 115045511 16142.57

Table 5: Results for 40 R5 instances from the Carioca set (OR-library). |EMST |
is the length of the ESMT, #RMTn is the number of RMTs spanning all n ter-
minals, CPU-times are given in seconds. Runs were terminated if not completed
within 24 hours or if more than 10GB of memory was consumed.


