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TECHNICAL NOTE Open Access

SNPest: a probabilistic graphical model for
estimating genotypes
Stinus Lindgreen1,2,3*, Anders Krogh1,2 and Jakob Skou Pedersen1,4

Abstract

Background: As the use of next-generation sequencing technologies is becoming more widespread, the need for
robust software to help with the analysis is growing as well. A key challenge when analyzing sequencing data is the
prediction of genotypes from the reads, i.e. correct inference of the underlying DNA sequences that gave rise to the
sequenced fragments. For diploid organisms, the genotyper should be able to predict both alleles in the individual.
Variations between the individual and the population can then be analyzed by looking for SNPs (single nucleotide
polymorphisms) in order to investigate diseases or phenotypic features. To perform robust and high confidence
genotyping and SNP calling, methods are needed that take the technology specific limitations into account and can
model different sources of error. As an example, ancient DNA poses special challenges as the data is often shallow and
subject to errors induced by post mortem damage.

Findings: We present a novel approach to the genotyping problem where a probabilistic framework describing the
process from sampling to sequencing is implemented as a graphical model. This makes it possible to model
technology specific errors and other sources of variation that can affect the result. The inferred genotype is given a
posterior probability to signify the confidence in the result. SNPest has already been used to genotype large scale
projects such as the first ancient human genome published in 2010.

Conclusions: We compare the performance of SNPest to a number of other widely used genotypers on both real
and simulated data, covering both haploid and diploid genomes. We investigate the effects of read depth, of
removing adapters before mapping and genotyping, of using different mapping tools, and of using the correct model
in the genotyping process. We show that the performance of SNPest is comparable to existing methods, and we also
illustrate cases where SNPest has an advantage over other methods, e.g. when dealing with simulated ancient DNA.

Keywords: Next-generation sequencing, SNP, Genotyping, Illumina, Ancient DNA

Findings
We present a novel approach to the genotyping problem
where a probabilistic framework describing the process
from sampling to sequencing is implemented as a graph-
ical model. This makes it possible to model technology
specific errors and other sources of variation that can
affect the result. The inferred genotype is given a posterior
probability to signify the confidence in the result. SNPest
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has already been used to genotype large scale projects
such as the first ancient human genome published in 2010.

Introduction
There has been a revolutionizing development in
sequencing technology from the first genome sequencing
projects, which were initiated in the late 1980s, and up
until today. Both the time frame and cost of sequencing
have decreased significantly since then, and today a sin-
gle research lab can generate billions of high-quality base
pairs from millions of reads in a short time and for a
reasonable price.

Next-generation sequencing (NGS) techniques cover
a wide range of technologies that succeed the Sanger
approach [1]. Common for NGS is the high-throughput
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nature of the technology where a large number of DNA
templates is sequenced in parallel [2,3]. However, all
these new techniques have their own method specific
biases that need to be addressed: The Roche 454 Genome
Sequencer have problems with homopolymers that lead to
increased insertion-deletion error rates, and for Illumina
sequencing the signal-to-noise ratio degrades as a func-
tion of read length resulting in high error rates in the 3’
ends of reads [2].

NGS methods generate a large amount of data but the
various sources of error need to be modeled for genotyp-
ing and SNP calling to work optimally. The SNP calling
method has to be robust to noise and, preferably, not
biased by the systematic errors in the NGS platform. Fur-
thermore, since the read depth along the sequenced DNA
template varies, the genotyper should be able to optimally
use all information available, and to produce information
about how reliable the inferred genotype is.

A new but growing field is the sequencing of ancient
DNA, such as the woolly mammoth [4], Neanderthal [5]
and ancient humans [6-8]. This presents special chal-
lenges such as a limited amount of data and hence lower
coverage and read depth, but also fragmentation and post
mortem damage of the DNA pose some unique problems.
This has lead to the development of specific tools [9] and
pipelines [10] for how to deal with this data, but a geno-
typer taking these peculiarities directly into account is still
lacking. Interestingly, novel medical applications present
some of the same challenges from samples that have been
formalin-fixed and paraffin-embedded [11].

We present SNPest which models the genotyping and
SNP calling from the raw read sequences in a fully prob-
abilistic framework. The problem is described using a
generative probabilistic graphical model [12]. There are
many advantages in using a probabilistic model: The sam-
pling and sequencing process is modeled explicitly which
makes the approach flexible, all results get an intuitive
confidence measure directly from the method, it can uti-
lize all available information, and it is easily extended
to take other sources of error or prior knowledge into
account.

Results
We have tested SNPest on both simulated and real data,
and we compare its performance to a number of other
widely used genotypers: GeMS [13] and FreeBayes [14],
both of which are able to specifically model either hap-
loid or diploid data, as well as mpileup combined with
bcftools from the SAMtools package [15] and Haplotype-
Caller from the GATK package [16-18], both of which only
support diploid genomes.

Furthermore, whether the genotyper uses the reference
allele as a prior when calling SNPs will affect the outcome.
SNPest is able to either use or ignore the reference genome

in the calculations, and we test both options in this paper.
GeMS uses the reference allele to model the distribution
over possible genotypes, and there is no parameter to
turn this off. FreeBayes by default does not use the ref-
erence allele, but this can be changed when calling the
program. We only use the default behavior in the paper.
The SAMtools/bcftools method uses the reference allele
in the process. GATK also uses the reference allele when
genotyping the data.

Both SNPest and GeMS are able to specify the max-
imum number of reads used at each position in the
genome. Obviously, limiting the number of nucleotides
used will speed up the calculations at the risk of making
wrong calls, but it also makes it possible to investigate
how varying read depths affect genotype calls. We there-
fore tested both SNPest and GeMS using read depths of
max 5, 10, 20, 30, 40, 50 and 60 on haploid data in order
to investigate the robustness of both methods. For low
depths, a certain variation in the number of SNPs called
can be seen between runs due to the random down sam-
pling of reads (i.e. when using less than the available data,
a subset of reads is chosen randomly). FreeBayes does not
have this feature and is only run using all the available
data. SNPest is run both with and without using the refer-
ence genome as a prior. The other methods were run with
default settings as described above.

The haploid reads were mapped to the reference
genome using two different tools, Bowtie2 [19] and BWA-
PSSM [20], using default settings. The mapped reads were
processed using the mpileup command from SAMtools
[15] with flags ‘-s’ to output the mapping qualities, ‘-q 25’
to only keep reads with mapping quality greater than 25,
and ‘-Q 0’ to keep all bases irrespective of base quality.

When a genotyper is run on a data set, a large set of SNP
candidates will be found. However, this set will normally
not be used directly, and only a subset of these positions
will be called as SNPs by the genotyper depending on the
amount of evidence for the specific change. How to fil-
ter the SNP candidates to create a high confidence set of
SNPs depends on the program being used. For each test
we report the total number of SNP candidates reported by
the genotyper (All) and a smaller, high-quality set (QC).
For SNPest, this set consists of all SNPs where the pos-
terior probability (reported as a Phred-like quality score
[21]) is >30. For GeMS we use a threshold of 0.01 for the
reported Dixon Q-test p-value as suggested by the authors
(personal communication). Results from FreeBayes and
GATK are filtered using a quality threshold of 30, and
results from SAMtools are filtered using the command
“vcfutils.pl varFilter” as described in the manual.

Data sets
The real haploid data is generated from the REL606 E.
coli strain [22] using 250 bp paired-end sequencing on a
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MiSeq to an average depth of 27X. The reference sequence
for this strain is well-known, and no SNPs should be
present when analyzing the mapped reads. As part of the
test, we also examine the behavior of both SNPest, GeMS
and FreeBayes in the presence of contaminating sequences
in the data. This was done by analyzing the above data set
both in its raw form and after removing residual adapter
fragments with the AdapterRemoval program [23].

The simulated single-end ancient DNA data was gener-
ated based on the REL606 reference genome using ART
[24]. A read length of 36 bp was used to simulate data to
a depth of 27X of the E. coli genome, and no SNPs are
simulated in the data. This resulted in 13,889,340 reads.
These reads were furthermore mutated to yield an ancient
DNA profile using a script provided by Peter Kerpedjiev
(personal communication and [20]) based on the damage
profile reported in [25]. This resulted in 1,884,087 reads
being changed in one or more positions.

The diploid data used is from the 1000 Genome Project
[26]. Instead of performing a full scale test on the whole
human genome using all the different methods, we focus
on two chromosomes and investigate the effects of read
depth by including a low depth and a high depth data
set. Since all methods are tested on the same smaller
data sets, the relative performance can still be evalu-
ated. Specifically, we use a low depth data set mapped
to chromosome 20 using BWA [27] (sample HG00240,
paired-end Illumina data, length 101 bp) and a high depth
data set mapped to chromosome 22 using BWA (sample
NA12878, paired-end Illumina data, length 100 bp). Both
data sets were downloaded as re-aligned and re-calibrated
bam-files.

Performance on haploid data
In Table 1 we report the results from the cleaned E.
coli data using the haploid mode of SNPest, GeMS and
FreeBayes. In this case, we would not expect any SNPs
since we are mapping the haploid reference genome to
itself.

SNPest only reports SNP candidates at the lowest read
depth of 5X (3 for the Bowtie2 mapping, 1 for the BWA-
PSSM mapping) and all are removed in the high quality
set. As mentioned, FreeBayes was only run using all avail-
able data and predicts 125 to 170 SNP candidates, all of
which are removed in the filtered data set. GeMS con-
sistently reports 5 SNP candidates when using Bowtie2
as the mapper, of which none pass QC irrespective of
read depth. When mapping with BWA-PSSM, between 32
and 36 SNP candidates are reported depending on read
depth, of which 2-6 make it through QC. The results
do not change significantly when analyzing the data
where residual adapters have not been removed although
more wrong SNPs are called as expected (see Additional
file 1).

Using the simulated ancient DNA makes it possible to
investigate how sensitive the tools are to specific patterns
of errors in the data. We use a simulated data set similar to
the one used above, i.e. haploid E. coli data with an aver-
age depth of 27X, but with a short read length of 36 bp
and only single-end data. The reads were mapped using
Bowtie2 and BWA-PSSM, but it should be noted that the
latter tool was used without specifying an ancient DNA
model and, thus, the mapping could be improved. How-
ever, the purpose of this test is to compare genotyping on
different mappings and not to compare specific mapping
tools.

In the context of ancient DNA, whether the reference
genome is used or not has a larger impact than in the
above test. In real applications (depending on the age
of the sample), the reference might not be known but
an extant related species is used as a scaffold instead.
Whether or not to use the prior information in the ref-
erence genome for genotyping depends on the specific
sample. As above, we have run SNPest with and without
using the reference genome in the calculations, and we
also compare results with and without using the specific
model for ancient DNA. The results for SNPest (with-
out using the reference) are shown in Table 2, and the
results for GeMS and FreeBayes are shown in Table 3 (see
Additional file 1 for additional results).

We first compare SNPest with and without explicitly
modeling damage. It is seen that the number of SNP can-
didates does not change dramatically, although this will of
course depend on the actual data set and the amount of
damage. The total number of SNP candidates decreases
somewhat going from the general error model (55-198
for Bowtie2 and 183-763 for BWA-PSSM) to the specific
damage model (51-66 for Bowtie2 and 154-236 for BWA-
PSSM). Thus, modeling damage does modestly decrease
the number of SNP candidates, and the most pronounced
difference is at the lowest depth of 5X where the total
number of SNP candidates decreases by appr. 66%. In both
cases we only predict high confidence SNPs at the the low-
est 5X depth, and the number of SNPs in the high quality
set is decreased substantially by using an explicit damage
model (from 11 to 0 for the Bowtie2 mapping, and from
80 to 4 for the BWA-PSSM mapping). It is worth noting
that most ancient DNA data sets would be in the very low
average depth range. This is due to the nature of the data
where the amount of endogenous DNA is very low and
further limited by damage and fragmentation. This limits
the amount of available DNA irrespective of read lengths
and other technological advances.

Comparing SNPest to GeMS, we first note that the num-
ber of SNP candidates does not differ a lot between the
two methods: GeMS has between 55 and 298 SNP can-
didates, depending on the mapping tool used. SNPest
using the standard model has the largest number of SNP
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Table 1 Performance of SNPest, GeMS and FreeBayes on real data

SNPest GeMS FreeBayes

Bowtie2 BWA-PSSM Bowtie2 BWA-PSSM Bowtie2 BWA-PSSM

Depth All QC All QC All QC All QC All QC All QC

5 3 0 1 0 5 0 36 6

10 0 0 0 0 5 0 32 2

20 0 0 0 0 5 0 32 2

30 0 0 0 0 5 0 32 2

40 0 0 0 0 5 0 32 2

50 0 0 0 0 5 0 32 2

60 0 0 0 0 5 0 32 2 170 0 125 0

SNPest and GeMS use various fractions of the available data (from maximum 5 reads per site to maximum 60 (in this case all) reads per position), and FreeBayes is only
run using all available data. The REL606 strain of E. coli was sequenced on the MiSeq platform to an average depth of 27X. Residual adapters were removed using
AdapterRemoval, and the cleaned reads were mapped using two different mappers, Bowtie2 and BWA-PSSM. No SNPs are expected in this mapping, as we are
mapping a known sequence back to itself. SNPest used the reference genome as a prior (see Additional file 1 for more results). All: All SNP candidates. QC: Number of
SNPs after filtering on quality (SNPest and FreeBayes: Genotype quality of >30. GeMS: Dixon Q-test p-value <0.01).

candidates at the lowest read depth (763 at 5X using
BWA-PSSM). Introducing the damage model reduces
the number of SNP candidates so SNPest consistently
has fewer (although a similar number) than GeMS at
all depths. However, the most significant difference is
the number of predicted high confidence SNPs where
it is clear that GeMS makes many more wrong calls
than SNPest. GeMS predicts between 15 and 97 SNPs,
and it is worth noting that GeMS predicts high confi-
dence SNPs even at high read depths, indicating that the
approach used in SNPest is well suited for biased data
where the expected errors can be modeled. FreeBayes
using all available data finds the highest number of SNP
candidates (2,680 to 2,808), but all are removed in the
filtered set.

Performance on diploid data
The performance on diploid data was evaluated for
SNPest, GeMS, FreeBayes, GATK’s HaplotypeCaller, and

SAMtools coupled with bcftools using the low depth and
high depth data sets from the 1000 Genomes Project men-
tioned above. The test is carried out in a similar way to
what was done in the GeMS paper [13]: The mapped data
was analyzed using all genotypers, and the predicted high-
confidence SNP sets (as defined above) were compared
between the methods. Note that this means that SNPest
only predicts SNPs and indels if at least 10 reads support
the polymorphism.

For many reasons, genotyping a diploid genome from
low depth data is much more challenging than genotyping
a haploid genome. First, the number of possible genotypes
is much larger (10 vs 4 possible combinations if strand-
edness is not considered). Second, the risk of sampling
only one of the alleles at a heterozygous position increases
with lower depth. Third, relying on the reference genome
can bias the genotypes towards false heterozygote calls
(if the true genotype is a homozygous SNP). Fourth, with
lower depth and a diploid genome, errors in the data can

Table 2 Simulated ancient DNA based on the REL606 E. coli genome

SNPest, standard model SNPest, damage model

Bowtie2 BWA-PSSM Bowtie2 BWA-PSSM

Depth All QC All QC All QC All QC

5 198 11 763 80 66 0 236 4

10 55 0 184 0 51 0 154 0

20 55 0 183 0 51 0 154 0

30 55 0 183 0 51 0 154 0

40 55 0 183 0 51 0 154 0

50 55 0 183 0 51 0 154 0

60 55 0 183 0 51 0 154 0

Read lengths of 36 bp and an average depth of 27X was simulated, and DNA damage was simulated in the reads as described in the main text. SNPest was run in the
haploid mode, without using the reference genome, and both with and without the damage model.
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Table 3 Simulated ancient DNA based on the REL606 E. coli genome

GeMS FreeBayes

Bowtie2 BWA-PSSM Bowtie2 BWA-PSSM

Depth All QC All QC All QC All QC

5 88 32 298 97

10 55 15 178 46

20 55 15 177 46

30 55 15 177 46

40 55 15 177 46

50 55 15 177 46

60 55 15 177 46 2808 0 2680 0

Read lengths of 36 bp and an average depth of 27X was simulated, and DNA damage was simulated in the reads as described in the main text. GeMS and FreeBayes
were both run in haploid mode, GeMS with varying maximum read depths, and FreeBayes using all data.

have a proportionally higher impact. All this needs to be
considered in the process.

We investigate a number of metrics to evaluate the
quality of the predictions: The predicted SNP rate (i.e.
the number of predicted SNPs divided by the number
of positions); the overlap between predicted SNPs and
annotated SNPs in dbSNP, version 139 [28]; the fraction
of SNPs that are exclusively predicted by each method;
the number of predicted insertions/deletions and the
overlap with dbSNP (excluding GeMS); and the homozy-
gous:heterozygous ratio for predicted SNPs. We also look
at the overlap between each method and the set of SNPest
predictions.

Since we do not know the correct answer for the data,
and therefore cannot calculate sensitivity and specificity
(or precision) directly, the above metrics are used to eluci-
date the performance of the different methods despite the
shortcomings. The SNP rate can be compared between
programs and related back to the expected rate. For the
overlap between predicted SNPs and dbSNP it should be
noted that dbSNP is not specific for the two chromo-
somes included in the test but contains common SNPs
from the full human genome. Most SNPs from the two
chromosomes that are annotated in dbSNP will not be
present in the sequence data used here, and some SNPs
that are present in the data might not be annotated in
dbSNP. However, since dbSNP contains common SNPs it
can be assumed that the majority of correct SNP predic-
tions should be in the database (i.e. a large fraction of
correctly predicted SNPs should overlap with dbSNP). It
can also be assumed that true SNPs might be predicted
by multiple programs, which indicates that the fraction
of predictions that are exclusively found by one program
should be relatively small. The homozygous:heterozygous
ratio can show if there is a strong bias in one direction
in the predicted SNPs. Previous studies have shown an
expected ratio of approximately 0.8 [29]. To particularly

investigate SNPest, we also look at the fraction of SNPest
predictions that each of the other methods also predict,
again assuming that a large overlap is a sign of quality. The
overlaps in predictions between every pair of methods are
presented in the Additional file 1.

The low depth results are illustrated in the Venn dia-
gram, Figure 1, showing the overlap in predicted SNPs
between the five methods tested here, and tabulated in
Table 4. The number of predicted SNPs varies from 3,175
(FreeBayes, SNP rate of 0.01%) to 73,694 (GeMS, SNP rate
of 0.13%), with SNPest predicting 14,159 SNPs (a SNP rate
of 0.02%). The relatively small number of SNPest predic-
tions (with an expected SNP rate of 0.1%, see methods)
is most likely due to the low amount of data causing the
confidence in the predicted SNPs to decrease, resulting
in more potential SNPs being filtered away. Especially the
depth criteria (minimum 10X) means that many potential
changes are not called. If a minimum depth of 5X was used
instead, the number of SNPs increase to 36,140 (a SNP
rate of 0.06%). However, the set of predicted SNPs shows
a large overlap with dbSNP (99.42%, similar to GATK
with 99.44%). Overall, the methods all show good concor-
dance with dbSNP, with GeMS having the smallest overlap
(87.59%).

Only 741 SNPs are predicted by all methods which
is mainly due to the small number of SNPs from Free-
Bayes - an additional 13,005 SNPs are predicted by the
remaining four methods. SNPest has the lowest number
of SNPs only found by a single method (18 SNPs, 0.13%
of predictions), with the other methods ranging from 82
(FreeBayes, 2.58%) to 13,227 (GeMS, 17.95%). Most of the
SNPs predicted by SNPest are also found by the remain-
ing methods (GATK predicts 97.84% of SNPest SNPs,
GeMS 99.24%, and SAMtools 99.46% – FreeBayes only
predicts 5.32% due to the low number of SNPs). The num-
ber of predicted indels varies a lot from 330 for FreeBayes
to 7,773 for GATK, with SNPest predicting 454 indels.



Lindgreen et al. BMC Research Notes 2014, 7:698 Page 6 of 12
http://www.biomedcentral.com/1756-0500/7/698

18

13227

637

1149

825

018

16

32

190

8
3504

9822

15

187

00
244

0

11

34

63

34271

307
1783

1
10

1

13005

741

SNPest

GeMS

SAMtools

FreeBayes

Figure 1 Predicted SNPs on low depth diploid data from human chromosome 20. The Venn diagram shows the performance of the five
genotypers used (SNPest without using the reference genome, FreeBayes, SAMtools with bcftools, GATK’s HaplotypeCaller and GeMS) and
illustrates the overlap in predicted SNPs between every combination of methods.

However, the overlap with dbSNP is around 60% for all
methods which indicates very low sensitivity for Freebayes
and SNPest. However, as mentioned above, if less than 10
reads support a mutation it is not part of the SNPest high
confidence set. If the minimum depth requirement was

changed to 5X, the number of predicted indels increases
to 3,606.

The homozygous:heterozygous ratio for the predicted
SNPs varies between methods, with SNPest, SAMtools
and GeMS all having a ratio around 0.6, and GATK and

Table 4 Results on low depth, diploid data from human chromosome 20

Program #SNPs SNP rate dbSNP SNPest Excl. Indels dbSNP Homo:hetero

SNPest 14,159 0.02% 99.42% 100.00% 0.13% 454 59.03% 0.64

FreeBayes 3,175 0.01% 98.90% 5.32% 2.58% 330 60.91% 1.12

SAMtools 65,120 0.11% 99.01% 99.46% 1.76% 6,918 60.18% 0.66

GATK 54,441 0.09% 99.44% 97.84% 1.17% 7,773 60.77% 1.09

GeMS 73,694 0.13% 87.59% 99.24% 17.95% N/A N/A 0.62

The results from SNPest (without using the reference genome), FreeBayes, SAMtools with bcftools, GATK’s HaplotypeCaller and GeMS are shown. For each method, we
report the number of high quality SNPs, the SNP rate, the fraction overlap with dbSNP 139, the fraction of SNPest predictions in common, the fraction of exclusive SNPs
only predicted by this method, number of insertions/deletions, fraction of insertions/deletions found in dbSNP 139, and homozygous:heterozygous ratio for SNPs.
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FreeBayes having a ratio around 1.1 – i.e. on either side of
the expected ratio. In low depth data, using the reference
genome in genotyping can strongly affect the predicted
SNPs by calling true homozygous SNPs as heterozygous
(with the reference nucleotide as one allele). To test this,
SNPest was also run in this mode (see Additional file 1
for results). The results are almost unchanged, except for
the homozygous:heterozygous ratio which is dramatically
affected with all SNPs now being called as heterozygous.

The results from the high depth data set are shown in
Figure 2 and Table 5. FreeBayes again predicts the small-
est number of SNPs (11,570, SNP rate of 0.03%) and this
time also with the smallest overlap with dbSNP (87.99%).
The remaining methods are in much better agreement,
predicting from 40,997 SNPs (SNPest, SNP rate of 0.12%)
to 51,117 SNPs (GeMS, SNP rate of 0.15%). SNPest, SAM-
tools and GATK all have a SNP rate of 0.12-0.13% and
all have an overlap with dbSNP of around 99%, with only

89.22% of GeMS predictions overlapping with dbSNP.
This SNP rate is as expected for SNPest, illustrating that
the confidence in the predicted SNPs has increased lead-
ing to a larger high quality set. Changing the minimum
depth to 5X only increases the number of SNPs to 42,140
(a SNP rate of 0.13%). There are 5,439 SNPs predicted
by all five methods, but as before with a large number –
32,867 SNPs – predicted by all except FreeBayes.

As before, the other methods also predict most of the
SNPs found by SNPest, from 95.40% to 97.78%, with
FreeBayes again finding the lowest number of SNPs and
therefore also only an overlap of 14.52%. The number
of SNPs found by only a single method varies from
173 (SAMtools, 0.40% of predictions) to 6,993 (GeMS,
13.68%), with 29.55% of FreeBayes predictions being
found by no other method. SNPest predicts 351 SNPs,
or 0.86% of all its predictions, not found by any other
method. As before, the number of predicted indels varies
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Figure 2 Predicted SNPs on high depth diploid data from human chromosome 22. The Venn diagram shows the performance of the five
genotypers used (SNPest without using the reference genome, FreeBayes, SAMtools with bcftools, GATK’s HaplotypeCaller and GeMS) and
illustrates the overlap in predicted SNPs between every combination of methods.
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Table 5 Results on high depth, diploid data from human chromosome 22

Program #SNPs SNP rate dbSNP SNPest Excl. Indels dbSNP Homo:hetero

SNPest 40,997 0.12% 99.17% 100.00% 0.86% 82 57.32% 0.46

FreeBayes 11,570 0.03% 87.99% 14.52% 29.55% 511 60.86% 4.67

SAMtools 43,679 0.13% 99.37% 96.92% 0.40% 3,880 57.45% 0.49

GATK 43,721 0.13% 99.29% 95.40% 2.77% 5,660 56.29% 0.58

GeMS 51,117 0.15% 89.22% 97.78% 13.68% N/A N/A 0.50

The results from SNPest (without using the reference genome), FreeBayes, SAMtools with bcftools, GATK’s HaplotypeCaller and GeMS are shown. For each method, we
report the number of high quality SNPs, the SNP rate, the fraction overlap with dbSNP 139, the fraction of SNPest predictions in common, the fraction of exclusive SNPs
only predicted by this method, number of insertions/deletions, fraction of insertions/deletions found in dbSNP 139, and homozygous:heterozygous ratio for SNPs.

a lot from 82 (SNPest) to 5,660 (GATK) but with an over-
lap with dbSNP around 57% for all methods. Changing the
minimum depth to 5X for SNPest increases the number of
indels to 2,841 indicating that a more relaxed filtering of
indels might be better.

The homozygous:heterozygous ratio is similar to what
we saw for chromosome 20, with SNPest, SAMtools and
GeMS finding around twice as many heterozygous than
homozygous SNPs, but this time joined by GATK with
a similar ratio. FreeBayes is the outlier with almost five
times as many homozygous than heterozygous SNPs. In
this case, using the reference genome has a much smaller
impact on SNPest predictions because of the amount of
observations per site, and the ratio changes from 0.46 to
0.31 (see Additional file 1).

Discussion
We have presented SNPest, a probabilistic tool for
genotyping next-generation sequencing data. SNPest can
model various biases in the data, and it reports a qual-
ity score in Phred format giving the posterior probability
of the given genotype. This is a useful metric to filter the
SNP candidates and generate high-quality sets for further
analysis. We have shown that SNPest performs favorably
to other available genotypers on both real and simulated
data. In all the haploid test sets, SNPest only makes a
few wrong SNP calls, namely when using the lowest read
depths and having residual adapter sequences in the reads.
Otherwise, SNPest makes no wrong high-quality SNP
calls. On the other hand, GeMS makes more albeit still few
wrong SNP calls both in the clean data and when residual
adapter sequences are present. In the ancient DNA test
set, the difference is more pronounced and the strength of
SNPest is seen.

In the diploid test, we show that the predictions made by
SNPest show a good overlap with known SNPs in dbSNP,
and that the majority of the predictions overlap with the
other methods tested here. If the reference genome is
used on low depth data, the model seems to overestimate
heterozygote SNPs which is expected given the model
used and the data available. This is not a problem in

the high depth data where the extra observations help
resolve the issue. The indel predictions made by SNPest
also show good overlap with annotated indels in dbSNP
similar to the predictions made by other programs but less
restrictive filters might improve the results.

SNPest is implemented in such a way that novel models
of errors or sample specific biases can easily be used. The
probability matrix used when translating quality scores
to probabilities has to be modified and the resulting files
have to be named as described in the README file. Then,
the specified model can be used by simply passing the
model name when calling SNPest.

Methods
Using sequencing data, you can either perform map-
ping, where the reads are aligned to a reference genome,
or de novo assembly, where the reads are combined
without a reference to infer the original template DNA
sequence. For the task of genotyping, the major difference
between the two is whether a reference genome is avail-
able or not, and whether this information should be used
when inferring the genotype of the sequenced organism.
Furthermore, most next-generation sequencing platforms
produce a string of quality scores, normally encoded as
Phred scores [21], that indicate the probability that the
reported base is actually correct. This information should
be included in the genotyping procedure.

There are a number of biases affecting the sequenc-
ing process and subsequent mapping [30,31]: The quality
scores are not evenly distributed but tend to drop off
towards the 3’ end of the read. This results in more
wrongly called bases occurring in the 3’ end of reads.
Furthermore, the read depth will vary – sometimes dra-
matically – along the sequence, and the mapping program
used will wrongly align some of the reads. All of these
effects mean that the number of nucleotides aligned to a
specific position (if any) will vary, affecting the amount
of information available to infer the genotype, and also
that the aligned nucleotides might not all be homologous
to the original position due to errors. If the organism is
diploid and heterozygote at the position, we furthermore
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expect a random sampling from both alleles. We do not
currently consider polyploidy in the framework.

We developed SNPest to be a sensitive genotyping tool,
designed to avoid systematic biases due to e.g. read errors.
SNPest is a probabilistic model that takes quality scores –
normally encoded using a Phred-like scheme [21] – and
alternative sources of errors explicitly into account. It is
based on a generative model of the probability distribu-
tion over genotypes given the sampling and sequencing of
nucleotides obtained from a diploid genome as illustrated
in Figure 3.

Let i indicate a specific read of the n possible reads cov-
ering a given position in the genome we are currently
looking at. The observed random variables (RV) are the
light intensities Ii and the reference nucleotide H. The
unobserved RVs are the nucleotide in the read sequence
Ri, the originally sampled nucleotide Si, and the geno-
type in the diploid genome, G. For a given position in the
genome, the combined probability distribution becomes:

P(H , G, S, R, I) = P(H)P(G|H)

n∏
i=1

P(Si|G)P(Ri|Si)P(Ii|Ri)

(1)

The product is over the n reads aligned to the genomic
position being analyzed, with variables Si, Ri and Ii corre-
sponding to each of the reads. The probability factorizes
into five separate probabilities: P(H) is the prior distribu-
tion over the reference nucleotide. P(G|H) is the condi-
tional probability distribution over the ten possible geno-
types {AA, AC, . . . , TT} given the reference nucleotide.
P(Si|G) is the conditional probability distribution over the
actual nucleotide present in the sampled DNA fragment
given the genotype. P(Ri|Si) is the conditional probabil-
ity distribution over the read nucleotides given the actual
nucleotide. P(Ii|Ri) is the conditional probability distribu-
tion over light intensities given the read nucleotide. The
individual probability distributions are described in the
following, including how the parameters can be estimated.

A haploid version of SNPest is obtained by changing
the distribution over the genotypes to {A, C, G, T}, and
P(Si|G) is simplified to be the identity matrix.

SNPest calls the genotype with the highest posterior
probability at each position. This probability is found by
marginalizing the combined probability distribution and
summing out the S and R parameters. This gives the prob-
ability P(G, I, H), and by marginalizing and conditioning
on G we can obtain P(G|I, H). The posterior probability
of the genotype reflects the confidence that SNPest has in
inferring that particular genotype. This information can
be used to generate a high confidence subset of genotypes
if needed.

H

G

Si

Ri

Ii

n

Human reference nucleotide

Genotype

Sampled nucleotide

Read nucleotide 

Sequencing intensities

Figure 3 The graphical model used in SNPest. Circles represent
random variables. The two top RVs are global for a given position,
whereas the boxed part of the model denotes the n individual reads
covering the specific position.

The sequencing machines generally produce Phred-like
quality scores together with the reads that provide the
probability of error at each position. These qualities Q
are given as a sequence of ASCII characters, where the
actual quality scores SC(Q) are offset by some value �,
SC(Q) = ord(Q) − � where ord gives the ASCII value of
a character. The higher the quality score SC(Q), the lower
the probability of an error:

Perror(Q) = 10
−SC(Q)

10 (2)

SNPest uses both the reported read qualities, QR, and
the mapping qualities reported by the mapping tool used,
QM. When estimating the genotype, the smallest of the
two is used: Q = min(QR, QM). Thus, reads mapped with
low mapping quality (i.e. with small QM scores) will have
a smaller weight in the calculations. Similarly, a low qual-
ity read, even if mapped with high certainty, will also
have low weight in the calculations since it cannot be
trusted.
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Reference nucleotide distribution
The model can either use a prior distribution on P(H), or
it can be observed i.e. the nucleotide at the given posi-
tion in the reference genome can be used. If the reference
nucleotide is not used, the default behavior of SNPest is
to use a flat prior over the four nucleotides. However, a
user-specified distribution can be used instead if required.

Genotype distribution
Given a nucleotide in the reference genome, the specimen
being sequenced will have one of either 10 or 4 possible
genotypes depending on whether it is a diploid or haploid
genome. The distribution over genotypes P(G|H) could
be estimated from a known genome (e.g. the Yanhuang
genome [32]), or it can be estimated based on a known or
expected SNP rate. In the simplest case, a flat prior could
be used.

By default, SNPest assumes a SNP rate of F = 0.1%.
In the haploid case, the probability distribution simplifies
to P(G = N |H = N) = 1 − F , i.e. the probability of
the nucleotide being identical to the reference, and P(G �=
N |H = N) = F

3 for the three remaining cases, i.e. the
probability of a SNP. This assumes a flat distribution and
does not consider differences in transitions and transver-
sions. However, such differences could be included in the
model as was done in e.g. [33].

In the diploid case, the distribution over genotypes can
be viewed as a 4 × 10 matrix with a row for each possi-
ble reference nucleotide describing the distribution over
the possible genotypes. Let P(H = N) be the prior over
the four nucleotides (by default, a flat prior of P(H =
N) = 0.25 is used). Further, let F be the expected SNP
probability in the genome (again, a SNP rate of 0.1% is
assumed by default). Then, for nucleotide N, the probabil-
ity of observing the homozygote genotype, NN , becomes
P(G = NN |H = N) = 1 − F . The probability of a SNP
is distributed over the remaining 9 possible genotypes.
However, these 9 genotypes are not equally likely. For each
nucleotide N, there are three genotypes that require just
one alternative allele to be chosen, and six genotypes that
require two alternative alleles. Assuming Hardy-Weinberg
equilibrium, we express the probability distribution as fol-
lows: Let the probability of picking one alternative allele
be p. Then the probability of the three genotypes requiring
just one alternative allele becomes p(1 − p) (i.e. the prob-
ability of picking an alternative allele times the probability
of not picking an alternative), and the probability of the
remaining six genotypes becomes p2. Solving this second
degree equation yields the probabilities needed:

6p2 + 3p(1 − p) = 0.001

The probability of picking one alternative allele is p =
0.0333%. As in the haploid case, this does not consider
differences in transitions and transversions although that

could be incorporated. SNPest comes with scripts to cal-
culate the probability distribution given a specified SNP
rate.

Sampled nucleotide distribution
Given a genotype, we will be sampling one of the possi-
ble alleles with probability P(Si|G). In the haploid case,
this collapses to the identity matrix. For a diploid genome
there are two possible cases: If the genotype is homozy-
gote in nucleotide a, then P(Si = N |G) = 100% for
nucleotide N = a and P(Si = N |G) = 0% for the three
other nucleotides, N �= a. If it is a heterozygote position,
the probability is P(Si = N |G) = 50% for the two alleles
and P(Si = N |G) = 0% for the remaining two.

Read nucleotide distribution
In the ideal world, the nucleotide present in the DNA
sequence being read will be identical to what was present
in the original genome. However, due to various sources
of error this will not always be the case. The probability
distribution P(Ri|Si) models all sources of error from the
original DNA to the sequencing step e.g. from damage,
PCR amplification errors, etc.

Calculating the length 4 vector �PR describing the
nucleotide distribution P(Ri|Ii) directly from the quality
scores (Eq. 2) assumes the quality measure is correct and
perfectly reflects the errors in the data. However, this
will not consider e.g. wrong mappings or other sources of
error. The expected error distribution is given by P(Ri|Si),
and if we expect an error rate of τ , we multiply the vec-
tor �PR by an error matrix A, yielding the new probability
vector �PA = A ∗ �PR.

The expected errors could be distributed uniformly
over all the possible nucleotides. However, from counting
actual wrong mappings in a haploid genome a pattern was
observed showing that the error distribution depends on
the nucleotide in the read: For sample nucleotide A, the
highest probability for a read nucleotide is indeed P(R =
A|S = A). However, it turns out that the second largest
probability is P(R = C|S = A) = P(R = G|S = A),
while the smallest probability is P(R = T |S = A). For
the other three nucleotides, the smallest probabilities are,
respectively, P(R = G|S = C), P(R = C|S = G) and
P(R = A|S = T). In all cases, the smallest probability is
approximately 1/3 of the second largest probability.

Using this observation and given an error rate τ , the
error matrix mentioned above becomes:

A =

⎡
⎢⎢⎣

(1 − τ) 3
7τ 3

7τ 1
7τ

3
7τ (1 − τ) 1

7τ 3
7τ

3
7τ 1

7τ (1 − τ) 3
7τ

1
7τ 3

7τ 3
7τ (1 − τ)

⎤
⎥⎥⎦ (3)

By default, the error rate is estimated to be τ = 0.2%.
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The DNA damage observed in ancient samples is clus-
tered in the ends of the reads [25] and drops of expo-
nentially. The amount of damage depends on various
circumstances including the age of the sample and the
environment in which it was found (e.g. temperature
and humidity). The damage pattern is also observed in
formalin-fixed and paraffin-embedded samples [11]. DNA
damage leads to deamination of cytosine (C) into uracil
(U), that will be reported as thymine (T) by the sequencer.
The result is an excess of C to T mismatches. However,
depending on the strand being sequenced the damage also
leads to an excess of G to A mismatches. This means that
if a T is observed in a read, there is a higher probability
that it was a C in the sample, i.e. the probability P(R =
T |S = C) should increase. Similarly, P(R = A|S = G)

should increase. Given an overall expected damage rate, δ,
an error matrix Aδ can be calculated by modifying Eq. 3:

Aδ =

⎡
⎢⎢⎢⎢⎣

(1 − τ − δ) 3
7τ 3

7τ + δ 1
7τ

3
7τ (1 − τ) 1

7τ 3
7τ

3
7τ 1

7τ (1 − τ) 3
7τ

1
7τ 3

7τ + δ 3
7τ (1 − τ − δ)

⎤
⎥⎥⎥⎥⎦

(4)

The damage model used in SNPest uses and expected
damage rate of δ = 3%. For computational reasons, the
matrices describing errors, damage etc. are multiplied
with the matrix describing the probability distribution
P(Ri|Ii) prior to running the program. SNPest comes with
scripts to calculate matrices given an expected error rate,
0 ≤ τ < 1, and an expected damage rate, 0 ≤ δ < 1.
Setting both τ = 0 and δ = 0 means that the reported
quality scores are trusted completely and used directly
when estimating genotypes.

Distribution of light intensities
This distribution models the probability of observing a
specific light intensity given the nucleotide in the read.
We do not know the form of the conditional probability
distribution P(Ii|Ri). However, this probability is propor-
tional to P(Ri|Ii) which is given by the quality scores (see
Eq. 2), when we assume P(Ri) is equal for all Ri, i.e.,
that all four nucleotides have equal prior probability. Note
that SNPest does not use the actual light intensities and
does not require anything but the fastq files with quality
scores. From this, the posterior probability is calculated as
explained above.

Program input and output
SNPest takes input generated by the “samtools mpileup -s”
command (or equivalent) reporting nucleotides mapped
to each position together with read qualities and map-
ping qualities. The output is in VCF format with a line

per position covered in the genome. We provide a Perl
script for parsing this output to produce a smaller VCF
file with only high quality SNPs and insertions/deletions
(as defined by the user based on minimum depth, qual-
ity scores etc.). The output contains information on the
reference nucleotide (if given), the most likely genotype,
the posterior probability (in Phred quality format), read
depth used, and average mapping quality. Please refer to
the README file provided with the program for more
details on how to run SNPest.

Availability and requirements
Project name: SNPest
Project home page: https://github.com/slindgreen/SNPest
Operating system: Tested on Unix and MacOS
Programming language: C++ and PERL
Other requirements: https://github.com/jakob-skou-
pedersen/phy
License: GNU GPL 3

Additional file

Additional file 1: Supplementary material for SNPest: A probabilistic
graphical model for estimating genotypes.
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