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RANDOM EFFECT SELECTION IN GENERALISED LINEAR MODELS: A 

PRACTICAL APPLICATION TO SLAUGHTERHOUSE SURVEILLANCE DATA IN 

DENMARK 

M.J. DENWOOD*, H. HOUE, B. FORKMAN AND S.S. NIELSEN 

SUMMARY 

We analysed abattoir recordings of meat inspection codes with possible relevance to on-
farm animal welfare in cattle. Random effects logistic regression models were used to 
describe individual-level data obtained from 461,406 cattle slaughtered in Denmark. Our 
results demonstrate that the largest variance partition was at farm level for most codes, but 
there was substantial variation in reporting for some meat inspection codes between abattoirs. 
There was also substantial agreement for the relative under or over-reporting of different 
slaughter codes within individual abattoirs. This indicates that the sensitivity of routine 
surveillance in Denmark is affected by differences in the working practices between abattoirs, 
resulting in biased prevalence estimates. Therefore, it is essential to correct for the variation 
in reporting between abattoirs before meaningful inference can be made from prevalence 
estimates based on data derived from meat inspection. 

INTRODUCTION 

All carcasses from food producing animals in the European Union (EU) are subject to 
meat inspection according to EU legislation (Anon, 2004), for the primary purpose of 
ensuring the safety of the food. However, the idea of using this substantial resource of meat 
inspection data for purposes other than food safety has gained substantial traction over recent 
years (Dupuy et al., 2013; Harley et al., 2012; Klauke et al., 2013; Knage-Rasmussen et al., 
2014; Vial and Reist, 2014). In Denmark, there has been a considerable emphasis on the 
possibility of using such data for monitoring on-farm animal health and welfare using related 
meat inspection codes as a proxy for compromised health or welfare on farm (Knage-
Rasmussen et al., 2014; Nielsen et al., 2014). The high availability and low cost of meat 
inspection data are potentially very attractive, but concerns remain about the validity of using 
such data outside the original remit of food safety. For example, Nielsen et al. (unpublished) 
demonstrated the relatively poor correlation between the prevalence of some pig health 
conditions in meat inspection codes and findings from more detailed pathological 
examination of the same groups of animals. There is also the possibility of variation in 
reporting level between abattoirs due to differences in abattoir practices and the design/setup 
of meat inspection lines, which may complicate the comparison of disease prevalence 
reported from different abattoirs. Before comparing the prevalence of any meat inspection 
codes between farms, it is therefore essential to account for any difference in the apparent 
prevalence between farms that may be caused by differences in recording between abattoirs. 
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The most common way of accounting for this type of clustering within epidemiological 
data is to use one or more random effect terms to describe the structural patterns in the data. 
These have been used for linear models as well as generalised linear models, including 
logistic regression models (Guo and Zhao, 2000; Li et al., 2011). These random effects are 
often used to account for known structural relationships that would otherwise break the 
independence assumptions of the response variable, and have also been shown to be useful to 
account for over-dispersion at the level of observation (Harrison, 2014). In these cases, the 
'significance' of these terms is not of interest, and it is neither necessary nor desirable to 
consider removing the random effects in an attempt to improve the model fit. However, there 
are some situations such as that presented here, where the presence or absence of the random 
effects themselves is of interest, in which case some formal test of the significance of these 
random effects terms is desirable. In addition, it is very common to undertake some type of 
model selection process to eliminate candidate fixed effect variables from mixed effect 
models. In both of these cases, the validity of several commonly used methods of model 
selection is challenged by the presence of the random effects terms. 

The most common method of comparing nested models is using some penalised measure 
of model fit such as the likelihood ratio test (LRT), variants of Akaike's information criterion 
(AIC), or the Bayesian information criterion (BIC). Each of these methods compares the 
maximum likelihood estimate of two or more nested models, with a correction for the relative 
complexity of the models. This penalty factor is derived from the relative number of degrees 
of freedom between the models, and is necessary to account for the natural ability of more 
complex models to produce a superior fit to any given dataset simply by chance. The number 
of degrees of freedom is relatively simple to calculate for purely fixed effects models, but for 
random effects and mixed models there is no straightforward method of determining the 
effective degrees of freedom contributed by the random effect. Standard methods such as the 
deviance information criterion (DIC) may be used within a Bayesian context (Spiegelhalter et 
al., 2002), but not in the standard frequentist maximum likelihood framework. Alternatively, 
a more computationally intensive approach can be taken to model comparison, using data 
simulated under the null model and fitted to both the null and alternative models. This allows 
the direct calculation of a distribution of expected likelihood ratio statistics, to which the 
observed likelihood ratio can be compared. The two advantages of this method are that no 
assumptions are made about the distribution of the likelihood ratio statistic, and there is no 
requirement to calculate the unknown quantity describing the number of degrees of freedom. 
This method has not to our knowledge been widely used within epidemiology, but a similar 
method has been recommended in the context of mixture models (McLachlan, 1987). 

In this paper, we demonstrate the use of simulated data to provide a robust method of 
model selection for models including random effects. This method is applied to a random-
effects logistic regression model describing the observed prevalence of various meat 
inspection codes, selected on the basis of animal welfare relevance and non-negligible 
prevalence, in Danish cattle. The primary interest from these data is inference regarding the 
relative contributions of variance between farms (interpreted as true difference in prevalence 
of these diseases), compared to variance between abattoirs (interpreted as differences in the 
sensitivity and specificity of disease recording between abattoirs). 
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MATERIALS AND METHODS 

Meat inspection codes 

Cattle meat inspection data were obtained for the entirety of 2012, from all eight cattle 
abattoirs that slaughtered >10,000 head of cattle in Denmark during 2012. All recorded meat 
inspection codes in accordance with Danish legislation (Anon, 2011) were available, with an 
individual animal level recording of presence or absence of each of these codes. The data 
were then divided into separate datasets describing animals under 18 months of age 
(n=212,826; denoted 'calves') vs. older cattle (n=248,580; denoted 'adults'), before being 
aggregated by abattoir (n=8), and farm of origin (n=7,020 for calves; n=10,721 for adults). 
Slaughter date information was disregarded, but the same time period (all of 2012) was 
collected for each abattoir. The number of animals slaughtered during the year and recorded 
frequency of each meat inspection code was obtained for each combination of abattoir of 
slaughter and farm of origin (this observation level grouping is referred to here as the 
'group'). Some meat inspection codes (and combinations) were excluded from modelling 
analysis on the basis of the following criteria: 

• Slaughter plant codes (mostly used for decision making at the abattoir), for 
example contaminated hide 

• Codes possibly related to transport of animals to the slaughterhouse (on the basis 
that these may not have occurred on farm) 

• Acute conditions, which could have occurred during transport (based on 
assessment by a professor of veterinary pathology in the Department of Veterinary 
Disease Biology, University of Copenhagen) 

• Central nervous system conditions (on the basis that they are relatively non-
specific and difficult to assess at the abattoir) 

• Codes not related to animal welfare 

• Codes relating to non-specific conditions 

Related codes were grouped into code combinations where biologically sensible, based on 
consensus assessment including three of the authors (HH; SSN; BF) and two other experts at 
the University of Copenhagen. For example, healed fractures recorded separately for various 
different sites in the carcass were grouped into a single category. A final exclusion criterion 
was then imposed to remove any meat inspection codes (or combinations of related codes) 
with a sufficiently low observed prevalence in the calf or adult dataset so that logistic 
regression models could not reasonably be implemented. This prevalence threshold was set at 
an observed prevalence of greater than zero in a minimum of 50 separate groups of animals, 
with the criterion implemented independently for each code and age group. The final dataset 
describing the number of recorded codes and total number of animals in each group (abattoir 
of slaughter combined with farm of origin) was created separately for each of the selected 
codes from the overall calf and adult datasets.  
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Model fitting 

For each of the separate datasets included in the analysis, a random effects logistic 
regression model was used to describe the recorded prevalence of each meat inspection code 
(or combination of codes) for each group of animals. A random effect representing the group 
was fitted to every model in order to account for the residual extra-Binomial variance 
associated with clustering of observations within each individual combination of abattoir and 
farm (the rationale for this is discussed in detail by Harrison, 2014). No fixed effects (other 
than an intercept term) were considered for inclusion in the model. All models were fitted 
using the glmer function of the lme4 package (Bates et al., 2014) in R (R Development Core 
Team, 2014). Variance estimates for random effects were taken from the model summary 
statistics, and estimates for the individual factor level effects within random effects terms 
were extracted from the random effects terms using the ranef() function. Confidence intervals 
for all parameters were obtained using parametric bootstrapping from the final fitted model 
with 250 iterations, which was deemed sufficient to approximate the true confidence interval. 
Model fit was assessed by comparing the likelihood obtained from the full model to a 95% 
confidence interval for the likelihood of data simulated under the same model, using the same 
parametric bootstrap procedure. 

Model selection method 

The improvement in model fit yielded by each of the two random effects terms (farm and 
abattoir) was assessed sequentially by comparing the fit of a model without the random effect 
to be tested (the null model) to the fit of a model including the random effect to be tested (the 
alternative model). The model fit comparison was done by comparing the difference in log 
likelihood from the null and alternative models to a distribution of the same statistic 
generated from simulated data. The probability that the data are consistent with the null 
model is given by the proportion of simulated likelihood ratio statistics that are greater (or 
equal) in magnitude to the observed likelihood ratio statistic. Given a desired alpha error rate 
(in this case a p-value of 0.05), a cut-off can then be imposed for rejecting the null hypothesis 
in the same way as the usual likelihood ratio test, but without the assumption that the test 
statistic follows a chi-square distribution, or the requirement to specify a number of degrees 
of freedom. This exact numerical approximation to the p-value requires only a sufficient 
number of simulated likelihood ratio test statistics to ensure that the decision to accept or 
reject the null hypothesis is justified. This procedure was verified to produce the desired 
alpha error rate of 5% using a simulation study (data not shown). 

The simulated test statistic was obtained as follows. First, the parameter estimates 
obtained from the null model were used to obtain a simulated dataset, with the individual 
random effect estimates for group resampled from the variance estimate for this random 
effect. Both null and alternative models were then re-fitted to the simulated data, before 
recording the difference in log likelihood observed between the two fitted models. This 
simulated likelihood ratio was then compared to the likelihood ratio observed from the true 
dataset to determine if the observed likelihood ratio was greater than that obtained using data 
simulated under the null model. This process was repeated until the target threshold of 
p=0.05 lay outside (either above or below) the 99% confidence interval for the true p-value. 
If the 99% confidence interval still contained 0.05 after 1000 bootstrap iterations 
(representing a high degree of certainty about a p-value very close to the cut-off value), the 
estimate at that point was used to determine the outcome of the likelihood ratio test. 
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Model selection procedure 

A forward step-wise selection algorithm was used to test the candidate random effects. 
Starting from the simplest model we considered, with intercept and group random effect 
terms fitted, the additional random effects representing the farm of origin ('Farm') and 
abattoir of slaughter ('Abattoir') were sequentially considered for inclusion in the model using 
the method specified above. The 'Abattoir' random effect was first considered for inclusion in 
the model, followed by the 'Farm' random effect. In the cases where the 'Abattoir' effect was 
initially rejected for inclusion but the 'Farm' effect was included, the 'Abattoir' effect was 
subsequently re-tested for inclusion. 

RESULTS 

Data summary 

The number of unique farms of origin for each abattoir, and the number of farms sending 
animals to different abattoirs, is shown in Figure 1. The majority of farms sent animals to 
only one abattoir, but around 12% of farms sent animals to up to four abattoirs. A small 
number of farms (38 in total) sent animals to five or six abattoirs, and a single farm sent one 
or more adult cow to all eight abattoirs during 2012 (data point omitted from Fig. 1). There 
were a total of 13,681 and 8,109 observed combinations of farm and abattoir (group) for 
adults and calves, respectively. 

 

Fig. 1 The proportion of farms sending one or more animal to each abattoir (left) and number 
of farms (on the log scale) sending animals to multiple abattoirs (right) for calves (top) and 

adult cattle (bottom) in Denmark during 2012  

Of the 92 slaughterhouse codes recorded, the following were removed: 6 slaughter plant 
codes; 8 transport-related codes; 16 acute conditions; 2 CNS conditions; 12 conditions not 
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related to animal welfare; and 4 non-specific codes. Of the remaining 44 slaughter codes, 19 
were used individually and 25 were grouped into 9 separate combinations of related codes, 
giving a total of 28 code combinations each for calves and adults. Of these 28 codes, 5 were 
removed from the adult data, and 14 were removed from the calf data, due to low prevalence. 

Modelling results 

After exclusion of unsuitable meat inspection codes, a total of 37 datasets (23 adult; 14 
calves) with a total of 24 disease codes were taken forward for modelling. Of these, there was 
no evidence for a random effect of Abattoir or Farm in 12 datasets. Descriptions of the 
remaining 18 unique codes together with random effect estimates and crude estimated 
prevalence are given in Table 1.  Figure 2 shows the corresponding individual abattoir effect 
estimates (extracted from the random effect component of the fitted model) where the 
preferred model contained both farm and abattoir random effects. 

 

Table 1. Model inference for the meat inspection codes used for cattle slaughtered in 
Denmark during 2012. Crude prevalence estimates are shown alongside random effects 

variance estimates for Farm and Abattoir where these were fitted in the final model. 
Estimates in italics indicate models with poor fit, and underlined estimates indicate non-

overlapping 95% confidence intervals between abattoir and farm variance estimates. 

Code Description 

Calves Adults 

Prev 

% 

Abb. 

�
2 

Farm 

�
2 

Prev 

% 

Abb. 

�
2 

Farm 

�
2 

PYR Pyrexia 0.10 0.33 0.44 0.27 -- 0.3 

ENDO Endocarditis 0.03 -- -- 0.19 -- 0.29 

LW Lung worm 0.03 -- -- 0.19 3.18 -- 

CGE Chronic gastroenteritis 0.05 -- -- 0.24 0.9 0.57 

RD Renal disease 0.19 1.54 -- 0.56 1.11 -- 

UD Chronic uterine disease 0.00 -- -- 0.05 -- 2.07 

HD Hoof disease 0.03 -- -- 0.23 8.1 -- 

OST Osteomyelitis 0.04 -- 2.02 0.16 -- -- 

CA Chronic arthritis and arthrosis 0.43 0.19 -- 0.42 -- -- 

MA Muscle atrophy 0.02 -- -- 0.35 25.52 -- 

SE Sores and eczema 0.01 -- -- 0.04 -- 0.04 

PNEU 
Chronic pneumonia and 
pleuritis 

8.81 0.38 0.77 3.96 0.6 0.19 

CARD 
Chronic pericarditis and 
traumatic reticulo-pericarditis 

4.00 0.2 0.49 5.33 0.25 0.19 

LD Liver disease 12.14 0.08 1.63 12.00 0.15 1.33 

ABS Abscesses 0.84 0.13 0.27 2.50 0.11 0.28 

HF Healed fracture 0.30 -- -- 1.51 0.08 0.46 

SA Skin abrasions 1.14 0.2 0.48 6.70 0.27 0.31 

SR Scabies and ringworm 0.09 0.04 -- 0.01 -- -- 
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Fig. 2 Comparison between the eight individual abattoir estimates for preferred models with 
both farm and abattoir random effects, with regression lines shown dotted. The diagonal 

(grey shading) compares estimates from adults (x axis) and calves (y axis) for the same code. 
Off diagonal compares estimates between codes for calves (above diagonal) or adults (below 
diagonal). Axes are fixed to a scale of between -1.8 and 1.8 (on the logit probability scale). 

 
There was evidence of random effects for both abattoir and farm for pyrexia (PYR) in 

calves; chronic gastroenteritis (CGE) and healed fracture (HF) in adults; and chronic 
pneumonia and pleuritis (PNEU), chronic pericarditis and traumatic reticulo-pericarditis 
(CARD), liver disease (LD), abscesses (ABS), and skin abrasions (SA) in both age groups. 
Where the full model was preferred, the mean estimate for the variance attributable to 
abattoir was smaller than that due to farm in 10 out of 13 cases, although the largest estimates 
for variance due to abattoir were obtained from lung worm (LW) and muscle atrophy (MA) 
in adults, and renal disease (RD) in both age groups, where no farm random effect was fitted. 
There was a significantly higher (non-overlapping 95% confidence intervals) variance 
estimate for abattoir compared to farm for healed fractures (HF) in adults, and liver disease 
(LD) in both adults and calves. There was no evidence for lack of fit for any model with both 
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farm and abattoir random effects, but a bootstrapped distribution of likelihoods obtained 
using simulated data did not contain the observed likelihood for five of the models including 
just a farm random effect, and one of the models including just an abattoir random effect 
(shown in italics). Some care should therefore be exercised when interpreting the results from 
these six models. 

In addition to the overall random effect of abattoir, it may be useful to compare the 
estimates for individual abattoir effects contained within the fitted random effect structure. 
There was a clear positive linear relationship between the estimated abattoir effects for adults 
and calves for the same code (Figure 2; diagonal plots). For the six codes with highest 
observed prevalence, there was generally positive agreement within age groups between 
abattoir estimates for PNEU and other slaughter codes, as well as between ABS, CARD, HF, 
SA and other slaughter codes for adults. However, there was very little agreement between 
the abattoir effects for LD and the other conditions.  

DISCUSSION 

Of the 92 slaughter codes available, 44 were deemed by animal welfare experts to be 
potentially indicative of on-farm welfare. Even after grouping related conditions, only 4 of 
the 28 potentially relevant codes had a prevalence of over 1% in both adults and calves (an 
additional two codes had a prevalence of over 1% in adults only). Therefore, even with a 
dataset of over 100,000 animals grouped into approximately 10,000 groups of animals, 
considerable difficulties remained in modelling these rare outcomes. However, there was 
significant evidence for a random effect of abattoir (with or without a random effect of farm) 
in either adults or calves for 14 of the code combinations, which tended to be those with the 
highest prevalence. Where both farm and abattoir random effects were indicated, the estimate 
for the variance due to farm tended to be larger than that of abattoir. The relative importance 
of these standard deviation estimates to the prevalence on the logit scale can be compared 
using the square root of the estimates given in Table 1, although it should be noted that the 
abattoir random effect is likely to be under-estimated to a greater degree than that for farm 
due to the smaller number of grouping levels. However, the farm effect variance was 
estimated to be the larger of the two for three of the codes for adults (PNEU, CARD & CGE), 
and there are also a number of conditions for which there is evidence for an effect of abattoir 
but not for farm; LW, HD, MA in adults, CA in calves, and RD in both age groups. This 
observation is consistent with a greater degree of variation between abattoir practices in 
relation to these codes, for example examination of feet and kidneys, which is a highly 
plausible conclusion. It is also worth noting that the prevalence of some of these conditions 
varies considerably between age groups, which supports the decision to model data from 
calves and adults separately.  

There was strong evidence that the individual abattoir effects were consistent between 
some codes, for example PNEU vs. ABS, CARD, CGE, HF and SA, indicating that the 
abattoir-specific factors which tended towards higher or lower levels of reporting are 
consistent between some abattoir codes. This is likely to be due to variation in inspection 
procedures, such as the amount of time available to examine carcasses and training 
procedures for staff within the same abattoir, as well as differences in recording practices 
between abattoirs, such as paper-based vs. electronic recording. One notable exception is LD, 
the abattoir code with the highest prevalence, which does not show any correlation with the 
abattoir effects for other codes, but does show near perfect correlation for the estimates in 
calves vs. adults. This may represent the different slaughterhouse procedure for examining 
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the liver as a discrete organ compared to many of the other conditions, which tend to be 
assessed directly from the carcass. However, it is also worth noting that the abattoir level 
variance for LD was small both in absolute terms and when compared to the relatively large 
estimates for the farm-level variance for the same condition. 

The most likely interpretation of the observed consistency between abattoir effects for 
different codes is that abattoirs with high sensitivity of recording for some conditions tend 
also to have a high sensitivity of recording for other conditions. A more thorough inspection 
procedure at some abattoirs would be expected to result in greater sensitivity to detect a 
variety of different codes at these abattoirs, for example by having inspection procedures that 
better facilitate inspection of the carcass, leading to a higher detection rate for a number of 
different codes relative to an abattoir with different procedures. It may also be possible that 
recording one code on a carcass may lead to a more detailed inspection and therefore higher 
probability of detecting other codes in the same carcass.  However, the correlations presented 
in Fig. 2 are for the overall abattoir effect of detecting these codes, and do not represent any 
possible correlation in detecting different codes on the same carcass, so we do not expect this 
possible effect to be a major contributor to the overall pattern observed. Another possible 
interpretation for the correlation between abattoir effects for different codes is that the 
recording practices do not differ between abattoirs, but a systematic bias exists in the 
decisions for farmers to send animals to different abattoirs based on the age, health status, 
breed or condition of their animals. This would lead to a discrepancy in the true prevalence of 
the relevant abattoir codes at different abattoirs, even after correcting for the farm of origin, 
because the abattoirs are receiving animals from different populations. However, given the 
small number of major abattoirs in Denmark and high proportion of farms sending animals to 
only one abattoir, we find the first interpretation to be most likely. Conversely, negative 
correlations between abattoir effects for different codes may imply a certain level of cross-
classification between codes, although no such effect was observed in these data due to the 
grouping of related codes.  

The use of random effects models to describe parameters of interest presented two main 
methodological challenges. Firstly, the standard likelihood ratio test could not be applied to 
the model selection, because the assumptions regarding the chi-square distribution of 
likelihood ratio are invalidated by the nature of random effects. We solved this problem using 
a computationally intensive method to directly simulate a distribution of likelihood ratios 
under our null hypothesis, to which the observed likelihood ratio could be applied 
(McLachlan, 1987). This method was verified to give the desired 5% type-I error rate based 
on simulated data, and is generally applicable to robust model selection in the context of 
mixed models. The second methodological aspect of our work concerns the 95% confidence 
intervals of the parameters of interest; in this case the variance estimates for farm and abattoir 
random effects, as well as the individual estimates for the effect of each abattoir contained 
within the overall random effects term. There similarly exists no viable distributional 
approximation on which to base 95% confidence intervals for these parameters, but 
parametric bootstrapping approaches can be used to generate these intervals directly. A 
further difference between fixed effect models and random effect models is the effect of 
'shrinkage' in random effects models. This tends to pull the estimates for individual levels 
within random effects terms towards the centre of the distribution, and is known to lead to 
underestimates of the variance of random effects terms in some situations (Burnham & 
White, 2002). The assumption of an approximately normal distribution of effect estimates 
between farms and abattoirs is also important, although in practice inference made from 
random effects models is relatively robust to this assumption as long as the true distribution is 
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continuous and uni-modal. In our case, we believe that the use of random effects terms is 
justified because of the large number of theoretically additive factors contributing to the 
overall distribution of effects between farms and abattoirs, and any shrinkage of individual 
effect estimates towards zero is conceptually conservative and therefore also justifiable in this 
situation. 

In conclusion, our results support the hypothesis that in most cases the majority of the 
observed variance is due to differences between farms, but we also show that abattoir-specific 
effects contribute a significant portion of the observed variation in reported prevalence of 
some slaughter codes. This indicates that the sensitivity of routine surveillance in Denmark is 
affected by differences in the working practices between abattoirs, and it is therefore crucial 
to account for these differences before making use of information derived from slaughter 
codes to make comparisons regarding animal welfare between farms. 
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