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Transmission and Wind Investment
in a Deregulated Electricity Industry

Lajos Maurovich-Horvat, Trine K. Boomsma, and Afzal S. Siddiqui

Abstract—Adoption of dispersed renewable energy technologies
requires transmission network expansion. Besides the transmission
system operator (TSO), restructuring of electricity industries has
introduced a merchant investor (MI), who earns congestion rents
from constructing new lines. We compare these two market de-
signs via a stochastic bi-level programming model that has either
the MI or the TSO making transmission investment decisions at
the upper level and power producers determining generation in-
vestment and operation at the lower level while facing wind power
variability. We find that social welfare is always higher under the
TSO because the MI has incentive to boost congestion rents by re-
stricting capacities of transmission lines. Such strategic behavior
also limits investment in wind power by producers. However, re-
gardless of the market design (MI or TSO), when producers be-
have à la Cournot, a higher proportion of energy is produced by
wind. In effect, withholding of generation capacity by producers
prompts more transmission investment since the TSO aims to in-
crease welfare by subsidizing wind and the MI creates more flow
to maximize profit.

Index Terms—Market design, mathematical programming with
equilibrium constraints (MPEC), transmission, wind power.

NOMENCLATURE

Indices and Sets:

Power producers.
Conventional power producers.
Wind power producers.
Grid nodes.
Node index for starting node of line .
Node index for ending node of line .
Transmission lines.
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Discrete capacity level of transmission
investment on line (including the existing
level, ).
Set of lines starting at node .
Set of lines ending at node .
Time periods.
Scenarios.

Parameters:
Amortized expansion cost (including for
the existing level, ) of line with
capacity level (€/MW).
Transmission capacity (including for the
existing level, ) of line with capacity
level (MW).
Network susceptance of line with capacity
level .
Dummy parameter for slack node .
Intercept of the inverse demand curve at node
(€/MW).

Slope of the inverse demand curve at node
(€/MW ).

Conjectured response of producer on the
change in sales by producer at node .
Amortized investment cost of producer at
node (€/MW).
Generation cost of producer at node
(€/MW).
Initial generation capacity of producer at
node (MW).
Availability factor for wind generation at
node in period for scenario .
Probability of scenario .
Renewable portfolio standard (RPS)
requirement (%).

Primal Variables:
Voltage angle at node in period for
scenario (rad).
Transmission investment in capacity level
for line (MW).
Realized flow on line at capacity level in
period for scenario (MW).
Realized flow on line in period for scenario
(MW).

Generation capacity investment at node by
producer (MW).
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Generation at node by producer in period
for scenario (MW).

Sales at node by producer in period for
scenario (MW).
Electricity price at node in period for
scenario (€/MW).

Dual Variables:

, Shadow price on capacity for transmission
line at capacity level in period for
scenario (€/MW).
Shadow price on electricity flow on line
at capacity level in period for scenario
(€/MW).
Shadow price on electricity flow on line in
period for scenario (€/MW).
Congestion fee at node in period for
scenario (€/MW).
Dual for slack node in period for scenario

.
, Shadow price on generation capacity at node

for producer in period for scenario
(€/MW).
Shadow price on energy balance for producer
in period for scenario (€/MW).

Renewable energy certificate (REC) price in
period for scenario (€/MW).

I. INTRODUCTION

A. Background

R ESTRUCTURING of the electric power industry was
precipitated by the belief that the regulated paradigm

would not meet growing demand efficiently [1]. As the func-
tions of the industry such as generation, distribution, and
retailing could be handled together by an investor-owned utility
(IOU) with transmission planning and reliability under the aus-
pices of a system operator, there was little incentive to develop
new technologies for the market when profits were regulated.
At the same time, since a single IOU operated in each area
and prices were merely set administratively, there was no need
for either risk management or strategic analysis. Although a
plethora of post-restructuring market designs have emerged [2],
they have generally required incumbent IOUs to divest their
generation assets with transmission and distribution remaining
regulated. Consequently, these reforms have introduced en-
dogenous price formation and imperfect competition, which
necessitate a strategic view of decision making [3]. Moreover,
market-driven transmission investment has been proposed by
the US FERC's July 2002 Standard Market Design (SMD) and
the EU's Regulation EC 1228/2003 [4].
Recently, sustainability issues have entered the policy debate.

Several governments are committed to emissions targets
in order to mitigate the effects of climate change, e.g., the EU's
aim of 20-20-20 by 2020 [5]. The policymaking dilemma is to
forge a delicate balance between achieving the targets while not
interfering with industry. Ironically, relative to the centralized
paradigm, policymakers have ceded more control to industry

while simultaneously having set loftier goals in terms of eco-
nomic efficiency and environmental sustainability. Since much
of the transition to a sustainable energy system will rely on
wind as a lynchpin technology, aspects of wind such as inter-
mittency, non-dispatchability, and remoteness mean that poli-
cymakers will need to consider concomitant transmission ex-
pansion when devising measures to encourage wind investment
[6]. Consequently, policymakers require a deeper understanding
of how market designs interact with strategic behavior in deliv-
ering outcomes.

B. Literature Review
Under regulation, conventional least-cost methods could be

employed to determine optimal transmission and generation
investment [7]. However, with deregulation, transmission and
generation investment are made by separate entities with dis-
tinct and often conflicting incentives. For example, regulated
transmission system operators (TSOs) seek to maximize social
welfare, while power companies are interested in profit maxi-
mization. In order to handle such game-theoretic interactions,
complementarity modelling has been proposed to find Nash
equilibria, i.e., solutions from which no agent has a unilateral
incentive to deviate [8], [9]. Furthermore, complementarity
modelling is amenable for analyzing strategic behavior in
deregulated power industries due to its accommodation of
physical features of the power system [10].
Bi-level problems are particularly relevant for policy anal-

ysis of the strategic interactions that arise when a dominant
(leader) agent influences equilibrium prices by anticipating
the decisions of followers at the lower level. Effectively, the
leader's optimization problem is constrained by a set of op-
timization problems and equilibrium constraints at the lower
level. If each lower-level problem is convex, then it may be re-
placed by its Karush-Kuhn-Tucker (KKT) conditions, thereby
re-formulating the bi-level problem as a mathematical program
with equilibrium constraints (MPEC). As [11] demonstrate in
addressing the optimal offering strategy of a dominant power
company, the endogeneity in the objective function of an
MPEC may be resolved by using strong duality to render the
problem as a mixed-integer linear program (MILP) and to treat
complementarity conditions via disjunctive constraints [12].
Bi-linear expansion may alternatively resolve the endogeneity
in the MPEC's objective function [13]. Closer to our effort are
[14] with a welfare-maximizing TSO at the upper level making
transmission investment constrained by market clearing at the
lower levels and [15] with a cost-minimizing TSO at the upper
level making both transmission and wind investment deci-
sions constrained by market-clearing decisions of producers
at the lower level(s). In contrast to work that assumes a fixed
transmission network [16], [15] illustrates the need to consider
transmission and wind jointly.
Still within a bi-level framework, [17] uses the framework

of [18] to investigate a two-stage duopoly in which producers
make investment decisions in the first stage and operational ones
in the second stage. The resulting (closed-loop) bi-level equilib-
rium problem with equilibrium constraints (EPEC) yields the
same result as an open-loop mixed-complementarity problem
(MCP) for any conjectural variation in the spot market as long
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as there is a single load period and the spot market is at least
as competitive as in the Cournot case. This justifies a single-
level approximation of the producers' bi-level problem. Such
an equivalence may still hold when there are multiple load pe-
riods as demonstrated by an example from [17]. However, at
the same time, [17] presents a counter-example in which the
installed capacity is actually lower in the closed-loop (EPEC)
model relative to the open-loop (MCP) model when spot mar-
kets are closer to being perfectly competitive, thereby indicating
that open-loop results may not always generalize for multiple
time periods. Moving on to a tri-level model, [19] and [20] have
a welfare-maximizing TSO at the upper level making transmis-
sion investments, producers at the middle level making gener-
ation capacity investments, and market clearing at the lower
level. Thus, this is a more complicated problem than even an
EPEC, and neither [19] nor [20] attempts to solve it directly.
Rather, they compare pre-determined transmission investment
proposals from the perspective of various planners. In contrast
to [19], [20] focuses onmarket power by the producers and notes
that diverging objectives for the TSO may lead to politically in-
feasible investment plans.
Although transmission expansion has largely remained under

the control of regulated TSOs, market-based models for trans-
mission investment have been proposed in both the UK and the
US. For example, [21] posits a role for a merchant investor
(MI) who would build new transmission lines motivated by
the collection of congestion rents between grid nodes. How-
ever, the efficient outcomes hypothesized by [21] under the MI
are subverted if market power exists [22]. In discussing the
landscape for merchant transmission investment in Europe, [23]
notes that financial transmission rights (FTRs) would be bene-
ficial for dealing with externalities and providing hedging ca-
pabilities for investors. Yet, empirical analyses of markets for
FTRs in the USA have shown inefficiencies, e.g., divergent for-
ward and spot prices for congestion rents, to exist in their oper-
ations, especially in congested regions [24].

C. Research Objectives and Contribution
Given this background, we aim to gain policy insights into

market design by analyzing transmission and wind investment
by distinct agents reflecting strategic behavior: at the upper
level, we posit that a TSO or an MI invests in new transmission
lines (acting as a Stackelberg leader), while at the lower level,
profit-maximizing conventional and wind producers make
investment and operational decisions with transmission flows
governed by the relevant grid owner. In contrast to [15], we
allow for market power at the lower level and find that this
specification of industry (as behaving either perfectly com-
petitively or à la Cournot) affects both lower- and upper-level
decisions. Moreover, unlike the extant literature, we investi-
gate the implications of transmission investment made by an
MI in a bi-level model. Finally, we explore the impact of a
policy measure such as the renewable portfolio standard (RPS)
[25]. A cap-and-trade mechanism for emissions could also be
investigated using our approach [26].
We demonstrate that results are largely intuitive if producers

at the lower level are price takers: generation capacity is added
by the least costly producers, the conventional producer at the

node with the highest demand does not face competition, and
power flows from the less costly wind producer to the node
with more capital-intensive (wind) producers. The impact of
having the TSO or the MI at the upper level affects mainly the
magnitudes of the outcomes and not their fundamental com-
positions. Under a lower-level industry behaving as a Cournot
oligopoly, however, regardless of the market design (TSO or
MI), a greater fraction of generation comes from wind because
producers withhold capacity. Their exercise of market power
causes a welfare-maximizing TSO to subsidize wind to boost
consumer surplus and a profit-maximizing MI to build more
transmission lines in order to encouragemore transmission flow.
The somewhat counterintuitive result under Cournot leads to
power flow from a wind producer to the node where a con-
ventional producer was the sole incumbent. Finally, by imple-
menting an RPS constraint requiring a given percentage of en-
ergy to be provided by renewable sources, we examine how the
renewable-boosting outcome of the oligopoly may be attained
even under perfect competition.

D. Structure of the Paper

In Section II, we present our modelling assumptions and
the mathematical formulations for the capacity-expansion
problems under various market designs. Next, in Section III,
we implement numerical examples on a three-node network
to gain insights about how market power and market design
interact to drive investment outcomes. We conclude the paper
in Section IV by summarizing our main points, discussing the
limitations of our approach, and outlining directions for future
research. The Appendix re-formulates Section II 's MPECs.

II. PROBLEM FORMULATION

A. Assumptions

We assume that transmission capacity expansion can be made
in discrete levels, , for each line of the net-
work. The susceptance of a line, , and, thus, the power
flow, , depend on the chosen capacity level. Following
[15], we use a DC load-flow approximation for network power
flows, which is an acceptable convention in power systems eco-
nomics as long as voltage angle differences are small, and as-
sume that the realized power flow on line for capacity level
in period and scenario is proportional to the susceptance

and voltage angle difference, i.e.,
. If capacity level is for line , then

with being positive or negative, depending
on the direction of the flow. Furthermore, for ,

such that without any artificial constraints
on the voltage angles. Thus, the realized flow on line can be
computed as , . As a result, the net
imports at node are .
Each producer is either conventional (using fossil fuel) or

wind. Conventional producers, , have linear cost func-
tions, while wind producers, , do not incur operational
costs. In addition, conventional producers can decide howmuch
to generate, whereas wind output is variable and non-dispatch-
able, i.e., determined by the availability factors . Such
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variability in wind output may be due to differing wind poten-
tials at various locations and uncertainty in future efficiency
improvements of the technology. Other sources of variability,
such as demand uncertainty, river inflows, and plant outages,
likewise, drive investment decisions. However, whereas power
companies may have years of experience in forecasting these
sources, this may not be the case for the future availability of
wind. Moreover, with the expected growth in renewables, wind
power may account for a substantial share of variability in a
future power system, and we take this as our main focus while
acknowledging that it is not the only driver of investment.
Meanwhile, since market rules like priority of wind production
limit curtailment except in extreme situations, we assume wind
to be non-dispatchable. Nevertheless, our model can easily be
adapted to incorporate the dispatch of wind production. We
account for variability in wind output by assuming a known
and discrete distribution described by a number of scenarios
capturing the wind availability factors and their prob-
abilities . Whereas conventional generation is typically
controllable, other renewable energy sources, e.g., solar and
run-of-river hydro, likewise exhibit variability in output and
are non-dispatchable, and our approach could, therefore, also
apply to them. We focus on wind, however, because its output
tends to be more variable.
While any producer can install capacity at any node and

sell electricity generated elsewhere by accessing transmission
capacity, most power companies are well diversified and may
own a portfolio of both conventional and wind plants. However,
specialization also leads firms to concentrate on particular
technologies, e.g., [26] report that the largest two firms in
California have proportionately less conventional generation
than the others as part of their portfolios. Thus, it is appropriate
to think of each producer in our model as being a composite
producer of a particular type (either predominantly conven-
tional or predominantly wind). We assume that each node
in our transmission grid has its own linear inverse demand,

, in each period and sce-
nario , which depends on sales at the node by all producers in
equilibrium. Depending on the market design, each producer
is part of either a Cournot oligopoly or a perfectly competitive
industry. The degree of market power is reflected by the conjec-
tured price response, which is the first derivative of the inverse
demand with respect to electricity sold by a given producer, i.e.,

,
where for and

otherwise. Hence, we model perfect competition
and Cournot oligopoly when equals and
0, respectively.
We formulate the transmission-expansion problem of the MI

as a bi-level problem: transmission investment decisions are
made at an upper level by the MI in anticipation of subsequent
investment in and operation of wind and conventional gener-
ation capacity by the producers, transmission flow decisions
of the MI, and market clearing, all captured by a number of
lower-level problems. Effectively, we have a dominant MI in-
vesting in transmission capacity with wind and conventional
producers as followers. We do not consider competing MIs for

Fig. 1. Decision-making levels.

three reasons. First, only a few entities have the expertise to
carry out transmission projects, e.g., the BritNed DC cable be-
tween the U.K. and The Netherlands was constructed in 2011 as
a joint venture formed by a private holding company involving
the National Grid and TenneT. Second, considering competing
grid owners would typically involve a third decision-making
level for procurement of transmission investment rights, which
would make the problem a tri-level one [20] and, therefore,
more computationally challenging. As we have mentioned, pa-
pers dealing with tri-level models for transmission planning typ-
ically do not solve them directly [19], [20]. By contrast, stylized
tri-level models that can be solved explicitly abstract from at-
tributes of the physical network [27], which is contrary to our
objectives. Third, we would like to compare the MI and TSO
market designs, and introducing a third level with procurement
auctions would preclude such an analysis.
To approximate the impact on generation expansion and oper-

ational planning, the producers' problems are single level. This
leads to an open-loop problem (MCP) for the producers rather
than amore complicated closed-loop one (EPEC).While treating
the producers' problems over two levels may impact our results
based on the findings of [17], we use an open-loop representation
of the producers' problems because the discrepancy between
open- and closed-loop models occurs only for departures from
a Cournot setting. Indeed, the imperfectly competitive nature
of most electricity spot markets implies that results from the
Cournot case are of greater significance, which is a central
point of our paper and an issue that is relatively unaddressed in
most hierarchical models of transmission investment. Although
transmission and generation investment decisions are static,
we allow for dynamic operational decisions and allocation of
transmission capacity over time and scenarios. Thus, investment
decisions are made in a first stage without anticipation of the
wind output, whereas operational decisions are adapted to the re-
alized scenario of availability factors, which leads to a two-stage
stochastic program (Fig. 1). The stochastic bi-level problem
can be re-formulated as an MPEC with equilibrium constraints
obtained by deriving the optimality conditions for all lower-level
problems. Since the lower level comprises convex optimization
problems, their KKT conditions are sufficient for optimality.
As benchmarks, we considermarket designswith either awel-

fare-maximizing central planner (CP) or a TSO. Since the CP
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controls all aspects of the energy market, it solves a single-level
stochastic problem covering transmission and generation invest-
ment as well as generation dispatch and transmission flows. Like
the MI, the TSO has a bi-level stochastic programming problem
with all decisions made as per the MI market design. The only
difference is that the TSO maximizes expected social welfare
(SW) rather than expected profit from grid operations. Finally,
in anticipation of forthcoming EU 2030 targets, we also run a
numerical example with a stringent RPS target of 80%. This is
plausible because the EU will require a 40% reduction in
emissions by 2030 relative to 1990 levels, which necessitates
a deep decarbonization of the power sector specifically due to
foreseen electrification of the transport sector. Hitting these tar-
gets will mean surmounting numerous technical challenges, but
we are focused more on the implications of market design in
such a transition assuming legally binding policy commitments.

B. Merchant Investor
1) MI's Upper-Level Problem: At the upper level, the MI de-

cides on the transmission capacity level of a number of existing
or potentially newly constructed transmission lines in order to
maximize its expected profit given by the difference between
grid congestion rents and investment costs:

(1)

(2)
(3)

Note that if , then existing capacity remains and no
new capacity is constructed. We model congestion pricing by
assuming that all power flows through a hub node of the network
without generation and consumption.We further assume that the
MI charges a node-dependent congestion fee for transmitting
power from this hub to each node [10]. The shadow price on
market-clearing condition (33) sets the congestion fee. Upper-
level problem (1)–(3) is constrained by lower-level problems
and equilibrium conditions.
2) MI's Lower-Level Problem: At the lower level, the MI de-

termines flows on existing and newly constructed lines in order
to maximize expected congestion rents:

(4)

(5)
(6)
(7)

(8)

(9)

(10)

where and u.r.s. denotes variables of
unrestricted sign. Constraint (5) defines the flow on each line for
each capacity level as a function of the difference in voltage an-
gles, transmission capacity choice (fixed at the upper level), and
line susceptance [15]. The upper and lower limits on transmis-
sion flows for each capacity level of each line are set by (6) and
(7), respectively, while (8) indicates the realized flow on each
line. Restrictions (9) set the slack node for calculating voltage
angles of the network. Moreover, the corresponding dual vari-
ables are in brackets.
The KKT conditions for the MI's lower-level problem are

(11)

(12)

(13)

(14)
(15)
(16)

(17)

(18)

3) Producers' Lower-Level Problems: Each conventional
producer decides on investment and operation of gen-
erating units by maximizing expected profit. This is revenue
minus congestion rent, operating cost, compliance cost with
the RPS stemming from renewable energy certificates (RECs),
and investment cost:

(19)

(20)

(21)

(22)

Here, . Congestion pricing im-
plies that a producer receives/makes a payment to send power
from the generation node/hub node to the hub node/sales node
as in [10]. These payments are again shadow prices from the
market-clearing condition (33). The problem is subject to ca-
pacity constraints on production (20) and energy balance be-
tween total production and sales (21). Following [25], we ac-
count for the REC payment via the exogenous RPS fraction, ,
and the shadow price on the RPS constraint (34).
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The KKT conditions for this problem are

(23)

(24)

(25)

(26)

(27)

Each wind power producer faces a similar problem:

(28)

(29)

Note that in the objective function production costs of wind
power production are assumed to be negligible and REC pay-
ments are replaced by earnings from RECs. Furthermore, the
constraint (20) is replaced by (29) to reflect the non-dispatch-
able nature of wind.
The corresponding KKT conditions are

(30)

(31)

(32)

4) Equilibrium Conditions: Finally, the market-clearing and
the RPS constraints are

(33)

(34)

5) MI's MPEC Formulation: The MI's MPEC is

where , , , , ,
, , , , are lower-level dual vari-

ables.

C. Transmission System Operator

At the upper level, the TSO decides on transmission capacity
such as to maximize expected social welfare:

(35)

At the lower level, the TSO enforces network feasibility con-
straints, (5) –(10), in which is fixed at the upper level. Thus,
the TSO's MPEC is

where .

D. Central Planner

The CP's stochastic mixed-integer non-linear programming
(MINLP) problem is

(36)

III. NUMERICAL EXAMPLES

A. Data

We implement the three market designs on a three-node net-
work with two operating hours and scenarios (Fig. 2). The ar-
rows indicate forward directions for the flows, i.e., the corre-
sponding decision variable will have a positive (negative) sign
if the realized flow is in the indicated (opposite) direction. All
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Fig. 2. Transmission network.

Fig. 3. Transmission line parameters.

nodes are initially disconnected, but transmission lines with at-
tributes given in Fig. 3 may be built. Here, the transmission
capacity (susceptance) is indicated by the broken (solid) series
measured on the left (right) axis. Specifically, we consider fif-
teen discrete capacity levels with corresponding susceptances
calculated according to [28]. Although in our example, the net-
work is initially disconnected, because we discretize the trans-
mission capacity levels, we could easily implement an instance
with positive initial line capacities. Since we model representa-
tive hours, the transmission investment costs for lines of length
700 km are amortized on an hourly basis assuming a construc-
tion cost of $1080/(MW-km), which is in line with [15]. These
costs range from €11.9/MW to €337/MW for 220-kV lines cor-
responding to capacities 3.7 MW to 103.7 MW, respectively.
For generation, we use the US Energy Information Administra-
tion's 2014 Annual Energy Outlook to calculate operating costs
and amortized capacity costs of conventional ($2930/kW cap-
ital cost and 40% efficiency for coal) and wind plants (capital
costs of $2210/kW and $6230/kW for onshore and offshore tur-
bines, respectively). All amortization assumes a lifetime of 20
years and an interest rate of 3% per annum. Finally, in Table I,
we assume that the demand centre is at node 1 (with an existing
conventional plant), but wind resources are based at thinly pop-
ulated locations (nodes 2 and 3).

TABLE I
DEMAND AND PRODUCTION PARAMETERS

B. Computational Issues

The problems are implemented in GAMS running on a
Windows workstation with a 3.30-GHz Intel i7 core processor
and 16 GB of RAM. While the CP's MINLP and the TSO's
MPEC are re-formulated as mixed-integer quadratic programs
(MIQPs), the MI's MPEC is re-formulated as an MILP (see the
Appendix). All problems are solved via GUROBI. Computa-
tional times with two periods and two scenarios range from less
than one second (CP and all TSO instances) to 855 s (MI with
PC) and 7735 s (MI with CO). In the latter instance, there are
3481 equations, 1520 continuous variables, and 484 discrete
variables. The relative optimality gap is set to 5%.

C. Example 1: Base Case Without RPS

As a benchmark, we find that the CP simply matches the
most efficient resource with the most valuable demand nodes
(Table II). The conventional producer at node 1 serves all of
the local demand, while transmission lines are constructed from
nodes 2 to 3 with an effectively zero expected profit, ,
for producers if the subsidy on congestion rent from the CP and
the legacy capacity for the conventional producer are ignored.
Moreover, the expected profit from grid operations, ,
is negative as congestion rents are internalized in a centrally
planned economy. Meanwhile, the TSO's result under perfect
competition is similar to that of the CP aside from the levying
of congestion rents, which drives the producers' expected profits
to zero (with the exception of the conventional producer). This
is in contrast to [19] because of the difference in formulation: we
have sales and dispatch decisions made by producers, whereas
[19] assumes that only dispatch is made by producers with sales
and flow decisions performed by a welfare-maximizing TSO.
The MI under perfect competition delivers a lower social wel-
fare because of its incentive tomaximize its own expected profit,
which is attained by reducing line capacities to boost conges-
tion rents. Consequently, the producers adopt less generation ca-
pacity, and the expected nodal prices and differences in expected
congestion rents are higher. For example, under the MI, it costs
a perfectly competitive producer at node 2 nearly €16/MW to
send power to node 3 as opposed to about €4/MW with a TSO.
Hence, the MI delivers lower social welfare and less renewable
generation than the TSO.
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TABLE II
RESULTS FOR EXAMPLE 1

Under a Cournot oligopoly, producers have the incentive to
withhold generation capacity in order to boost expected profits.
Anticipating this strategic behavior, the TSO supports expected
SW by effectively subsidizing wind generation by investing
heavily in line 1. This creates an opening for the wind producer
at node 2 to benefit at the expense of the conventional producer
at node 1. Consequently, the generation investment and oper-
ations observed under perfect competition are altered as a re-
sult of the exercise of market power by the producers and the
countervailing decisions of the TSO at the upper level. For an
MI, the strategic withholding by producers at the lower level
is likewise undesirable because it cuts into transmission flows.
Recognizing this, the MI mitigates losses to its profit by encour-
aging transmission. Thus, for different reasons than the TSO, the
MI also invests in more distinct lines under Cournot oligopoly
than under perfect competition. However, total transmission ca-
pacity drops under the Cournot setting because of the producers'
propensity to withhold generation and the MI's reluctance to
subsidize wind to increase social welfare. Finally, although the
MI's actions result in wind investment at node 3, expected re-
newable generation, , is greatest under the TSO.

D. Example 2: Renewable Portfolio Standards

Given that the EU's 2030 objective is to decrease emis-
sions by 40% relative to 1990 levels, i.e., implying a deep de-
carbonization of the power sector, we run our model with an
RPS target of 80% (Table III). We find that the effective sub-
sidy for wind (and tax on conventional generation) enables the
high penetration of renewables seen under Cournot oligopoly
in Table II to be achieved here even under perfect competition.

TABLE III
RESULTS FOR EXAMPLE 2

In effect, RPS mimics the high renewable penetration with al-
teration of generation patterns under oligopoly. A numerical ex-
ample with a 60% RPS target has similar qualitative results, i.e.,
a higher penetration of wind under perfect competition.

E. Larger Problem Instances
In order to investigate the robustness of our insights, we also

implement two additional examples. For the three-node network
with four scenarios and eight time periods, computational times
for the CP and TSO market designs are again less than one
second. However, those for the MI market designs balloon to
9 h (with PC) and 35 h (with CO). Nevertheless, the qualita-
tive insights are similar to those in Example 1. For a six-node
network with eight candidate transmission lines, computational
times for the CP and TSO market designs are about four min-
utes, and the results are as for the three-node network, i.e., trans-
mission lines are built to transfer the wind power to consump-
tion centres. However, the MI market designs become more
challenging to solve without recourse to decomposition, which
is an area for future work.

IV. DISCUSSION AND CONCLUSIONS
Deregulation of the power sector has created various market

designs to balance competing economic and social objectives.
Here, we take a complementarity approach to compare MI and
TSO market designs in analyzing a transition to a more sustain-
able electricity industry. By re-formulating the bi-level prob-
lems as MPECs and then as MILPs or MIQPs, we implement
these market designs for a three-node example and along with
an RPS requirement. We demonstrate how market design and
market power interact to result in seemingly counterintuitive
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outcomes. In particular, we note that under the CP and TSO
(with perfect competition) market designs, the results are sim-
ilar. Intuitively, the conventional producer satisfies all of the
local demand, while a transmission line linking nodes with wind
producers is constructed. This results in generation expansion
by the conventional producer and the cheaper (on-shore) wind
producer, and power flows towards the location of the more ex-
pensive (off-shore) wind producer. The MI market design under
perfect competition is qualitatively similar in terms of transmis-
sion investment, generation expansion, and power flows. How-
ever, since the MI is concerned about maximizing its own ex-
pected profit only, it strategically invests in less transmission ca-
pacity to increase congestion rents, thereby earning positive ex-
pected profit. The expected generation from renewables is sim-
ilar to that under the CP and TSO (with perfect competition)
market designs.
Allowing for market power at the lower level leads to

less generation investment as producers seek to drive up the
market-clearing price. Under the TSO market design with a
Cournot oligopoly, the conventional producer's act of with-
holding investment, indeed, increases its own expected profit
and average prices across the network. However, this with-
holding could have a deleterious effect on social welfare, which
the TSO seeks to mitigate by effectively subsidizing more
transmission investment along lines involving the on-shore
wind producer. Consequently, this countervailing action by
the TSO creates an opening for the on-shore wind producer
to expand generation capacity in order to offset some of the
effects of the market power exercised by the conventional pro-
ducer. Somewhat counterintuitively, expected generation from
renewables increases significantly with a Cournot oligopoly
vis-à-vis perfect competition, and the on-shore wind producer
actually exports power to the conventional producer's node.
This rather surprising result is also encountered in the MI

market design with a Cournot oligopoly but for different rea-
sons. As with the TSO, the lower level now has producers with
the incentives to withhold generation capacity in order to in-
crease expected profits and prices. However, such behavior will
conflict with the MI's objective to maximize expected profit,
which consists of the product of congestion rents and power
flows. Since the latter are adversely affected by the producers'
withholding, the MI takes countermeasures to prevent power
flows from dropping too much. Thus, it also invests in lines con-
necting the on-shore wind producer with the rest of the network,
albeit by much less than the TSO. This enables power genera-
tion by not only the on-shore wind producer but also the more
expensive off-shore wind producer. With an RPS constraint, the
enhanced role for wind producers supported by complementary
transmission investment is observed even when the lower level
does not have producers behaving à la Cournot. Hence, the de-
sirable policy target of significant renewable penetration may
be attained (even in the presence of conflicting game-theoretic
incentives) without the need to tolerate market power.
Although our work reflects salient features of the power

sector such as strategic behavior, loop flows, and variable,
non-dispatchable wind output under different market designs, it
may be enhanced further. Possible pathways for extension are
implementation of the models on more realistic test networks,

a larger number of scenarios for wind output, and a bi-level
representation of producer behavior, which will necessitate
recourse to decomposition algorithms.

APPENDIX
PROBLEM RE-FORMULATIONS

We re-formulate the MPECs in Section II as mixed-integer
linear programs (MILPs) or mixed-integer quadratic programs
(MIQPs). Starting with the MI's objective function, we con-
vexify its non-convex terms by applying strong duality from
linear programming (LP) to its lower-level problem:

Consequently, the non-convex part of theMI's objective func-
tion can be replaced by a linear expression to yield the following
objective function:

(37)

For this to hold, the primal and dual solutions, , ,
, and , must satisfy the KKT conditions of the MI's

lower-level problem.
Next, the KKT conditions can be replaced by disjunctive con-

straints [12]. For the MI's lower-level problem, these are

(38)

(39)

(40)

(41)

(42)
(43)

(44)
(45)

(46)

(47)

(48)
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(49)

(50)

(51)

For conventional producer , they are

(52)
(53)

(54)

(55)

(56)

(57)
(58)
(59)

(60)

(61)
(62)
(63)

Analogously, for wind producer , the disjunctive con-
straints are the same as in (52)–(63) with the following replace-
ments for (54), (56), (58), and (59):

(64)

(65)

(66)
(67)

Finally, the market-clearing and RPS constraints become

(68)

(69)
(70)

(71)
(72)

Hence, the MILP for the MI is

where
.

Since the TSO's objective function (35) is quadratic, we di-
rectly use disjunctive constraints to formulate its MIQP:

where
. Likewise, the CP's MINLP may be re-formulated as an

MIQP:
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