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Abstract: The sesquiterpene lactone thapsigargin is found in the plant Thapsia garganica L., 

and is one of the major constituents of the roots and fruits of this Mediterranean species.  

In 1978, the first pharmacological effects of thapsigargin were established and the full structure 

was elucidated in 1985. Shortly after, the overall mechanism of the Sarco-endoplasmic reticulum 

Ca2+-ATPase (SERCA) inhibition that leads to apoptosis was discovered. Thapsigargin has 

a potent antagonistic effect on the SERCA and is widely used to study Ca2+-signaling. The 

effect on SERCA has also been utilized in the treatment of solid tumors. A prodrug has been 

designed to target the blood vessels of cancer cells; the death of these blood vessels then 

leads to tumor necrosis. The first clinical trials of this drug were initiated in 2008, and the 

potent drug is expected to enter the market in the near future under the generic name 

Mipsagargin (G-202). This review will describe the discovery of the new drug, the on-going 

elucidation of the biosynthesis of thapsigargin in the plant and attempts to supply the global 

market with a novel potent anti-cancer drug. 

Keywords: thapsigargin; mipsagargin; Thapsia garganica; pharmacology; biosynthesis; 

traditional use; sesquiterpene lactone 
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1. The Genus Thapsia 

1.1. Traditional Use and Description 

Thapsia L. species, otherwise known as deadly carrots, have been used in traditional medicine in the 

Mediterranean region for thousands of years. Hippocrates and Theophrastus first described the  

skin-irritating effects and medicinal uses of Thapsia garganica L. around 300–400 BC. In 1597, the effect 

of Thapsia was vividly described as “if a man do stand where the wind doth blow from the plant, the air 

doth exulcerate and blister the face, and every other bare or naked place that may be subject to his 

venomous blast and poisonous quality” [1]. Although this description is an exaggeration, direct skin 

contact with the plant can result in dermatitis in the form of erythema, small blisters and itching. The 

resin from the roots and stems of T. garganica has been used as a remedy against a number of diseases 

and maladies: female sterility, pulmonary diseases, catarrh, fever, pneumonia and as a counter irritant 

for the relief of rheumatic pains [1–3]. In 1857 the use of T. garganica in Europe was recommended for 

the treatment of lung diseases, catarrh and rheumatic pains, through the application of a medicinal plaster 

containing the root resin [4]. In present day Morocco Thapsia spp. are still in use in traditional  

medicine [3,5]. Furthermore, T. garganica has been featured in several pharmacopoeias [6]. 

The effects of Thapsia spp. are due to the presence of specialized metabolites, such as sesquiterpenoids, 

which are found in all members of the genus [7]. In particular, the bioactivity of the sesquiterpenoid 

thapsigargin extracted from T. garganica has been thoroughly investigated. In 1978, for instance, it was 

shown that thapsigargin functions as a potent histamine liberator when tested on rat mast cells [8].  

In addition, the treatment of mammalian cells with thapsigargin was shown to result in raised calcium 

levels in the cytoplasm and in 1990 thapsigargin was established as an inhibitor of the  

sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) [9].  

1.2. Phylogeny of Thapsia L. 

Thapsia is a small genus of herbaceous perennials in the Apiaceae family that is widely distributed 

across the Mediterranean from Portugal and Morocco to Greece and Turkey. The most extensively 

distributed species within the genus is T. garganica [10,11]. Thapsia species have characteristic bright 

yellow flowers, four-winged seeds, large umbels and stems that can reach a height of up to two meters 

(Figure 1). The genus is currently poorly defined, with frequent errors in species identification or conflicting 

views on which names define which members of the group. This is especially problematic in the case of 

users of traditional medicine, where the selection of the wrong plant can lead to the intoxication of 

patients. In Morocco, for example, where women use the root of what should be Thapsia villosa L. in 

preparations against sterility or to gain weight, cases of vomiting and violent diarrhea have been reported [2], 

likely due to the use of morphologically similar species. Based on the most recent phylogenetic analysis 

of Thapsia, the genus includes 14 species [10]. Chemotaxonomic revisions, however, are still ongoing 

and frequently reveal new intra- or interspecies relationships [12].  
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Figure 1. Show the yellow inflorescence of Thapsia garganica, and the mature infructescence 

of the species. Photos by Karen Martinez. 

1.3. Sesquiterpenoids in Thapsia 

Sesquiterpenoids are widespread within the genus Thapsia, however, it is thapsigargin and the group 

of similar compounds, guaianolides, which are of most interest (Table 1). Due to the toxicity of thapsigargin 

towards mammals, one in planta function is expected to be protection of the plants from herbivory. 

Thapsigargin has only been reported in T. garganica [13] and T. gymnesica Rosselló and Pujadas [7]. 

The concentration of thapsigargin varies even within species, seemingly dependent of its locality [13]. 

Wild plants of T. garganica have a concentration of thapsigargin of 0.2%–1.2% of the dry weight of the 

roots and 0.7%–1.5% of the dry weight of the ripe fruits, whilst the dried stems and leaves contain a total 

concentration of 0.1%–0.5% and 0.1% respectively [13].  

Table 1. Thapsigargin and similar guaianolides reported within Thapsia. The table is amended 

from Drew et al. [14] The top sketch illustrates the core structure of thapsigargin.  
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Table 1. Cont. 

Species Compound R1 R2 Reference 

T. garganica L. 

Thapsigargin 
 

[8] 

Thapsigargicin O
O O

 
[8] 

Thapsivillosin C-E See below  [15] 

Thapsivillosin I O
O

O

 
[13] 

Thapsivillosin J O
O O

 
[13] 

Thapsivillosin L O
O O

 
[16] 

Nortrilobolid H 
 

[17] 

Trilobolid H 

O

 
[13,17] 

not named O
O

H [18] 

not named O
O

H [18] 

T. gymnesica Rosselló 
& A. Pujadas 

Thapsigargin See above  [7] 
Thapsigargicin See above  [7] 
Nortrilobolid See above  [7] 

T. villosa L. 

Thapsivillosin A O
O O

 
[19] 

Thapsivillosin B O
O O

 
[13] 

Thapsivillosin C O
O

 

O

 
[13] 

Thapsivillosin D O
O O

 
[13] 

Thapsivillosin E O
O O

 
[13] 

Thapsivillosin F H 
O

 
[13] 

Thapsivillosin G O
O O

 
[13] 

Thapsivillosin H 
O

O

 or 
OH

O

 
Exact positions undefined 

[13] 

O
O O

O
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Table 1. Cont. 

Species Compound R1 R2 Reference 

T. villosa L. 

Thapsivillosin K O
O

 

O

 
[13] 

Thapsitranstagin O
O

 

O

 
[13,20] 

Trilobolide See above  [19] 

T. transtagana Brot. 

Thapsitranstagin O
O

 

O

 
[13,21] 

Thapsivillosin B See above  [13,21] 
Trilobolid See above  [13,21] 

Thapsivillosin K See above  [13,21] 

T. smittii Simonsen, 
Rønsted, Weitzel and 

Spalik 
Thapsivillosin A, B, H See above  [19] 

2. Thapsigargin and Guaianolide Biosynthesis in Thapsia 

Terpenoids are the largest class of small natural products and are structurally highly diverse, containing 

metabolites of both general and specialized metabolism [22]. Within the terpenoids, sesquiterpenoids (C15) 

are a large group of specialized metabolites. Thapsigargin is a sesquiterpene lactone and belongs to the 

subgroup guaianolides. This group has a guaiene backbone and a lactone ring (see Table 1). 

2.1. The Biosynthesis of Sesquiterpene Lactones 

Sesquiterpenoids are built from isopentenyl diphosphate (IPP) and dimethylally diphosphate (DMAPP), 

which are small molecules consisting of five carbon atoms. IPP and DMAPP, which are used for 

sesquiterpenoid and sterol biosynthesis, are biosynthesized by the mevalonate (MVA) pathway located 

in the cytosol. Similar to many other anabolic pathways, acetyl-CoA is used as the starting material  

and NADPH as an energy source [22]. The second pathway for biosynthesis of IPP and DMAPP is the 

methylerythritol phosphate (MEP) pathway found in the plastids [23,24]. The MEP pathway generates 

precursors for carotenoids, chlorophylls, monoterpenoids, and diterpenoids [25,26]. Cross talk has been 

observed between the two pathways, and studies with labeled precursors in Daucus carota L., have revealed 

the presence of a unidirectional proton symport of IPP from plastids to the cytoplasm in several higher 

plants [26–29].  

In the cytosol, IPP and DMAPP are fused to synthesize the sesquiterpenoid precursor farnesyl 

diphosphate (FPP) by farnesyl diphosphate synthase. FPP can undergo several possible cyclization reactions 

that lead to more than 300 cyclic sesquiterpene skeletons [22]. The cyclizations begin with the isomerization 

of FPP that leads to a wide variety of mono, di or tricyclic structural elements. These backbone structures 

then frequently undergo secondary modifications, often by cytochromes P450 and acyl transferases to 

yield the huge diversity found within the chemical family of terpenoids [30].  

Artemisinin, produced by Artemisia annua L., is the best-characterized sesquiterpene lactone to date. 

Investigations include biosynthetic studies in microorganisms, Nicotiana and Artemisia  
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plants [31–33]. Other well studied sesquiterpene lactones include costunolide from Lactuca sativa L. 

(lettuce), which has been studied in Saccharomyces cerevisiae and Nicotiana [34]. Both artemisinin and 

costunolide (Figure 2) were identified in the Asteraceae family and, although they are not guaianolides like 

thapsigargin, many of the reactions required to generate these molecules are believed to be similar to 

those generating thapsigargin [35].  

O

O

O

O OH

H

H
O

O
Artemisinine Costunolide  

Figure 2. Structure of artemisinin and costunolide.  

2.2. Thapsigargin Biosynthesis 

No studies have yet been able to elucidate the biosynthetic pathway of guaianolides within the  

Apiaceae. Even the biosynthesis of the otherwise well-studied compound thapsigargin is unknown. Given 

the promising results of its use as an anti-cancer drug [36], the annual demand of thapsigargin is expected 

to increase [37]. This encourages the development of production protocols. One possibility is the 

biotechnological production in a gene modified organism; an approach that requires the detailed 

knowledge of the biosynthesis of thapsigargin [38,39]. 

A terpene synthase, TgTPS2, found in the transcriptome libraries (SRX096991, there is no genome 

sequence available) of T. garganica roots and fruits was found to convert FPP to kunzeaol. Kunzeaol is 

a probable candidate for the first biosynthetic step towards thapsigargin (Figure 3) [35]. The hydroxyl 

group at the C6 position of kunzeaol makes this a good substrate for the subsequent formation of the 

lactone ring. The following steps are thought to be similar to the ones of costunolide biosynthesis whereby 

the formation of the lactone ring is followed by the guaiene skeleton formation [34,40]. The enzyme 

family cytochromes P450 are prime candidates to participate in lactone ring formation. A triple hydroxylation 

on C12, as seen in costunolide, would lead to the formation of an acid group which would perform a 

spontaneous reaction with the OH on C6 and form a lactone ring. Cytochromes P450 might also catalyze the 

formation of guaiene rings by an epoxidation of the C1-10 double bond; however, this is still to  

be elucidated. 

 

Figure 3. Suggested first step of the biosynthesis of thapsigargin via kunzeaol. 
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A number of hydroxylations are needed on positions C2, C3, C7, C8, C10 and C11, followed by the 

decoration of the core structure by the addition of acyl groups. Since most of the enzymes involved in 

this pathway are assumed to be cytochromes P450, sufficient oxygen and NADPH are crucial for the 

efficiency of the biosynthesis.  

3. Pharmacology of Thapsigargin 

Thapsigargin is structurally unique. The lactone ring is a trans-anealated C7α-C6β γ-ring, which also 

has trans hydroxyl groups at C7 and C11 [22]. Thapsigargin, like other sesquiterpenoid lactones in general, 

is known for its biological activity. The main and most important pharmacological activity of thapsigargin is 

its potent inhibition of the SERCA pump. This effect is significant in sub-nanomolar concentrations [9,41]. 

The irreversible inhibition of SERCA leads to elevated cytoplasmic Ca2+ levels that induce apoptosis. 

An X-ray structure of the thapsigargin-SERCA complex provided the foundation for understanding the 

structural conformation of the complex, as well as the surroundings of the binding site [42]. This additionally 

provided detailed information for the design of a targeted prodrug with thapsigargin as the active 

component [42]. The prodrug is designed so that it is only activated by cancer cells, leading to apoptosis 

in the tumor [43]. 

The affinity of thapsigargin to SERCA is mainly due to lipophilic interactions between the C2 

octanoyl, the C3 angeloyl-, and the C8 butanoyl-moieties and alpha-helices of SERCA. The interactions 

of the side-chains with SERCA have been confirmed using analogues without side-chains or inverted 

stereochemistry [42]. This has led to an in-depth understanding of the importance of the side-chains of 

thapsigargin [44]. Interestingly, when the ester group at C8 was changed from an α to a β configuration, 

the Ca2+-ATPase inhibiting properties of the molecule decreased 3000-fold [7]. Using X-ray it was 

shown that the C8 butanoyl group is situated in a cavity between helices when bound to the SERCA 

protein, a position that only allows an α configuration. It has also been shown that removing the angeloyl 

group or simply changing the stereochemistry of C3 leads to a significant decrease of the Ca2+-ATPase 

inhibitory effect [42]. Exchange of the acetyl group at C10 with a hydroxy moiety also decreases the 

biological activity of thapsigargin. Collectively, these findings show that within certain size limits, the 

localization of the side-chain is of more importance than its structure [16]. For the development of a 

prodrug, the discovery of the flexibility of the length and size of the acyl group linked to the C8-O was 

of great importance [42]. 

Since the effect of thapsigargin leads to apoptosis in any mammalian cell, thapsigargin is not suitable 

for use as an unmodified drug. This has been overcome by way of a prodrug strategy. The neovascular 

tissue of solid tumors generally, over-expresses the proteolytic enzyme Prostate Specific Membrane 

Antigen (PSMA). PSMA is a serine-protease that cleaves at specific amino acid motifs. Utilizing the 

flexibility at C8 in thapsigargin, a linker-peptide moiety that is recognized by PSMA has been attached 

to thapsigargin. The prodrug with the linker-peptide moiety is inactive towards the SERCA pump, but 

upon cleavage of the peptide moiety by PSMA the molecule becomes lipophilic and toxic. The lipophilic 

properties of the drug allow it to enter into the cellular membranes where it can interact with SERCA [44]. 

The activated drug, even with the small linker molecule, will then inhibit SERCA, which leads to 

apoptosis [45]. The prodrug was tested in vivo in nude mice, with xenografts from a human prostate cancer 
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cell line [46]. It was observed that the level of cleaved active drug was much higher in tumor tissue than 

in the plasma or skeletal muscle of the mice, confirming effective drug targeting [47]. 

GenSpera (San Antonio, TX, USA), the company developing thapsigargin, holds several patents that 

cover the use of anti-cancer prodrugs that can be activated by tumors via the use of Tumor Activated 

Prodrug technology [48–50]. Initially, development was focused on treating prostate cancer by using 

thapsigargin coupled to a prostate specific peptide, resulting in the drug G-115 [37]. However, the design 

of a peptide cleaved by PSMA, which is expressed by most solid tumors expanded the use substantially 

and has led to the development of G-202 [43,44,51]. The difference between G-115 and G-202 is  

in the peptide sequences that are linked to thapsigargin. For G115 this is (starting from thapsigargin) 

Leu-Gln-Leu-Lys-Ser-Ser-His-Morpholine, and for G-202 it is Asp-Glu-Glu-Glu-Glu. In G-115 the PSA 

enzyme cleaves after the first leucine, whereas in G-202 PSMA cleaves after the first glutamic acid [43]. 

Focus has been shifted towards developing G-202, since this will also cover prostate cancer. Further 

clinical trials with G-115 are postponed, as GenSpera focuses on human trials with G-202 on patients with 

various types of cancer. Following the success of phase I clinical trials, the prodrug G-202 is now in phase II 

clinical trials for patients suffering from hepatocellular cancer (HCC) [43]. In phase I it was demonstrated 

that the drug was safe and well tolerated in patients with advanced stages of HCC and prolonged disease 

stabilization was observed [51]. G-202 or Mipsagargin is expected to be launched on the market in the 

coming years [37]. 

4. Production Platforms for Thapsigargin 

The demand of thapsigargin is increasing given its potential medical application as a chemotherapeutic 

prodrug [37]. Currently, all of the commercially available thapsigargin is obtained from the fruits and 

roots of wild populations of T. garganica [52,53]. The demand for thapsigargin is expected to exceed 

the levels of current production, which may lead to a high harvest pressure that could endanger the 

species [52,54]. Therefore, one of the major challenges will be to establish new production platforms to 

meet the potential market demand for thapsigargin. 

4.1. Agricultural Production 

Cultivation of Thapsia has been shown to be complicated. T. garganica is difficult to germinate from 

seeds and to maintain under greenhouse conditions [52,54]. With successful germination, handling of 

the seedlings has to be done with care, since the roots are very fragile. ThapsIbiza, a Spanish company 

based on Ibiza has started a small production of T. garganica plants. Recently a method for the extraction 

of large quantities of thapsigargin was published enabling large scale production [55].  

4.2. Organ Cultures for Thapsigargin Production 

Micropropagation provides an alternative source for the production of thapsigargin [56]. Jäger et al. 

reported the establishment of T. garganica in in vitro cultures, for the purpose of producing  

thapsigargin [54]. Calli and suspension cultures of T. garganica were induced and underwent treatments 

with different elicitors, without successful production of thapsigargin [52]. The fact that thapsigargin is 

found in the resin present in specific secretory canals in the plant, may indicate the necessity of 
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differentiation for the synthesis and storage of the bioactive compound [6]. Consequently, somatic 

embryos were induced and accumulated the two guaianolides, nortrilobolid and trilobolid, in the 

cotyledonary stage [54].  

The formation of shoots directly from petiole and leaflet explants has also been studied [52]. A 60% 

rooting frequency was noted after 10 days when roots were submerged in MS liquid medium with plant 

growth regulator [56]. The ability to initiate prolific root formation may be advantageous [52], since 

roots have the ability to produce thapsigargin [57]. Hence, transgenic hairy roots are potentially an alternative 

source for this purpose [58].  

4.3. Production in Heterologous Hosts 

A variety of heterologous hosts may be suitable for large-scale production of thapsigargin or precursors 

thereof. Saccharomyces cerevisiae (yeast) is one option inspired by the efforts on the production of 

artemisinin. Several modifications using yeast are well described for high terpenoid production e.g., 

overexpression of up-stream terpenoid specific genes [32]. The green cell production system of the moss 

Physcomitrella patens has likewise been shown to be a promising producer of both sesquiterpenoids and 

diterpenoids [59,60], and could serve well as a production host for thapsigargin [38,39]. P. patens has 

several advantages since it can be grown in sterile cultures [39] and on a simple liquid or solid inorganic 

medium without phytohormones, vitamins or a carbon source [61]. Furthermore, P. patens performs 

homologous recombination with high efficiency [62], enabling the development of a stable production 

strain that does not require crossing steps or regeneration of whole plants [63]. The main obstacle, regardless 

of the choice of host organism, is the discovery of the thapsigargin biosynthetic genes. 

4.4. Chemical Synthesis of Thapsigargin 

The biological activity of thapsigargin makes it a viable drug candidate and this has led to efforts  

to chemically synthesize it and numerous analogues [36,45,64–68]. Despite the successful synthesis of 

thapsigargin, as well as other bioactive compounds with complex chemical structures, a commercially 

feasible synthetic route to these high value compounds remains a challenge. In 2004, attempts to prepare 

the guaianolide skeleton of thapsigargin commenced and in 2007 the first total synthesis of thapsigargin 

was reported [69,70]. The approach allowed for the total synthesis of thapsigargin in 42 steps from  

(s)-carvone with an overall yield of 0.6% [70]. The weakness of this method is the lack of a strategy for 

obtaining the core of the structure in a few steps and the cost of the initial starting material.  

Alternative methods include synthesizing 7,11-dihydroxyguaianolide, an intermediate in the 

synthesis of thapsigargin, in six steps starting from (+)-dihydrocarvone and ethyl vinyl ketone [71].  

7,11-dihydroxyguaianolide possesses five of the eight chiral centers present in thapsigargin and 

additionally allows for simple modifications of the C2 and C8 positions [71]. In 2012, Tap et al. 

developed the functionalized bicycledecadienone ring system of thapsigargin through a Pauson-Khand 

annulation reaction, however, the lactone ring and the oxygen atom on the C8 carbon atom were not 

incorporated [72].  
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5. Conclusions 

Focus on the production of the upcoming drug thapsigargin will continue. The latest developments 

suggest that the future need will be met by plant tissue cultures along with the plants being cultivated on 

Ibiza. Approaches utilizing semi-synthesis or total synthesis are currently far from being economically 

feasible. Nonetheless, future research might provide new strategies for such approaches and open up for 

an extended use of thapsigargin. New prodrugs are currently being developed towards certain cancer types, 

and as a whole, the use of thapsigargin as a drug and chemical compound will increase in the next decade. 
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