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ABSTRACT

Aim Massive digitalization of natural history collections is now leading to a steep
accumulation of publicly available species distribution data. However, taxonomic
errors and geographical uncertainty of species occurrence records are now
acknowledged by the scientific community – putting into question to what extent
such data can be used to unveil correct patterns of biodiversity and distribution. We
explore this question through quantitative and qualitative analyses of uncleaned
versus manually verified datasets of species distribution records across different
spatial scales.

Location The American tropics.

Methods As test case we used the plant tribe Cinchoneae (Rubiaceae). We com-
piled four datasets of species occurrences: one created manually and verified
through classical taxonomic work, and the rest derived from GBIF under different
cleaning and filling schemes. We used new bioinformatic tools to code species into
grids, ecoregions, and biomes following WWF’s classification. We analysed species
richness and altitudinal ranges of the species.

Results Altitudinal ranges for species and genera were correctly inferred even
without manual data cleaning and filling. However, erroneous records affected
spatial patterns of species richness. They led to an overestimation of species rich-
ness in certain areas outside the centres of diversity in the clade. The location of
many of these areas comprised the geographical midpoint of countries and political
subdivisions, assigned long after the specimens had been collected.

Main conclusion Open databases and integrative bioinformatic tools allow a
rapid approximation of large-scale patterns of biodiversity across space and
altitudinal ranges. We found that geographic inaccuracy affects diversity patterns
more than taxonomic uncertainties, often leading to false positives, i.e. overesti-
mating species richness in relatively species poor regions. Public databases for
species distribution are valuable and should be more explored, but under scrutiny
and validation by taxonomic experts. We suggest that database managers imple-
ment easy ways of community feedback on data quality.

Keywords
Cinchoneae, data quality, GBIF, occurrence data, Rubiaceae, species richness,
SpeciesGeoCoder.
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INTRODUCTION

Museums and herbaria with natural history collections are

invaluable sources of knowledge for science and society. These

repositories contain a sample of the world’s biodiversity col-

lected over centuries of field exploration (Smith & Blagoderov,

2012). This information is becoming increasingly available

over the Internet through interactive digital databases, thanks

to the rapid emergence of new computational platforms and

bioinformatic tools (Soberón & Peterson, 2004; Newbold,

2010). Numerous databases provided by different institutions

are now publicly available, covering the majority of taxonomic

groups and geographical regions. As a consequence of the

growing number of data providers and amount of informa-

tion, it has become necessary to assemble species occurrence

data under standardized formats to enable the easy exchange

and use of this information around the world (Graham et al.,

2004). The Global Biodiversity Information Facility (GBIF,

http://www.gbif.org/) is at the moment one of the largest and

most widely used biodiversity databases (Beck et al., 2012,

2014; Jetz et al., 2012), with the objective to ‘make the world’s

primary data on biodiversity freely and universally available via

the Internet’ (Chapman, 2005a; Yesson et al., 2007; GBIF, 2008;

Newbold, 2010). Currently, GBIF provides a single portal to

access more than 500 million records.

The massive availability of biodiversity data, together with

the rapid emergence of new techniques and tools to analyse

such information (e.g. Geographic Information Systems, and

statistical analysis packages), has facilitated large-scale analyses

and interpretation of biodiversity and distribution data. Such

data thus provide an invaluable resource to document biodi-

versity and its distribution through time and space for

research, education and policy making (Williams et al., 1996;

Winker, 2004). Biodiversity data, integrated with environmen-

tal spatial data, allow many uses extending from aspects of

ecological and evolutionary theory to applications in conser-

vation, biogeography, agriculture and human health, among

others (Peterson et al., 1998; Chapman, 1999; Faith et al., 2001;

Graham et al., 2004; Selama et al., 2013; Ficetola et al.,

2014).

In response to the growing number of users and different

requirements for the use of data, GBIF regularly improves its

data portal adding more details for each data entry and allow-

ing new types of extraction and analyses (GBIF, 2014). Never-

theless, there are still important limitations in data quality,

which may influence the results and conclusions of biodiver-

sity studies using GBIF if the data are used uncritically. For

example, attention should be paid to potentially poor quality

in terms of geographic position of locations, erroneous taxo-

nomic identifications, and when dealing with groups with no

recent taxonomic revision or for which no taxonomic expert is

available (Graham et al., 2004; Wieczorek et al., 2004;

Chapman, 2005b; Newbold, 2010; Hjarding et al., 2014). These

limitations have called into question the usefulness of public

databases, even if all available data could be gathered exhaust-

ively (Hortal et al., 2007).

Ideally, careful quality evaluation of the primary information

in a dataset downloaded from GBIF should be conducted, before

the data is used for further analyses – in particular checking,

where possible, the species identification and locality data,

including their georeferences (coordinates for latitude and lon-

gitude). Otherwise, results could be flawed and research money

unnecessarily spent (Dov, 2007). However, ecologists, biogeog-

raphers, conservationists, policy makers and stakeholders

worldwide are using the information available in GBIF and

other public databases to rapidly assess patterns of diversity,

often without much attention being paid to the quality and

reliability of the underlying data. Given the rapid development

of computational tools for handling, cleaning and analysing

biodiversity data, to what extent can we use public databases

without the intervention of taxonomists?

Here we address this question by analysing and comparing

diversity patterns inferred from datasets compiled manually and

automatically, comprising species distribution data for the plant

tribe Cinchoneae (Rubiceae). We use these data as a test case to

investigate to what extent currently available data in GBIF are

sufficient to correctly infer distribution and biodiversity pat-

terns, across multiple spatial and altitudinal scales.

METHODS

Study group and distribution

The tribe Cinchoneae comprises nine genera: Ciliosemina,

Cinchona, Cinchonopsis, Joosia, Ladenbergia, Remijia,

Stilpnophyllum, Maguireocharis, and Pimentelia totalling 121

accepted names of species so far (Andersson & Antonelli, 2005).

The tribe occurs exclusively in the Neotropics, primarily in the

foothills of the Andes from Bolivia to Colombia, but extending

north to Venezuela, Costa Rica, the Guianas and southeastern

Brazil. The tribe Cinchoneae forms a well-defined clade charac-

terized by morphology and DNA sequence data (Andersson,

1995; Andersson & Antonelli, 2005; Manns & Bremer, 2010). The

tribe is historically and economically important as a source of

Cinchona bark and quinine, the only treatment for malaria for

c. 400 years (Kaufman & Ruveda, 2005).

Compilation of datasets

Four datasets were compiled including all taxa identified at

species level in the tribe Cinchoneae: one created manually and

verified through classical taxonomic work, and the other three

derived from GBIF under different cleaning and filling schemes:

a non-cleaned dataset, a cleaned dataset and a cleaned dataset

with the manual addition of records. For all datasets,

infraspecific taxa were treated at the species level, and only

georeferenced records were included. Records with strikingly

incorrect georeferences (e.g. points on the sea, inverted latitude/

longitude, inverted signs) were excluded from all analyses.

Verified dataset (VD)

This dataset was manually compiled through classical taxo-

nomic work. GBIF was not considered during compilation. We
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attempted to include all the main herbaria in South America

(Appendix S1 in Supporting Information) as well as the

TROPICOS database at the Missouri Botanical Garden (http://

mobot.mobot.org/W3T/Search/vast.html), which is the most

comprehensive information resource for the flora of the Andean

region (Taylor, 1999). Additionally, new records were digitalized,

including new collections made by us during fieldwork in the

last three years. Three new species under description were also

included (C.M. Taylor, pers. comm. 2015). Cultivated and

hybrid specimens were consistently excluded.

Synonyms were checked in The Plant List portal (http://

www.theplantlist.org, accessed 15 May 2014) to ensure that all

records were assigned with an accepted name (Appendix S2).

Numerous specimens with non-reliable identification were

detected, e.g. duplicates of the same collection that were identi-

fied with different names in different herbaria. To validate

species identity, a taxonomic check was carried out at the Mis-

souri Botanical Garden’s Herbarium (which holds one of the

largest curated collections for the group), by comparing speci-

mens with their respective types and protologues (see Appen-

dix S3 for a list of the main references used). Because not all

specimens were readily available for validation, we decided to

remove specimens not identified by taxonomists working on

Cinchoneae. For specimens without georeferences but with an

accurate description of the collection locality, a coordinate was

assigned using Google Earth (V 7.1.2.2041, 2014).

GBIF non-cleaned dataset (‘GBIF’)

All available species records for tribe Cinchoneae were down-

loaded from GBIF (on 1 July 2014). Only records without

‘known georeference issues’ (an alternative in the data portal)

were selected. The search was made for each genus separately.

GBIF cleaned from records with presumably wrong georeferences

(‘GBIF cleaned’)

We removed from the GBIF dataset all those records without

information in the fields Locality and/or State/Province, since

we considered that their georeferences were more likely to be

imprecise, often by assignments a posteriori.

GBIF cleaned and increased with additional records (‘GBIF

cleaned_increased’)

This dataset was created by adding records to ‘GBIF cleaned’.

These comprised records not available in GBIF, such as those

from herbaria that are not linked to GBIF but were important

for our study group. We also added the new records and species

we found during fieldwork. In contrast to VD, we did not correct

taxonomy and misidentifications in this dataset.

Analyses

We analyzed species distribution and species-richness based on

all four datasets to test the impact of dataset quality on the

results. Since the spatial resolution of richness maps is affected

by data volume and quality, these analyses were performed at

three spatial scales: one-degree grids, ecoregions, and biomes

(Olson et al., 2001). We also computed the altitudinal distribu-

tion of all species in both datasets.

The analyses were conducted using SpeciesGeoCoder (Töpel

et al., 2014), a software package written in Python and R (Zizka

et al., in prep.). The program combines geographic polygons

with occurrence points from multiple species, tests which

species occurs in which polygon and computes summary statis-

tics on species distribution and diversity. QuantumGIS (QGIS V

2.2.0-Valmier) was then used to edit and export some of the

summary maps to other formats. The Mollweide map projection

was applied for all maps.

Analytical scales

Grids: The finest spatial level of our analyses is represented by

one-degree cells covering the entire range of the tribe.

Ecoregions: The second spatial level was the terrestrial

ecoregions used by WWF (Olson et al., 2001; Burgess et al.,

2004); (http://maps.tnc.org/gis_data.html, accessed 1 March

2014). Biomes: They are polygons also defined under WWF’s

classification, the next hierarchical level above ecoregions.

Altitudinal distribution: An altitude was assigned to every

occurrence based on the Shuttle Radar Topography Mission

global elevation model at 90 meters resolution (http://

srtm.csi.cgiar.org). Altitudinal patterns of distribution were

analysed per genus and per species.

For the altitudinal analysis, the VD and GBIF datasets were

compared using a non-parametric Mann–Whitney U-test. For

each analytical unit, species richness was calculated and

mapped. We then created additional maps and diagrams to show

the qualitative and quantitative differences found between both

datasets. The statistical tests were performed using the R statis-

tical software package (R_Core_Team, 2013).

RESULTS

For the VD we obtained 4192 records in total, but after removing

entries without georeferences the dataset was reduced to 2670

records. The complete query on GBIF returned 9592 records for

the tribe Cinchoneae. Of these 8680 (90%) were identified at the

species level and only 3720 (43%) were georeferenced.

GBIF cleaned reduced this number to 3572, and GBIF

cleaned_increased reached a total of 3756 records. Occurrence

maps with both the VD and GBIF datasets are provided in Fig. 1.

A total of 114 species were included in this study (109

accepted names, two unresolved names, and three new species

still undescribed. See Appendix S2).

Grid analysis

The maps obtained by the 1-degree grid analyses are shown in

Fig. 2. The map using VD (Fig. 2a) indicates that the most

species-rich areas for tribe Cinchoneae are located in the
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(a) (b) 

 0      500          1000 Km 

Verified Dataset GBIF Dataset 

 0      500          1000 Km 

Figure 1 Plot of all species occurrences in
the plant tribe Cinchoneae (Rubiaceae). (a)
Verified dataset (i.e., manually compiled
through classical taxonomic work
including herbarium visits, fieldwork, and
information from monographs); (b)
unverified dataset downloaded from the
Global Biodiversity Information Facility
GBIF using minor automated cleaning
functions (e.g. excluding points in the
ocean).

(b) GBIF  (c) VD – GBIF  

(d) GBIF cleaned 

(f) GBIF cleaned_increased

(a) Verified Dataset (VD) 

(h) 

(e) VD – GBIF cleaned

(g) VD – GBIF cleaned_increased

Figure 2 One-degree grid maps showing species richness of tribe Cinchoneae. (a) Verified dataset (VD); (b) GBIF dataset; (c) Difference
between VD and GBIF; (d) GBIF cleaned by the exclusion of uncertain georeferences; (e) Difference between VD and GBIF cleaned; (f)
“GBIF cleaned” increased through the addition of records compiled manually; (g) Difference between VD and GBIF cleaned_increased; and
(h) grid map showing a previous compilation of specimen records from the taxonomic literature, with dots proportional to species
numbers (Antonelli et al., 2009).
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northern and central parts of Peru. The map using GBIF dataset

(Fig. 2b) shows almost the same result, but additional areas

appear to be particular species rich, namely the northern and

central parts of Ecuador, central Venezuela and central Brazil.

Differences between these two maps are highlighted in Fig. 2(c).

As shown in Fig. 2(b), using GBIF we identified some incor-

rect centres of diversity. Two cells stood out by a very high

number of species. One is located exactly in the geographic

midpoint of Peru. An assessment of the occurrence of species in

this grid showed that 26 species were registered at exactly the

same georeference (−74.14, −9.1839). Most of these entries were

old specimens, collected between 1778–1900 by Ruiz & Pavón,

Weddell, and Spruce among others, who did not provide coor-

dinates for their collection sites. The available information in

these labels only stated ‘Peru’ as the collection locality, and the

georeference subsequently assigned to them when the data was

entered into GBIF was simply the one corresponding to the

central point of the country. The same issue was found in the

second most species rich grid, which was located in the central

part of Venezuela (−69.9119, 7.0758) and appeared to constitute

a second centre of diversity with 16 species. To assess whether

this was a recurrent problem, we therefore checked the central

points of each Latin American country, and found the same

problem for Ecuador (with nine species at −78.1869, −1.4628),

Brazil (with 5 species at −52.8731, −10.8339), and Bolivia (with

5 species at −64.435, −16.7261).

GBIF cleaned (Fig. 2d) led to the inference of diversity pat-

terns that were more similar to those obtained from VD

(Fig. 2e), which means that most of the erroneous coordinates

identified above were among the imprecise georeferences

removed in GBIF cleaned. The addition of verified records not

originally available through GBIF resulted in even more similar

results (Figs. 2f & 2g), which means that some data are still

missing on GBIF.

Ecoregion analysis

Species records included in either occurrence dataset were

present in a total of 72 Terrestrial Ecoregions (Appendix S4a).

Fig. 3 shows richness maps for each of those, using VD (Fig. 3a)

and the three GBIF-based datasets (Fig. 3b–d). The richness

map using GBIF shows a higher number of areas with high

diversity as compared to the one using VD.

We found high correspondence in the number of species

between both datasets in the richest ecoregions:‘Peruvian Yungas’

(with 36 species in both datasets) and the ‘Eastern Cordillera Real

Mountain Forest’ (with 47 species registered in VD and 46 in

GBIF). However, considerable differences in some ecoregions

were identified (Fig. 3c). For instance, the ‘Llanos’, in the central

part of Venezuela and in northeastern Colombia, included 27

species when GBIF was used, and only 3 when VD was used.

‘Southwest Amazon Moist Forest’, the ecoregion located between

Peru and Brazil, had 33 species registered in GBIF but only 24 in

VD. The ‘Mato Grosso Seasonal Forest’ ecoregion, located in

central Brazil, had 10 species in GBIF but only 2 in VD. In those

cases, a careful examination of the data points revealed a similar

effect of poor georeferences as found for our grid level analyses:

ecoregions comprising the geographical midpoints of some

countries erroneously appear to constitute centres of diversity.

A related problem with inaccurate georeferences is exempli-

fied by the ‘Southwest Amazon Moist Forest’ terrestrial ecoregion

(Appendix S4a). Using GBIF, for this ecoregion we detected

exactly the same coordinate (−12.00, −70.25) for six different

species: Cinchona micrantha, Joosia umbellifera, Ladenbergia

carua, L. graciliflora, L. oblongifolia and Remijia firmula. The

records in all these cases state ‘Peru, Madre de Dios’. The coor-

dinate was apparently assigned to the centre of the department

Madre de Dios, which is very imprecise given the department’s

total area of over 85.000 km2 (equivalent to the size of Austria)

and adds considerable noise to the final results. Additionally, in

this case, most species are typical of montane forests (except for

Remijia firmula, which is very common in the lowland). When

we mapped the complete distribution of the six species, we

found no overlap between the known ranges of these species

with the point assigned to them in the GBIF dataset. Likewise,

this repeatedly assigned but imprecise coordinate also increased

the number of species in the ‘Southwest Amazon Moist Forest’

ecoregion. When we used GBIF cleaned (Fig. 3d) most of these

erroneous records were eliminated and we obtained a better

approximation to VD (Fig. 3a).

We also detected that the number of species in each ecoregion

was not consistently higher when using GBIF; higher numbers

of species were sometimes detected when using VD. Examples

include the ‘Bolivian Yungas’, which hold 19 vs. 16 species, the

‘Iquitos Varzea’ with 12 vs. 9, and ‘Ucayali Moist Forest’ with 29

vs. 23 using VD and GBIF, respectively. These ecoregions are

highly consistent with the places where we obtained extra

records by digitizing new information from herbaria and

through our own fieldwork, as well as by adding information

from recent taxonomic work on the group. Consequently, these

higher occurrences in the VD data are caused by improved data

quality, not by noise or errors in either dataset. Using the GBIF

cleaned_increased dataset, these records were included and the

results (Fig. 3f & 3g) were even more consistent with the one

obtained with VD.

Biome analysis

At the biome level, tribe Cinchoneae occurred in six of the

world’s fourteen biomes (Appendix S4b). Because the analytical

units in this case are larger than the ecoregions, most species

simply correspond to the largest biome included here, which is

the ‘Tropical and Subtropical Moist Broadleaf Forests’ (containing

102 species in both datasets) (Fig. 4a & 4b). The largest differ-

ence between datasets was found in the ‘Tropical and Subtropical

Grasslands and Savannas and Shrublands’ biome, which appears

to comprise 32 species when VD was used and 10 when GBIF

was used. This difference is depicted in Fig. 4c, and is again due

to the inaccurate georeference given to several species in central

Venezuela. In this case, the other inaccurate georeferences found

(coordinates assigned for several species in the centre of other

countries) are not visible here since they all are part of the larger
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biome considered. As in the previous cases, using GBIF cleaned

(Fig. 4d & 4e) and GBIF cleaned_increased (Fig. 4f & 4g), the

results show a better approximation to those obtained with VD

(Fig. 4a).

Altitudinal analysis

Figures 5 and 6 show boxplots depicting the mean and

interquartile ranges of altitude for genera and species, using VD

and GBIF. At both levels, the altitudinal ranges are highly con-

sistent between the two datasets.

DISCUSSION

The impact of spatial scales on the results

We found biases associated with erroneous georeferences at all

spatial scales analysed (1-degree grids, ecoregions, and biomes;

Figs 2, 3 & 4). Contrary to our expectation, increasing the spatial

scale did not reduce these problems. Below we discuss the

common as well as particular issues of these separate analyses.

Grids are the most commonly used operational units for

computing diversity metrics. Although they suffer from the fact

that species records come from presence data only and therefore

closely reflect sampling effort (Geri et al., 2013), they can refine

species range maps when some parts of the region were not

surveyed as rigorously as others (Franklin, 2010).

The gridded richness maps based on VD (Fig. 2a) are congru-

ent with prior knowledge based on the manual compilation of

species richness from specimen citations (Fig. 2h) (see Antonelli

et al., 2009 and references therein) and are most likely an

adequate representation of the distribution and diversity pattern

of our tribe under study. Furthermore, these maps offer a

detailed insight in the distribution of the clade and refine pre-

vious estimates. For instance, our study confirmed that some

areas in Eastern and Southern Brazil previously thought to be

(b) GBIF  (c) VD – GBIF  

(e) VD – GBIF cleaned  

(g) VD – GBIF cleaned_increased  

(d) GBIF cleaned 

(f) GBIF cleaned_increased

(a) Verified Dataset (VD) 

Figure 3 Species richness maps coded by ecoregions using the following datasets: (a) verified (VD), (b) GBIF, (c) VD-GBIF, (d) GBIF
cleaned, (e) VD-GBIF cleaned, (f) GBIF cleaned_increased, and (g) VD-GBIF cleaned_increased. The colour coding (see legend) refers to
species numbers in tribe Cinchoneae. Only ecoregions containing at least one species are delimited.
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part of the distribution range are void of this tribe. However, we

acknowledge that part of these patterns might be a result of

spatial biases in collecting activity or be specific to the area

under study. Furthermore, the gridded maps have proven to be

a valuable tool to identify major sources of geographic errors, in

particular the false assignment of occurrences to the centroids of

political units (Fig. 2b & 2c).

Comparing the VD and GBIF datasets using grids suggests

that poor accuracy of georeferences can considerably affect the

patterns obtained. We identified several centres of diversity for

the tribe using GBIF (Fig. 2b) that are associated with incorrect

coordinates assigned to the specimens, and we predict even less

accuracy at finer scales.

The ecoregion analysis provided an arguably adequate esti-

mate of the distribution and species richness of tribe

Cinchoneae across the Neotropics. Ecoregions more closely

reflect natural boundaries of plant and animal communities

than arbitrarily defined political borders or grid cells (Olson

et al., 2001; Wikramanayake, 2002; Burgess et al., 2004; Kier

et al., 2005). This makes them useful analytical units in biodi-

versity, conservation and biogeography (Burgess et al., 2006;

Giam et al., 2012; Jordon-Thaden et al., 2013). We think that

our ecoregion-level analysis provided a fairly accurate estimate

of the distribution of the tribe Cinchoneae, but only in the

ecoregions along the Andean Mountains and around the

Guiana Highlands. For the remaining ecoregions, which are

generally larger, even a single occurrence led to a relatively

large effect on the estimated biodiversity map. Indeed, by using

GBIF, several large ecoregions appear to have false levels of

species richness (e.g. the ‘Dry Chaco’, the ecoregion between

Bolivia, Paraguay and Argentina with a single non-verified

record in Bolivia, but apparently affecting a large area; Fig. 3a).

Minimum occurrence thresholds for coding species into poly-

gons (an option already implemented in SpeciesGeoCoder)

could be one automated way of reducing this bias when expert

verification is not possible.

(b) GBIF  (c) VD – GBIF  

(e) VD – GBIF cleaned 

(g) VD – GBIF cleaned_increased

(d) GBIF cleaned 

(f) GBIF cleaned_increased

(a) Verified Dataset (VD) 

Figure 4 Maps of species richness coded at the biome level using the following datasets: (a) verified (VD), (b) GBIF, (c) VD-GBIF, (d)
GBIF cleaned, (e) VD-GBIF cleaned, (f) GBIF cleaned_increased, and (g) VD-GBIF cleaned_increased. The colour coding (see legend)
refers to species numbers in tribe Cinchoneae. Only biomes containing at least one species are delimited.
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The biome level is larger than ecoregions and generally

defined as major types of natural vegetation originating from a

particular mix of climatic and edaphic conditions (Olson &

Dinerstein, 1998; Riddle et al., 2011). We did not expect to find

substantial differences at this level using VD or GBIF datasets;

however, we did. As depicted in Fig. 4c, there are large areas in

northern and central South America showing considerable dif-

ferences. This is likely an effect of biomes not being continuous

units, with several of them being composed of more than one

polygon in different regions. For instance, the biome ‘Tropical

and subtropical grasslands, savannas, and shrublands’, includes

the ecoregion ‘Llanos’ (Appendix S4) for which a conspicuous

bias was detected (Fig. 4c). The biome-level comparison

between datasets, as conducted here, thus also affects the same

biome in central Brazil, despite the geographic distance. The

same effect was found with the other two biomes in central

South America: ‘Montane grasslands and shrublands’, and ‘Tropi-

cal and subtropical dry broadleaf forests’.

Due to the effect described above, using biomes shows less

difference between the two datasets than using ecoregions.

Moreover, the expected distribution of the tribe Cinchoneae is

nearly fully consistent with the biome ‘Tropical and subtropical

moist broadleaf forest’ and it has the same richness of species

using both datasets (VD and GBIF). This suggests that at this

level, the wrong coordinates or misidentifications found in GBIF

do not affect the results considerably. In our study case, they do

not reflect a real richness of the tribe Cinchoneae throughout

the biome.

At the three levels, the additional datasets analysed

(GBIF_cleaned and GBIF cleaned_increased) showed an

improvement in the results (Figs 2, 3 & 4). Removing uncertain

coordinates significantly reduced mistakes introduced using RD.

Despite our expectation of a major improvement using

GBIF_cleaned_increased, this was not very obvious, mainly

because the new data added came from the Andes and did not

cover the full distribution of the tribe.

Surprisingly, applying the Mann–Whitney U-test, we did not

find relevant differences between VD and GBIF concerning the

altitudinal range of genera (Fig. 5) and species (Fig. 6). Accord-

ingly, despite potentially erroneous references, the differences

found using VD and GBIF at altitudinal range level were gener-

ally negligible.

Using unverified data from GBIF: a critical evaluation

Advantages

Despite the differences and errors detected in the GBIF dataset,

there were also several advantages (Edwards, 2004; Chapman,

2005b; Guralnick & Hill, 2009). One clear advantage observed

for this study is the fact that the number of institutions provid-

ing information to GBIF greatly exceeded what we could gather

manually for the VD (Appendix S1) resulting in 76% more

records in the GBIF dataset.

Saving time and money is also a clear advantage using GBIF.

We were able to download a complete set of entries for tribe

Cinchoneae in less than half an hour. By comparison, obtaining

the clean list of our entries for the VD took us almost six months

and necessitated visits to major collections in herbaria on several

continents.

Another major benefit of GBIF was the uniformity of data.

GBIF has compiled a very substantial database with data in the

same format, which is ready to use for many analyses. Building

the VD implied merging many small datasets into a single large

file, which required uniformity of data based on a single data

standard. To individual researchers, this is still largely a manual

and time-consuming process.

Disadvantages

The quality of unverified GBIF dataset depends mainly on the

data providers, and therefore it varies substantially. Increas-

ingly the GBIF network are adopting strong peer review pro-

cesses for data publishers (T. Robertson, Head of Informatics-

GBIF, pers. comm.), after realizing the need for data validation

before they become publicly available. This practice is however

not yet common and consequently both inaccurate and

incorrect information may be published in databases for public

use.

Two critical points were detected in our study: mistakes

in the taxonomic identification of specimens, and inaccurate

georeferencing. Mistakes in taxonomic identification can often

be corrected by a taxonomist checking the identifications, pro-

vided that it is possible to access the specimen record (or at

least images of it). A correct species name should ideally be a

minimum requirement for including the data in GBIF or

any other public database. However, there are many cases of

taxonomic disagreement regarding species delimitations,

synonymisation and nomenclatural problems, making such a

requirement not straightforward. Moreover, considering that

Figure 5 Altitudinal range for each analysed genus in tribe
Cinchoneae, using both the Verified and the GBIF datasets. Boxes
indicate the interquartile range (IQ) of all estimates, with the
median shown as a horizontal line and the whiskers indicating
data range outside the quartiles. There were no significant
differences between the ranges of any genus (Mann–Whitney
U-test; P > 0.05).
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there are relatively few people in the world able to correctly

identify species of many understudied organism groups, and

that there are millions of species yet to be described it would

not be feasible to require a peer-review of the accuracy of

identifications before making occurrence data publicly avail-

able (Dov, 2007; Mora et al., 2011).

It has been suggested that a relatively large proportion of

available georeferences are erroneous (Hijmans et al., 1999).

Georeferencing errors can sometimes only be detected by very

careful examination of all records by an expert (Graham et al.,

2004). Wrong or inaccurate georeferencing is mainly caused by

the lack of data associated with older collections. In these cases

it becomes the responsibility of the digitizer to assign a best

possible coordinate based on the information available on the

labels. An accurate georeference assigned to the specimen is

often crucial, since a small deviation here could imply wrong

Figure 6 Altitudinal range for each analysed species in tribe Cinchoneae, using both the Verified and the GBIF datasets. Boxes indicate the
interquartile range (IQ) of all estimates, with the median shown as a horizontal line and the whiskers indicating data range outside the
quartiles. NOV means new species. There were no significant differences between the ranges of any species (Mann–Whitney U-test;
P > 0.05).
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interpretation of the results. This would not only affect studies

aiming at identifying general biodiversity patterns, but also

others such as reconstructing the environmental niche of species

and predicting their total distribution.

In this study we repeatedly found a lumping of specimens

with imprecise collection information to the central point of the

geographical reference (e.g. the country or province). When data

quality cannot be improved, and the assignment of a country-

level coordinate is deemed necessary for some reason, it is

crucial that data repositories at least clearly state how the coor-

dinates were obtained, and what the level of accuracy is. We

emphasize that it is crucial for the future use of the data that the

institutions providing information to GBIF include information

on whether the coordinate assignment was done manually or

automatically, and if possible indicate their level of precision.

For many studies, researchers may then consider removing

records with uncertain geographical reference prior to data

analysis.

Another weakness detected using GBIF data is that there are

few requirements for data publishers beyond providing stable

record identifiers wherever possible and some form of taxo-

nomic identification. Implementing formal peer-reviewing or

control processes is beyond the scope of GBIF; instead, it is the

ambition of GBIF to educate the scientific community and insti-

tutions to take responsibility for ensuring the best quality of the

data for a large variety of uses (T. Robertson, pers. comm.).

Consequently, the decision on which records to publish and how

much detail to supply rests solely on the data owner, relying on

good quality practice by both providers and users of data.

However, in this study we show that such best practice needs

improvement. For example, we found entries where the data

providers did not even provide the collection number for the

specimen (or this information was lost when entering GBIF),

precluding subsequent validation of the specimen’s identifica-

tion and georeference.

Some additional minimum requirements for data providers,

in particular the collection number, could significantly

improve the quality of specimen data in GBIF, saving consid-

erable time for users who wish to verify the data (and avoid the

need for dismissing uncertain records). Review work of tax-

onomists always improves data, analyses and interpretations

(Hjarding et al., 2014), but with the extended and multidisci-

plinary use of data, quality assurance must be a joint effort by

all parties at all stages. Promoting best practice at all stages

from recording data on the specimens at the time of collecting,

providing comprehensive and accurate data to public data-

bases, and evaluating downloaded datasets for further use, will

contribute to improve data quality for many important appli-

cations in biodiversity research and policy making. Finally, an

important issue must be highlighted: there is a clear need for a

feedback system between data users and custodians. Data users

should be able to assess data quality and inform about publi-

cations including results of quality checks directly, so that rec-

tifications can be fed back into the original provider’s

database. This kind of feedback is still missing in most avail-

able systems at the moment.

CONCLUSION

In a time of rapidly increasing biological databases, using species

distribution data and bioinformatic tools holds a large potential

to inferring patterns of species diversity and distribution.

However, they have to be used critically due to important con-

cerns with data quality.

For our study case, the usefulness of the GBIF portal did not

depend on the spatial scale at which the information was coded,

but on the precision of the data. In contrast, our results suggest

that analyses on altitudinal ranges at genus and species level are

less sensitive to georeferencing mistakes. This could however

become a problem for groups with fewer records or narrower

distribution.

Our study demonstrates that the correct estimation of species

distribution and species richness still requires occurrence data of

good quality. In practice, this means applying substantial

amounts of taxonomic knowledge, time and funding on verify-

ing and cleaning up subsets of public databases. When this is not

a viable option, automatically removing uncertain data (e.g.

records without locality names) may be sufficient to reveal

general diversity patterns and identify main centres of diversity

for the focal group.

It is unfortunate that GBIF still do not allow their users to

easily provide feedback on specific records, e.g. correcting misi-

dentifications and erroneous georeferencing as outlined in this

study. We therefore urge the managers of public biological data-

bases to implement this sort of ‘crowd science’ evaluation –

comparable to the open rating of hotels and restaurants on the

Internet. It will then be up to individual researchers to decide to

which extent they wish to rely on this community-based assess-

ment of biological records, e.g. whether they want to perform

their analyses only based on unchallenged data. Some initiatives

have started to emerge (i.e. http://www.idigbio.org, http://

www.ispotnature.org and http://www.inaturalist.org), but a

rapid change is required to advance our knowledge on biodiver-

sity and distribution patterns in the era of Big Data.
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