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ABSTRACT
Protein chemical shifts are routinely used to augment molecular mechanics force
fields in protein structure simulations, with weights of the chemical shift restraints
determined empirically. These weights, however, might not be an optimal descriptor
of a given protein structure and predictive model, and a bias is introduced which
might result in incorrect structures. In the inferential structure determination
framework, both the unknown structure and the disagreement between experimental
and back-calculated data are formulated as a joint probability distribution, thus
utilizing the full information content of the data. Here, we present the formulation
of such a probability distribution where the error in chemical shift prediction
is described by either a Gaussian or Cauchy distribution. The methodology is
demonstrated and compared to a set of empirically weighted potentials through
Markov chain Monte Carlo simulations of three small proteins (ENHD, Protein G
and the SMN Tudor Domain) using the PROFASI force field and the chemical shift
predictor CamShift. Using a clustering-criterion for identifying the best structure,
together with the addition of a solvent exposure scoring term, the simulations
suggests that sampling both the structure and the uncertainties in chemical shift
prediction leads more accurate structures compared to conventional methods
using empirical determined weights. The Cauchy distribution, using either sampled
uncertainties or predetermined weights, did, however, result in overall better
convergence to the native fold, suggesting that both types of distribution might be
useful in different aspects of the protein structure prediction.

Subjects Biochemistry, Bioinformatics, Computational Biology, Computational Science
Keywords Markov chain Monte Carlo, NMR, Probabilistic models, Protein structure,
Chemical shifts

INTRODUCTION
Protein structures can today routinely be simulated by methods such as molecular

dynamics or Monte Carlo simulations, using molecular mechanics force fields (Shaw et

al., 2010; Karplus & McCammon, 2002; Snow et al., 2002). However, this is not always a

feasible method to determine a protein structure by itself. To elucidate the native protein

structure efficiently, the force field energy can be augmented by restraints obtained from

experiments. This immediately raises the question, how can this be done rigorously and

efficiently? One pragmatic approach to this problem is to define a hybrid energy using
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a penalty function, which describes the agreement between experimental data and data

calculated from a proposed protein structure, together with a physical energy (such as

from a molecular mechanics force field) (Jack & Levitt, 1978). An optimal structure in this

approach could then be determined for example by minimizing the hybrid energy function

Ehybrid = wdata Edata + Ephysical. (1)

This approach, however, does not uniquely define neither the nature nor weight of Edata,

and the resulting protein structure will depend on the choices of these.

Chemical shifts have been combined with physical energies in a multitude of ways,

e.g., using weighted RMSD values or various types of harmonic constraints. Vendruscolo

and co-workers implemented a ‘square-well soft harmonic potential’, with corresponding

gradients, and were able to run a chemical shifts biased MD simulation where they

successfully refined slightly denatured protein structures to a Cα-RMSD of down to

0.84 Å from the corresponding crystal structures (Robustelli et al., 2010). The groups of

Bax and Baker added the chi-square agreement between SPARTA (Shen & Bax, 2007)

predicted chemical shift values and experimental chemical shifts with an empirical weight

of 0.25 to the ROSETTA all-atom energy (Shen et al., 2008; Rohl et al., 2004). The ProCS

method (Christensen et al., 2013) uses an approach similar to that of Bax and Baker, but

with empirical weights inferred from a number of quantum mechanical calculations on

representative protein models. The CHESHIRE approach (Cavalli et al., 2007) utilizes the

experimental chemical shifts to predict secondary structure and backbone dihedral angles.

These in turn are used to score molecular fragments from a database of known structures

together with the chi-square agreement between the measured chemical shifts and the

chemical shifts of the fragment in the database. Additionally, the final refinement phase

includes a combination of physical energy terms and a term describing the correlation

between experimental and back-calculated chemical shifts. A different approach was used

by Meiler & Baker (2003), where the contribution of the experimental chemical shifts

were set relative to 1 or 0 depending on whether or not the difference to the PROSHIFT

prediction (Meiler, 2003) exceeded a maximum tolerance. The reasoning for not using a

quadratic potential was that the experimental NMR data was automatically assigned and a

quadratic potential is more sensitive to assignment errors.

Clearly information from chemical shifts can be incorporated in a multitude of ways

with parameters, shape and weights often tweaked by hand or estimated empirically. The

inferential structure determination (ISD) principles introduced by Rieping, Habeck &

Nilges (2005) defines a Bayesian formulation of Eq. (1), which has previously been used

to determine protein structures based on NOE (Habeck, Rieping & Nilges, 2006; Olsson et

al., 2011) and RDC restraints (Habeck, Nilges & Rieping, 2008). In the following section

the equations of an ISD approach for combining the knowledge of experimental chemical

shifts with a physical energy are presented.
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THEORY
In the ISD approach we seek the probability distribution of the structure X and a set of

uncertainties θ, correlating experimental and predicted chemical shifts, given a set of

experimentally measured chemical shifts d, i.e., the probability p(X,θ | d). Using Bayes’

theorem, this probability can be written as

p(X,θ | d)=
p(d | X,θ)p(X,θ)

p(d)
. (2)

p(d)merely serves as a normalization constant, which we need not evaluate.

We’re making the basic assumption, that the deviation between predicted and

experimental chemical shifts, given as

Δδi = δX,i − δexp,i (3)

approximately follows some distribution with a variance uniquely defined by the type

of nuclei (Cα , Cβ etc.). The relevant equations for a Gaussian distribution and a Cauchy

distribution (a Student’s t-distribution with one degree of freedom), respectively, are

presented in the next sections.

Gaussian distribution
According to the principle of maximum entropy (Jaynes, 1957), the least informative prob-

ability distribution is the one having maximal information entropy, which given a specified

mean and variance is the Gaussian distribution (Cover & Thomas, 2012). Assuming that

each measured experimental chemical shift δexp,i is conditional independent given the

structure, the likelihood p(d|X,θ) is obtained as the product of the individual probabilities

of all measured chemical shifts. With i iterating over all nj measured chemical shifts of

nuclei type j, this takes the form of:

p(d | X,θ)=


j

nj
i=1

p

δexp,ij | δX,ij,σj


=


j

nj
i=1

1

σj
√

2π
exp


−

Δδ2
ij

2σ 2
j



=


j


1

σj
√

2π

nj

exp


−

χ2
j

2σ 2
j


, (4)

where σj is the standard deviation in predicting chemical shifts of nuclei type j and

χ2
j =

nj

i Δδ
2
ij. The structure, X, and the uncertainties in the model, θ, are assumed

independent and p(X,θ) can be expanded into

p(X,θ)= p(X)p(θ)= p(X)


j

p

σj

. (5)
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Figure 1 Uncertainty sampling with Gaussian and Cauchy distributions. Sampling of σ and γ , using
Jeffrey’s priors, for Cα-chemical shifts of Protein G. nCα = 54 and χ2

Cα
= 69.7 ppm2. (A) Gaussian

distribution, (B) Cauchy distribution.

The prior probability for the protein structure can be expressed by the Boltzmann

distribution, that is:

p(X)=
1

Z(T)
exp


−

E(X)

kBT


, (6)

where the physical energy E(X) could for example be approximated using a molecular

mechanics force field. Note that in this case, the partition function Z(T) is a normalization

constant and evaluation of this is not necessary. We have little prior knowledge about σj

other than that it is a scale parameter. An uninformative choice of prior distribution is the

Jeffreys prior (Jeffreys, 1946), which in this case is simply:

p

σj

∝ σ−1

j . (7)

Combining these expressions, p(X,θ | d) is thus proportional to

p(X,θ | d)∝ p(d | X,θ)p(X)p(θ)

∝


j


σ

−nj−1
j exp


−

χ2
j

2σ 2
j


exp


−

E(X)

kBT


. (8)

The resemblance to a hybrid energy such as in Eq. (1) is obtained by (neglecting all

constant terms):

Ehybrid(X,θ)= −kBT ln

p(X,θ | d)


= kBT


j


(nj + 1)ln


σj

+

χ2
j

2σ 2
j


+ E(X). (9)

From this it is seen that the standard deviations are effectively describing the weight of the

experimental data. The energy dependence of σj is depicted in Fig. 1.
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Conjugate prior
As discussed below, sampling uncertainties for the Gaussian model using the Jeffrey’s prior

leads to numerical problems. The problems arises if χ2
j converges to zero, which leads to

σj → 0. This can be seen from the maximum a posteriori estimator (MAP) of σ 2
j according

to Eq. (9):

σ 2
j,MAP =

χ2
j

nj + 1
. (10)

We found that these problems could be avoided by using a weakly informative prior. The

conjugate prior for the variance of the Gaussian distribution (σ 2
j ), when the mean is

known, can be given by an Inverse-Gamma distribution:

p

σ 2

j | α,β


=
βα

Γ(α)


σ 2

j

−α−1
exp


−
β

σ 2
j


. (11)

p(X,θ | d) is thus proportional to

p(X,θ | d)∝ p(d | X,θ)p(X)p(θ)

∝


j


σ

−nj−2α−2
j exp


−

2β +χ2
j

2σ 2
j


exp


−

E(X)

kBT


. (12)

In contrast to Eq. (10), the maximum a posteriori estimator of σ 2
j does not equal zero in

the limit of χ2
j → 0 with a non-zero choice of β:

σ 2
j,MAP =

2β +χ2
j (X)

2α+ 2 + nj
. (13)

In all the simulations where σj was sampled we use Eq. (12) and α = β = 0.001 (Gelman,

2006) unless stated otherwise.

Marginal likelihood
Alternatively one can use the marginal likelihood where σj is integrated out:

p(d | X)=


j


∞

0
p


d | X,σj

p

σj

dσj

∝


j


χ2

j

−nj
2
. (14)

This results in a hybrid energy of the form:

Ehybrid(X)= −kBT ln

p(X | d)


= kBT


j

nj

2
ln

χ2

j


+ E(X). (15)
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Cauchy distribution
The Cauchy and Gaussian distribution are both special cases of the Student’s t-

distribution, with degrees of freedom ν = 1 and ν = ∞ respectively. Compared to the

Gaussian distribution, the Cauchy distribution has much heavier tails meaning that it will

be less penalizing of single predictions far from the experimental values.

p(d|X,θ) is again obtained as the product of the individual probabilities of all measured

chemical shifts, with scale parameters γj (equivalent to σj of the Gaussian distribution):

p(d | X,θ)=


j

nj
i=1

p

δexp,ij | δX,ij,γj



=


j

(πγj)
−nj

nj
i=1


1 +


Δδij

γj

2
−1

. (16)

Note that the Cauchy distribution does not reduce into an expression that depends on

the χ2
j differences (in contrast to the Gaussian). The Jeffreys prior is the same as for the

Gaussian distribution:

p

γj

∝ γ−1

j . (17)

p(X,θ | d) is thus proportional to

p(X,θ | d)∝


j

γ−(nj+1)
j

nj
i=1


1 +


Δδij

γj

2
−1

exp


−

E(X)

kBT


. (18)

The resemblance to a hybrid energy such as in Eq. (1) is obtained by (neglecting all

constant terms):

Ehybrid(X,θ)= −kBT ln

p(X,θ | d)


= kBT


j


(nj + 1)ln(γj)+

nj
i=1

ln


1 +


Δδij

γj

2


+ E(X). (19)

METHODOLOGY
Computational methodology
Markov chain Monte Carlo simulations were carried out with PHAISTOS

v1.0 (Boomsma et al., 2013) using either the multicanonical generalized ensemble via

MUNINN (Ferkinghoff-Borg, 2002) or Metropolis–Hastings (Metropolis et al., 1953).

Chemical shift predictions were performed with an implementation of CamShift (Kohlhoff

et al., 2009) and the physical energy was approximated using the computational efficient

PROFASI force field (Irbäck & Mohanty, 2006). The conformational degrees of freedom

explored in the simulations were restricted to the backbone and side-chain dihedral angles

(φ,ψ,χ) as well as the backbone bond angles. Backbone moves had torsion and bond
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angles biased by CS-Torus (Boomsma et al., 2014) and Engh-Huber statistics (Engh &

Huber, 1991) respectively, which both introduces an implicit energy. Chemical shifts were

only utilized by CS-Torus for biased sampling in reference simulations where no CamShift

energy term was used. The simulations were performed on AMD Opteron 2.1 GHz CPU’s

at ∼12 M steps/day or on Intel Xeon 3.07 GHz CPU’s at ∼18 M steps/day.

Convergence simulations
The Protein G convergence simulations were initialized from the experimental struc-

ture (PDB-id: 2OED). The simulations were run for 10 M MC steps at 300 K using

Metropolis–Hastings. The physical move set was comprised of 50% local, uniform single

side chain moves, 25% CRISP local moves (Bottaro et al., 2012) and 25% semilocal biased

Gaussian step (BGS) backbone moves (Favrin, Irbäck & Sjunnesson, 2001).

Structure determination simulations
The structure determination simulations were each run on 32 threads for 100 M iterations.

The temperature range explored with MUNINN were set to 273 K–500 K. The physical

move set was comprised of 50% local, uniform single side chain moves, 40% CRISP

backbone moves and 10% backbone-DBN pivot moves (Boomsma et al., 2008). In the

simulations where the uncertainties were dynamically adjusted, an extra 10 M Monte Carlo

steps were added which sampled a change in σj or γj as described below. Note that these

moves are essentially computationally costless, since neither chemical shifts or force field

energy terms need be recomputed.

Clustering of sampled structures
To make clustering feasible for the large amount of structures generated (320,000

structures for each combination of potential and protein), the sampled structures were

converted to GIT vectors (Røgen & Fain, 2003) with PHAISTOS. The structures from

each individual thread were subsequently divided into sets of 15 clusters with the Pleiades

module of PHAISTOS (Harder et al., 2012) using K-means clustering (Lloyd, 1982). The

choice of using 15 clusters is based on the suggestion of the Pleiades authors of creating

10–20 clusters. Since the clustering process is stochastic, it was performed 10 times for

each thread and the optimal clustering according to the sum of squared errors were used

for further analysis. From each of these clusters, a subset consisting of the 100 structures

closest to the cluster centroid were selected for energy and RMSD evaluation and the

median energy structures were chosen as cluster representatives. The GIT vectors can be

created as output observables directly from the simulations, but in this case they were

created from the simulation trajectories using the pdb2git application in PHAISTOS with

the program GNU Parallel (Tange, 2011) used to parallelize the jobs. Re-weighting from

the generalized ensemble to approximate the canonical ensemble were done automatically

with Pleiades using the weighted k-means option.

Monte Carlo move in uncertainty parameter space
The ξ -move which re-samples the value of the uncertainties (i.e., σ or γ ) was constructed

by multiplying the previous value of ξ by a sampled constant centered around 1. Detailed
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balance is maintained by proposing a small change, ξ → ξ ′, by:

ξ ′
= ξ · exp


rnom


σµ

, (20)

where rnom(σµ) is a random number from a normal distribution with zero mean

and standard deviation σµ. A value of σµ = 0.1 was found to yield a rapid and stable

convergence for both the Gaussian and the Cauchy distribution.

Issues from unexplored degrees of freedom
It was observed that CamShift predictions of Cβ chemical shifts for Isoleucine were

consistently off by 3–8 ppm for the structures generated in the simulations performed with

PHAISTOS. This was observed using both the CamShift implementation in PHAISTOS

as well as with the standalone predictor. CamShift was trained on high quality X-ray

structures where missing Hydrogens were added in accordance with the CHARMM22

topology file (Brooks et al., 2009). Letting the CamShift program optimize Hydrogen

placement before prediction brought the accuracy of predicted Isoleucine Cβ chemical

shifts in range with the prediction for the remaining amino-acids. For reference, the RMSD

for Cβ chemical shift prediction of all amino-acids of a Chymotrypsin Inhibitor-II protein

(CI2) structure were found to be 1.90 ppm including predictions for Isoleucine and 1.25

ppm if these predictions were excluded. As bond lengths and side-chain bond angles are

not degrees of freedom in the simulations performed with PHAISTOS, the distances of

β-Hydrogens and γ -Hydrogens relative to the Cβ atoms are constant. Even though this

affects the Camshift prediction, it is reasonable to assume that this can be compensated to

some degree by small structural perturbations. However, this distance dependence of the

Cβ chemical shift prediction for Isoleucine is much larger than for the remaining amino

acids (Kohlhoff et al., 2009) and as a result we chose to disable prediction for Isoleucine Cβ
chemical shifts in the simulations.

RESULTS AND DISCUSSION
Problems with Gaussian weighting scheme when using a Jeffreys
prior
Attempts to use predicted chemical shifts from CamShift while sampling σ using a

Gaussian model (Eq. (9)) initially proved unsuccessful. Using any structure (compact

or unfolded) as starting point for the Monte Carlo simulation, it was often observed that

the χ2 agreement between predicted and experimental chemical shifts would converge

to zero after only a few million iterations. Naturally this leads to σ → 0, which in turn

essentially freezes the structure in the simulation, since any MC move that causes the

slightest increase in chi-square will result in an enormous change in energy. If several types

of chemical shifts were included in the simulation (possible chemical shift types from

CamShift are Hα , Cα , H, N, C and Cβ), the χ2 for one (random) of the included types

would quickly converge to zero. One suspected reason was that the prior distribution was

not well described by the more coarse grained PROFASI force field. CamShift calculations
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Table 1 Maximum likelihood estimates of σ (or root-mean-square deviation (RMSD)) obtained from
the CamShift training set, compared to means extracted from a 107 MC step simulation using the
Gaussian model (see text). Shown values are in units of ppm.

Cα Hα N H C Cβ

CamShift training set 1.22 0.26 2.78 0.56 1.12 1.19

Frozen simulationa 1.13 0.26 3.53 0.52 1.06 1.21

Free simulationa 1.03 0.20 2.92 0.46 1.16 1.23

Notes.
a Estimated over the last 106 MC steps.

Table 2 Maximum likelihood estimates of γ obtained from the CamShift training set, compared to
means extracted from a 107 MC step simulation using the Cauchy model (see text). Shown values are
in units of ppm.

Cα Hα N H C Cβ

CamShift training set 0.70 0.19 1.87 0.31 0.74 0.77

Frozen simulationa 0.62 0.17 1.90 0.32 0.64 0.69

Free simulationa 0.43 0.05 1.57 0.25 0.67 0.55

Notes.
a Estimated over the last 106 MC steps.

were therefore redone using the OPLS-AA/L force field (Kaminski & Friesner, 2001). This,

however, led to identical results.

CamShift (and most likely other similar predictors) is able to make relatively large

changes in prediction, from a small perturbation in the structure. Combined with

sampling of σ , this can drive the simulation into an energy minimum with essentially

zero error in the chemical shift prediction, even though the structure may or may not be

anything like the native structure. We found the Cauchy distribution to be less sensitive

to divergence of the scale parameter and to perform better as an uninformative model in

our case. As an alternative to the Jeffreys prior, a weakly informative conjugate prior for the

Gaussian model did not show these sampling issues.

Convergence of scale parameters
The convergence of the scale parameters for the Gaussian and Cauchy distributions (σ and

γ respectively), with chemical shifts predictions by CamShift (Kohlhoff et al., 2009), were

explored by starting a simulation with PHAISTOS (Boomsma et al., 2013) from the native

structure of Protein G (PDB:2OED (Ulmer et al., 2003)). Experimental chemical shifts were

obtained from Ref-DB (Zhang, Neal & Wishart, 2003) (RefDB:2575 (Orban, Alexander

& Bryan, 1992)). For each model, a 107 MC step simulation was performed: keeping the

structure fixed, only sampling uncertainties (frozen), and a simulation where the atomic

coordinates (X) was sampled as well (free). Tables 1 and 2 shows the mean of the sampled

parameters from the last 106 steps together with the maximum likelihood values obtained

from the CamShift training set for reference.

Bratholm et al. (2015), PeerJ, DOI 10.7717/peerj.861 9/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.861


Using a Gaussian distribution, the parameters in the ‘frozen’ simulation all converged

within 0.1 ppm to the reported values from the CamShift training set, with the exception

of the N nuclei which deviated by 0.75 ppm. The RMSDs presented in Table 1 for the

CamShift training set were based on predictions on 7 proteins and, using a larger data

set of 28 proteins, the average RMSD for the N nucleus increased from 2.78 ppm to

3.01 ppm (Kohlhoff et al., 2009). Thus, the slightly higher mean for N seems reasonable.

Allowing the structure and weight parameters to be sampled simultaneously in the ‘free’

simulation overall lowered the RMSD of the prediction as expected, since the accepted

structures in the Monte Carlo simulation will be biased by the correlation of predicted

and experimental chemical shifts. However, the RMSD increased moderately for the C

nucleus and slightly for Cβ , indicating that the chemical shift prediction of C and Cβ are

less sensitive to changes in local structure than the four other nuclei.

In the simulations using a Cauchy distribution, the ‘frozen’ values were seen to be

similar to the CamShift data set (within 0.1 ppm). When physical moves were introduced

in the ‘free’ simulation, the sampled parameters were again found to be lowered, but

remained within 0.3 ppm. Surprisingly, γ for Hα went from 0.17 ppm to 0.05 ppm, with

similar values found when repeating the simulation. The χ2 error in the prediction of Hα

chemical shifts were similar to that obtained with the Gaussian potential, indicating that

the error in prediction for Hα atoms had several outliers. Since the Cauchy distribution is

less sensitive to outlier values, these will have a lesser effect on the sampled parameters than

for the Gaussian.

Comparison of weighting schemes in structure determination
A series of simulations starting from an unfolded state were performed on ENHD (PDB:

1ENH (Clarke et al., 1994), BMRB:15536 (Religa, 2008)), Protein G and the SMN Tudor

Domain (PDB: 1MHN (Sprangers et al., 2003), RefDB:4899 (Selenko et al., 2001)) to

compare how different weighting schemes performed for structure determination. The

probabilistic schemes used included three Gaussian models: one using the maximum

likelihood estimates of σ from the CamShift training set (Gaussian/fixed); one where

the values of σ were sampled (Gaussian/sampled); and one using the marginalized

distribution (Gaussian/marginalized). Similarly, two Cauchy models were tested: one

using maximum likelihood values for γ from the CamShift training set (Cauchy/fixed),

and one where the values for γ were sampled (Cauchy/sampled). As reference, the square

well potential of Robustelli et al. (2010), which was made specifically for refinement with

the CamShift model, were included in the simulations with different weights (Square

well/α = 1, Square well/α = 5).

In all simulations, the generative predictive model CS-Torus (Boomsma et al., 2014) was

used to sample backbone dihedral angles from a distribution biased by the amino-acid

sequence. Chemical shifts can provide local information to the CS-Torus model to further

improve the biased sampling, but this was not utilized in any simulations using CamShift

predictions. Although including chemical shifts in the sampling would most likely improve

the simulation results, we chose to keep the CamShift energy terms as the only bias from
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Table 3 Different weighting schemes used in the protein folding simulations. In the columns to the
left, the number of threads, out of a total of 32, sampling structures below 2 and 4 Å Cα-RMSD
respectively to the reference structure is shown. The sampled structures from each thread were divided
into clusters and representative structures for each cluster were selected as the structure median in
PROFASI+CamShift energy, from the 100 structures closest to the cluster centroid. The Cα-RMSD in
Å of the lowest-energy cluster representative is shown below in the columns to the right.

Threads (out of 32) sampling
below 2Å (left) and 4Å (right)

Lowest-energy RMSD (Å)

ENHD Protein G SMN ENHD Protein G SMN

Gaussian/fixed 32 32 0 7 29 30 3.67 3.11 3.11

Gaussian/sampled 32 32 4 15 13 20 2.15 3.03 5.88

Gaussian/marginalized 32 32 1 16 7 14 4.24 2.72 6.06

Cauchy/fixed 32 32 9 25 15 21 1.94 1.15 2.58

Cauchy/sampled 32 32 13 24 11 16 1.87 2.82 5.51

Square well/α = 1a 19 22 2 12 14 18 2.29 3.14 3.71

Square well/α = 5a 32 32 0 1 1 5 3.82 5.83 1.91

CS-Torusb 4 27 8 25 0 0 19.2 3.01 8.33

Notes.
a Weights, α, of 1 and 5 were used by Robustelli et al.
b Lowest-energy cluster representatives for the CS-Torus simulations were selected from PROFASI energy alone.

the experimental chemical shifts. To display the effect of using a non-local chemical shift

predictor like CamShift instead of relying on local information alone in the sampling,

simulations using chemical shifts in the CS-Torus model, rather than with CamShift

prediction, were run as well.

Thirty-two folding simulations were run for each potential and protein for 100 M MC

steps using the PROFASI (Irbäck & Mohanty, 2006) force field and a CamShift energy term.

For each set of simulations, the sampled structures from each thread were subsequently

split into clusters as described in the Methodology section, and cluster representatives

were selected as the structures median in energy, from the 100 structures closest to the

cluster centroid. Table 3 shows the number of threads sampling structures below 2 and

4 Å Cα-RMSDs to the native structures as well as the RMSDs for the cluster representative

with the lowest PROFASI+ CamShift energy. The residue ranges used to calculate the

RMSDs were 5–54 for ENHD, all residues for Protein G and 4–56 for the SMN Tudor

Domain.

Convergence of sampling
The data in Table 3 shows that for certain potentials and proteins, several threads failed

to sample near-native structures. For ENHD all potentials but the CS-Torus model and

square well/α = 1 potential sampled structures below 2 Å Cα-RMSD for all threads. While

more than 20 threads sampled structures below 4 Å for both the CS-Torus and square well

model, only 4 threads sampled structures below 2 Å for CS-Torus. For Protein G no threads

for the Gaussian/fixed and square well/α = 5 potentials sampled structures below 2 Å. The

square well/α = 1, Gaussian/marginalized and Gaussian/sampled potentials only sampled
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these near-native states with a few threads, while the Cauchy potentials and the CS-Torus

model showed the fewest sampling issues.

Looking closer at the threads never sampling structures close to native for Protein G,

it is found that the majority of these never progressed past a local energy-minimum with

an alternative conformation where two β-strands have interchanged position (Fig. 2).

Taking the median structure of the most dense cluster as representative for each thread,

27 of these show this incorrect fold for the Gaussian/fixed potential and 26 for the

square well/α = 1 potential. The Cauchy distributions shows the opposite trend with

25 correct folds for both potentials, while the structures from the Gaussian/sampled and

Gaussian/marginalized simulations had 14 and 11 correctly folded, respectively. For all

of these potentials, the densest clusters of each thread have either this misfold or the

correct structure. While the square well/α = 5 potential seem to find completely incorrect

structures, the CS-Torus simulations finds the correct overall fold in 20 threads. The

remaining CS-Torus threads are partly unfolded and none of them have the misfolded

structure found in the simulations with CamShift energy terms. Finally, for the SMN Tudor

Domain, the Gaussian/fixed model sampled structures below 2 Å for nearly all threads. The

CS-Torus model and square well/α = 5 potential for 0 and 1 thread(s) respectively, while

the remaining potentials sampled below 2 Å for around a third of the threads.

Ideally, the simulations with a given potential samples structures close to native

consistently well for all proteins, which was not the case for the Gaussian/fixed model,

square well/α = 5 potential, the CS-Torus reference model and to a lesser extent the

Gaussian/sampled model. The two Cauchy potentials was most likely to sample low-RMSD

structures across the three proteins. Due to limitations of the MUNINN implementation in

PHAISTOS at the time the simulations were run, the multicanonical generalized ensembles

from each thread cannot be re-weighted to approximate a single canonical ensemble, and

clustering of structures must be done on a per-thread basis. Since cluster densities can’t

readily be compared across threads, the structure clusters are evaluated from the force field

and CamShift energy.

Lowest-energy clusters
Table 3 shows for each potential and protein the Cα-RMSDs to native for the lowest-energy

structures found by clustering. There is no clear consensus of which potentials result in the

most accurate structures overall based on the RMSD values. Visually (Figs. S1–S6) all but

CS-Torus has the correct fold for ENHD, with the Gaussian/fixed, Gaussian/marginalized

and square well/α = 5 structures being less compact than the crystal structure. For protein

G, only the square well/α = 5 potential shows a slight misfold, and the overall somewhat

high RMSDs is again due to slightly less compact structures, as well as a small displacement

of beta-sheet positions for all but the CS-Torus and Cauchy/fixed models. Although the

misfold shown in Fig. 2 was prevalent in the simulations in many threads, none of the

lowest-energy structures have these interchanged β-strand positions. For the SMN Tudor

Domain, the difference in RMSDs between the potentials is mainly due to the protein tails

not being correctly placed in a compact structure.
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Figure 2 Local energy-minimum of Protein-G. Crystal structure (grey) and local energy-minimum
conformation (red) of Protein G. Figure made with PyMOL (Schrödinger LLC, 2010).
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Table 4 Cα-RMSDs in Å of the lowest-energy cluster representative, when a solvent exposure energy
term (HSEMM) is added to re-score the structures.

Lowest-re-scored-energy RMSD

ENHD Protein G SMN

Gaussian/fixed 1.40 2.45 2.23

Gaussian/sampled 1.03 1.29 1.24

Gaussian/marginalized 1.11 1.00 3.81

Cauchy/fixed 1.40 1.16 1.55

Cauchy/sampled 1.86 0.86 2.50

Square well potential/α = 1a 1.15 1.37 3.05

Square well potential/α = 5a 0.96 4.35 1.91

CS-Torusb 3.88 1.57 9.18

Notes.
a Weights, α, of 1 and 5 were used by Robustelli et al.
b Lowest-energy cluster representatives for the CS-Torus simulations were selected from PROFASI+HSEMM energy

alone.

As mentioned above, the obtained structures from the lowest-energy clusters are in

general less compact than the crystal structures. This is a result of additional compactness

terms being excluded in the simulations such that the effect of using different potentials

for modelling the discrepancy between observed and predicted chemical shifts might be

more clear. In nearly all of the simulations higher energy clusters exists that have lower

RMSDs to the native structure, suggesting that near-native structures are sampled, but

the compactness of the protein isn’t properly described by the force field. Evaluating

sampled structures with energy terms not included in the Monte Carlo simulations is

problematic, since the energy can fluctuate greatly with small changes in local structure.

However when entire clusters of structures are evaluated this becomes less of a problem,

especially when coarse grained energy terms is used in addition to the energies obtained

from the simulations. The half-sphere exposure mixture model (HSEMM), implemented

in PHAISTOS for modelling solvent exposure, is a variation of the multibody multinomial

model (MuMu) (Johansson & Hamelryck, 2013) with the environment of residue i

described by four features: the secondary structure according to CS-Torus, the backbone

hydrogen bond network and the half sphere exposure up and down measure (Hamelryck,

2005). For every cluster, the energy from HSEMM was calculated and added to the total

energy of the structures, with the hydrogen bond network feature integrated out to enforce

the coarse grained characteristics of the model.

The results are summarized in Table 4 and show that the lowest-energy clusters

re-scored with the solvent exposure term all have lower or similar RMSDs to the clusters

evaluated with just the PROFASI+ CamShift energies. Sampling of the uncertainty when

using the Gaussian distribution results in the structures closest to native, with RMSDs

below 1.5 Å for all three proteins. For the Cauchy distribution, sampling the uncertainties

does not seem to be an improvement over using predetermined weights, but both
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approaches gives better structures overall than the remaining potentials. Furthermore,

it is clear that the non-local information provided by the CamShift model greatly improves

structure sampling, as shown by the relatively poor performance of the simulations using

only CS-Torus.

CONCLUSION
We present a probabilistic method for biasing protein structure simulations with

experimentally measured chemical shifts, based on the inferential structure determination

formalism (ISD) (Rieping, Habeck & Nilges, 2005). In this formalism, the weighting of

experimental data can be determined entirely by the data itself, the predictive model and

the physical force field.

Simulations were performed on three small proteins (ENHD, Protein G and SMN Tudor

Domain) for a Gaussian and Cauchy-based probability distribution, using the chemical

shift predictor CamShift (Kohlhoff et al., 2009). The ISD-determined uncertainties were

found to correspond well to the empirically determined uncertainties in the CamShift

predictions. Furthermore sampling the uncertainties as part of the protein structure

determination simulations, lead to improved accuracy of the predicted structures when

a Gaussian potential was used. Using a Cauchy potential with either sampled or fixed

uncertainties did, however, show overall better convergence to the native fold, suggesting

that the simulations are less likely to get stuck in local minima with these potentials.

Additionally, the importance of capturing non-local information from experimental

chemical shifts have been shown by comparing the use of the CamShift predictor to the

local-only CS-Torus model.
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