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Abstract

Background and Methods

Assessing the effects of pesticide hazards on microbiological processes in the soil is cur-

rently based on analyses that provide limited insight into the ongoing processes. This study

proposes a more comprehensive approach. The side effects of pesticides may appear as

changes in the expression of specific microbial genes or as changes in diversity. To assess

the impact of pesticides on gene expression, we focused on the amoA gene, which is in-

volved in ammonia oxidation. We prepared soil microcosms and exposed them to dazomet,

mancozeb or no pesticide. We hypothesized that the amount of amoA transcript decreases

upon pesticide application, and to test this hypothesis, we used reverse-transcription

qPCR. We also hypothesized that bacterial diversity is affected by pesticides. This hypothe-

sis was investigated via 454 sequencing and diversity analysis of the 16S ribosomal RNA

and RNA genes, representing the active and total soil bacterial communities, respectively.

Results and Conclusion

Treatment with dazomet reduced both the bacterial and archaeal amoA transcript numbers

by more than two log units and produced long-term effects for more than 28 days. Manco-

zeb also inhibited the numbers of amoA transcripts, but only transiently. The bacterial and

archaeal amoA transcripts were both sensitive bioindicators of pesticide side effects. Addi-

tionally, the numbers of bacterial amoA transcripts correlated with nitrate production in N-

amended microcosms. Dazomet reduced the total bacterial numbers by one log unit, but

the population size was restored after twelve days. The diversity of the active soil bacteria

also seemed to be re-established after twelve days. However, the total bacterial diversity as
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reflected in the 16S ribosomal RNA gene sequences was largely dominated by Firmicutes

and Proteobacteria at day twelve, likely reflecting a halt in the growth of early opportunists

and the re-establishment of a more diverse population. We observed no effects of manco-

zeb on diversity.

Introduction
Molecular-based methods have a great potential to provide sensitive, specific and cost-efficient
measurements that are suitable for the evaluation of pesticide side effects on important soil eco-
system functions as well as the microbial community composition. Molecular analyses based
on directly extracted DNA or RNA allow measurements of bacterial or fungal diversity of ei-
ther the total or active communities, respectively, and of specific functions, e.g., via the quanti-
fication of genes or gene transcripts that are involved in nitrogen turnover. Currently, the only
standard analyses, which provide the basis for hazard assessment of pesticides to soil microor-
ganisms, are carbon and nitrogen transformation tests [1]. These tests measure the general mi-
crobial activity as reflected in glucose-induced respiration and the nitrification activity as
reflected the production of nitrate [2,3].

Nitrification is very stress-sensitive, and several pesticides inhibit the process [4–6]. Nitrifica-
tion is a central step in the nitrogen cycle, where ammonia oxidizers first oxidize ammonia into ni-
trite in a rate-limiting step that is catalyzed by ammonia monooxygenase, after which nitrite
oxidizers use nitrite oxidoreductase to oxidize nitrite into nitrate [7]. It was recently discovered
that in addition to the well-known ammonia-oxidizing β- and γ-Proteobacteria, some archaea
also contain a variant of ammonia monooxygenase and perform ammonia oxidation [8,9].

A large number of studies have exploited the genetic variation in amoA genes to distinguish
and quantify the number of bacterial and archaeal variants of the genes under different agricul-
tural management and soil environment conditions [10–14]. These studies have demonstrated
a heterogeneous distribution of ammonia oxidizers, in particular higher pH and nitrogen avail-
ability favor bacteria over archaea [15]. Based on the apparent niche differentiation between
the two groups, Wessén and Hallin suggested qPCR quantification of archaeal and bacterial
amoA gene copies as a potential biomarker to monitor the soil ecosystem and the response to
land use and environmental conditions [16].

The quantification of amoAmRNA transcripts, in addition to amoA gene copy numbers,
yields direct information of the actual gene expression of the soil system. In contrast to DNA,
mRNA transcripts are highly labile messenger molecules that are only present during periods
of gene expression. Therefore, an abundance of specific mRNA transcripts potentially corre-
lates better with enzyme activity and therefore process rates than their DNA counterpart. Pre-
viously, Bælum and co-workers demonstrated this relationship for the mineralization of the
pesticide MCPA, which correlated well with the number of tfdA transcripts but not with the
gene copies in the soil [17]. Here, we evaluate the hypothesis that the quantification of bacterial
and archaeal amoA transcripts is a sensitive tool to predict the immediate effects of pesticides
on soil nitrification.

Soil bacterial diversity is important in maintaining the wide functional potential of the soil
ecosystem. Thus, pesticide risk assessment should include an analysis of the microbial diversity
in the soil. Because of the high bacterial species richness in the soil, Wertz and co-workers
claimed that some diversity reduction will not affect major functions, such as carbon minerali-
zation and nitrogen turnover [18]. Other researchers, however, have demonstrated that soil
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functioning will change at reduced diversity levels. Griffiths and co-workers reported lower ni-
trification, denitrification and methane oxidation under decreased biodiversity [19], and Yang
and co-workers found a decreasing biological fractionation of 13C with decreasing microbial di-
versity, reflecting the shorter food-chains [20]. Finally, several studies have demonstrated that
the ability of the soil system to resist invasion by new microorganisms decreases with decreas-
ing species richness [21,22].

Methods to describe the bacterial diversity as affected by pesticides have until recently been
limited to the small fraction of the bacterial community that is culturable [23]. Methods that ana-
lyze the total extracted DNA or RNA from the soil allow a more inclusive analysis. In a recent re-
view, Jacobsen and Hjelmsø recorded no studies that reported the application of next-generation
sequencing techniques to assess the pesticide effects on the soil microbial diversity [24].

In this study, we evaluate the pesticide effects using two novel molecular techniques: 1) an
assay based on reverse-transcription qPCR, which quantifies the abundance of microbial func-
tional gene transcripts, and 2) an assay evaluating the diversity of bacterial communities. For
functional genes, we quantified amoA transcripts from both bacteria and archaea, and for di-
versity, we evaluated the 454 amplicon sequencing of the V3 region of the 16S ribosomal RNA
(rRNA) gene—in both cases in response to treatment with the pesticides mancozeb (Tridex
DG) or dazomet (Basamid GR).

Materials and Methods

Soil
The permission for soil sampling was granted from the Askov Experimental Station under the
Dept. of Agroecology, Aarhus University, Denmark. The soil was a loamy sand (37% coarse
sand, 42% fine sand, 10% silt, 9% clay and 2% organic matter) that was sampled from an agri-
cultural field (55°28'20''N, 09°06'36''E) at the Askov Experimental Station, Denmark. The soil
contained 1.6% total C, 0.14% total N, 19.9 mg/kg NO3

--N, and 1.53 mg/kg NH4
+-N and had a

pH of 6.4 and a C:N ratio of 11.4. We sieved the soil (4-mmmesh) and kept it in the dark at
5°C until the beginning of the experiment.

Pesticides
We tested two formulated pesticides, Basamid GR and Tridex DG. Basamid GR is a soil disin-
fectant that is used to control a range of soil pests including soil nematodes, fungi and weeds.
Basamid GR contains the active compound dazomet (tetrahydro-3,5-dimethyl-2H-
1,3,5-thiadiazine-2-thione) and was obtained as granulate from Kanesho Soil Treatment (Brus-
sels, Belgium). Tridex DG is a fungicide with the active compound mancozeb [[1,2-ethanediyl-
bis[carbamodithioato]](2-)] manganese mixed with [[1,2-ethanediylbis[carbamodithioato]]
(2-)] zinc. Tridex DG was obtained as granulate from Cerexagri, Inc. (Plaisir Cedex, France).
The concentrations that were used in the experiments corresponded to the recommended ap-
plication dose for Basamid GR (266 mg/kg dry soil) and to five times the recommended appli-
cation dose for Tridex DG (13.3 mg/kg dry soil). These doses were calculated, assuming a soil
density of 1.5 g cm-1 and a field distribution of the pesticides in the top 5 cm of the soil.

Microcosm set-up
The soil was air dried at room temperature in the dark for three days and then homogenized by
sieving (2 mmmesh). We prepared microcosms with 10 g of sieved soil in 50 ml polypropylene
tubes. We added pesticide and/or ammonium sulfate (100 mg N/kg soil) that had been dis-
solved in 2 ml of sterile distilled H2O to a final soil moisture content of 60%WHC. We set up a
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full factorial design with six treatments with either dazomet or mancozeb or no pesticide in
every combination with or without ammonium sulfate. All of the microcosms were covered
with polyvinylchloride film and incubated in the dark at 20°C until sampling after one hour
and after 3, 7, 12, 21 and 28 days (on day 7, only nitrate was measured). At each sampling
point, we processed three microcosms from each treatment. A subsample of 500 mg of soil was
flash-frozen in liquid nitrogen for the later extraction of DNA and RNA, and the remaining
soil sample was stored at -20°C until nitrate determination.

Nitrate determination
Nitrate was extracted according to the OECD 216 guidelines [2] by mixing 9.5 g of moist soil
with KCl (0.1 M) to a total volume of 47.5 ml, with the modification that the extraction tubes
were shaken manually until all of the soil particles were suspended before being placed on an
end-over-end shaker for 1 hour according to the guidelines.

The nitrate concentrations of the soil extracts were determined via a chromogenic micro-
plate method according to Hood-Nowotny et al. [25]. The nitrate concentration was deter-
mined in duplicate for each soil extract (diluted to 0.2–2.0 mg/l N).

Extraction of nucleic acids and cDNA synthesis
We extracted DNA and RNA simultaneously from the soil using a phenol-chloroform extrac-
tion procedure [26] with the following modifications: to minimize the DNA loss by sorption to
clay particles, we added 0.5 ml of G2 (GEUS, Copenhagen, DK, US patent application no.
20120094353) to 1.4 mm ceramic bead tubes (Mo Bio Laboratories, Inc., Carlsbad, CA) and
freeze-dried the tubes prior to use. We added hexadecyltrimethylammonium bromide (CTAB)
and phenol chloroform to the bead tubes along with the frozen soil samples and performed
bead beating at speed 5 for 20 s in a FastPrep FP120 (BIO101, Farmingdale, NY). Two runs of
bead beating were performed with an intermediate cooling step for one minute on ice. The
aqueous phase was separated by centrifugation for ten minutes (16,000 g) at 4°C. After remov-
ing the phenol with chloroform-isoamyl alcohol, 1 μl of glycogen (Roche, Basel, Switzerland)
was added with 800 μl of 30% polyethylene glycol, and the samples were placed on ice for two
hours to facilitate nucleic acid precipitation. The samples were kept on ice throughout
the extraction.

We purified the RNA/DNA extracts using the NucleoSpin RNA Clean-up XS kit
(Macherey-Nagel, GmbH & Co. KG, Düren, Germany) and eluted them in 20 μl of RNase-free
H2O; the samples were subsequently split into two subsamples. One subsample was diluted
tenfold with RNase-free H2O and stored at -80°C until DNA analysis. The other subsample
was immediately subjected to DNase-treatment using the RTS DNase Kit (Mo Bio) according
to the manufacturers’ instructions. We used the DNase-treated sample as the template in
cDNA production using random hexamer primers (Thermo Scientific, Inc., Vilnius, Lithuania)
and the RevertAid Premium RT kit (Thermo Scientific) in a RT-PCR procedure according to
the manufactures’ protocol. The extraction, DNase treatment and reverse transcriptase were
performed in one working day. The quantity and quality of the extracted RNA was determined
on an Agilent 2100 Bioanalyzer using the prokaryote total RNA pico chip, which uses the rela-
tive signal intensity of 16S and 23S rRNA to calculate the RNA integrity number (RIN).

Real-time PCR assays
We quantified the number of amoA gene copies and mRNA transcripts by real-time PCR
using the primers amoA-1F and amoA-2R [27] for bacterial ammonia oxidizers and amoA19F
[11] and CrenamoA616r48x [28] for archaeal ammonia oxidizers. These primers generate a
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PCR amplification product of 491 bp for bacterial amoA and 440 bp for archaeal amoA, respec-
tively. The PCR reactions contained 1 × SYBR Premix Ex Taq (Tli RNaseH Plus) (Takara Bio,
Inc.), 5 pmol each primer and 1 μl of DNA or cDNA template in a final volume of 20 μl. The
amplification was performed in an iCycler Thermocycler (Bio-Rad Laboratories, USA) at 95°C
for 1 min followed by 40 cycles of 95°C for 30 s, 58/55°C (bacterial/archaeal amoA) for 30 s
and 72°C for 45 s. As standard for bacterial amoA quantification, we PCR-amplified the amoA
gene of the Nitrosomonas europaea ATCC19718-derived lux-marker strain (pHLUX20) [29]
using the primers amoA-1F and amoA-2R and cloned it into the E. coli pCR 2.1-TOPO vector
(Invitrogen, Carlsbad, CA). We used the fosmid clone 54d9 [9] as the standard for the archaeal
amoA. We generated standard curves from the extracted plasmids using tenfold dilutions of
101 to 107 bacterial amoA copies per microliter and 3×101 to 3×106 archaeal amoA copies
per microliter.

We quantified the number of total bacterial 16S rRNA and rRNA gene copies using the
primers 341F (50-CCTAYGGGRBGCASCAG-3’) and 806R (50-GGACTACNNGGGTATC-
TAAT-3’) [30], yielding an amplification product of 466 bp. The PCR reactions were carried
out in a final volume of 20 μl containing 1 × SsoFast EvaGreen Supermix (Bio-Rad), 0.4 μM
each forward and reverse primer, 1 mg/ml BSA (BIORON GmbH, Ludwigshafen, Germany)
and 1 μl of DNA template. The amplification was performed in a CFX96 Real-Time System
(Bio-Rad) at 98°C for 15 min and 35 cycles of 98°C for 30 s, 56°C for 30 s and 72°C for 30 s fol-
lowed by a final elongation step at 72°C for 7 min and a high-resolution melting curve. As a
standard, we used tenfold dilutions of DNA from Escherichia coli K-12 containing seven 16S
rRNA gene copies per genome [31].

Negative controls of the DNase-treated RNA samples were included in the qPCR to ensure
the absence of contaminating DNA. The specificity of the PCR amplification was tested via the
inspection of the melting curves that were prepared at the end of each PCR run. A subset of the
PCR products was also run on a gel to verify the presence of a single band of the correct size.

454 sequencing of bacterial 16S rRNA and rRNA genes
We selected the DNA and cDNA samples from the non-treated soil on day 0 and from soil
from every treatment on day twelve for sequencing. Day twelve was chosen because the high-
resolution melting curves that were obtained after qPCR amplification of the 16S rRNA genes
showed the largest difference between the pesticide-treated and non-treated soil on this day
[32]. The DNA and cDNA were PCR-amplified using 0.4 units of Phusion Hot Start II DNA
Polymerase (Thermo Scientific), 1 × Phusion HF buffer (Thermo Scientific), 4 nmol dNTP
mixture, 10 pmol each 341F and 806R, 1 μl of DNA or cDNA template (10 × diluted) and H2O
to a total volume of 20 μl. The PCR conditions were 98°C for 30 s, followed by 30 cycles of
98°C for 5 s, 56°C for 20 s and 72°C for 20 s, and a final extension at 72°C for 5 min. The PCR
products were run on a 1.25% agarose gel, and specific bands with the expected size of 466 bp
were excised and purified using the Montage DNA Gel Extraction Kit (Millipore, Billerica,
MA). Tags were added in a second PCR using identical primers but with 10-bp-long individual
attached MIDs (Roche) and only 15 PCR cycles. The tagged PCR products were then re-
purified, and the DNA concentrations were measured on a Qubit (Invitrogen). Finally, the
samples were mixed, creating an equimolar solution with a total of 1 μg DNA. The adapter-
ligation, emulsion PCR and 454 sequencing were performed by Beckman Coulter Genomics
(Brea, CA) on a 454 GS FLX Titanium Plate (Roche) (1/2 titanium plate).

We used the QIIME V.1.6 bioinformatics tool to analyze the 454 sequences [33]. The reads
with a quality score less than 25 in a sliding window of 50 bp were removed from the dataset.
We applied the Denoise algorithm [34] to reduce the errors that are introduced by sequencing.
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Chimeric sequences were removed with the script Chimera Slayer [35]. The sequences were
then mapped to a reference 16S rRNA gene database (Greengenes V.12.10). Singletons were
deleted to remove the artificial sequences that were not picked up by the Denoise algorithm.
Taxonomic tables and rarefaction curves were constructed from the remaining sequences
(~2500 per sample). The rarefaction curves did not reach equilibrium; therefore, we could not
determine the absolute species number. Therefore, we randomly selected 980 sequences from
each sample to compare the species richness between the samples.

Fate studies
We analyzed the mineralization and sorption of mancozeb in the soil by 14C-labeling and ra-
dioactivity measurements. The Institute of Isotopes Co. (Budapest, Hungary) delivered the la-
beled mancozeb, which had a specific activity of 64.16 mCi/g. Mancozeb was labeled in a
position so that 14C was not released until the compound was completely mineralized, and the
last daughter compound ethylenurea (EU) degraded to CO2. We set up triplicates in 100 ml
airtight flasks with 20 g of soil with or without ammonium sulfate (100 mg N/g soil) and water
regimes corresponding to 60%WHC. Tridex was added to the soil at 2.7 mg/kg and 14C-la-
beled mancozeb at 10,000 DPM per flask. A base trap containing 2 ml of NaOH was placed in
each flask to collect 14CO2. During the two months of incubation at 20°C, we replaced the base
traps regularly. We measured the samples on a Perkin Elmer Tri-Carb 2810 TR scintillation
counter using 10 ml of Wallac OptiPhase HiSafe 3 scintillation cocktail (Perkin Elmer, Turku,
Finland) per sample.

We measured the sorption of mancozeb in the soil as a function of the pesticide concentra-
tion using a procedure that was modified from the OECD guidelines [36]. The sorption iso-
therms were determined by setting up triplicate samples of 1 g of soil in glass vials with Teflon
caps. Initially, the soil was equilibrated with 1 ml of a 0.01 M CaCl2 solution for twelve hours.
Suspensions of Tridex and 14C-labeled mancozeb were subsequently added to the vials to reach
a 1:10 soil-to-solution ratio at final concentrations of 0, 0.2, 0.4, 1.0, 2.0 and 4.0 mg of Tridex
per liter and 2500 DPM per ml. The vials were mixed on an end-over-end rotator for two
hours or 24 hours at room temperature and thereafter centrifuged at 1500 g for ten minutes.
The supernatant was then transferred to 2 ml Eppendorf tubes and centrifuged again at 10,000
g for ten minutes. Non-adsorbed mancozeb was determined by mixing 1 ml of supernatant
with 10 ml of Wallac OptiPhase HiSafe 3 scintillation cocktail and measuring radiation by liq-
uid scintillation counting.

The fumigant dazomet degrades rapidly in moist soil by chemical conversion to methyl iso-
thiocyanate (MITC) [37,38]. We measured the volatilization of MITC via the application of
14C-labeled MITC (American Radiolabeled Chemicals, Missouri, USA) to moist (60%WHC)
or air-dried soil in airtight serum flasks with Teflon stoppers. The flasks were incubated at
20°C, and the volatilization was measured over a 72 hour period. Subsamples were redrawn
from the headspace using a hypodermic needle and injected into new airtight flasks with scin-
tillation liquid. The radioactivity of MITC in the gas phase was counted in a gas-liquid
equilibrium.

Statistics
We analyzed the effects of pesticides and ammonium sulfate on the gene copies, mRNA tran-
scripts and nitrate production using the SAS Enterprise Guide 4.1 interface of the SAS 9.1 pack-
age (Statistical Analysis System Institute, 2002–2003). We used three-way ANOVAs with
pesticides and ammonium sulfate as the qualitative variables and time as the quantitative vari-
able. The data were log-transformed before analysis to obtain the variance homogeneity.
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Results

Quantification of amoA transcripts and genes
The number of amoA transcripts decreased significantly in response to dazomet (P<0.0001).
One hour after exposure, the bacterial amoA transcripts were reduced by 400 to 1000-fold, and
the archaeal amoA transcripts were reduced by 100-fold compared with the treatments without
pesticides (Fig 1A, 1B, 1E and 1F). Three days after the dazomet treatment, a significant
(P<0.001) recovery was observed, showing a tenfold increase in the bacterial and a doubling in
the archaeal amoA transcripts in the soil that was amended with ammonium sulfate (Fig 1E
and 1F).

Treatment with dazomet also reduced the number of amoA genes by more than two log
units for both the bacteria and archaea (P<0.0001) (Fig 2A, 2B, 2E and 2F). The abundance of
amoA genes was approximately 2 × 106 copies/g of soil for bacteria and 5 × 106 copies/g of soil
for archaea at experimental onset, and these numbers were reduced to approximately 2 × 104

amoA gene copies/g of soil three days after treatment. After 28 days, no significant increase in
the archaeal amoA genes was observed. In contrast, a significant increase in the bacterial amoA
gene copies showed regrowth of the bacterial ammonia oxidizers in both the N-amended and
non-amended soil after dazomet treatment, corroborating the increase in the bacterial amoA
transcripts. However, the number of amoA transcripts and the population size of both bacterial
and archaeal ammonia oxidizers were still significantly lower 28 days after treatment compared
with the soil without pesticide application. Accordingly, nitrate production was inhibited by
dazomet throughout the experiment, and no significant resumption of nitrate production was
observed during this 28-day period (Fig 3).

Mancozeb also significantly inhibited nitrate production, particularly in the N-amended soil
(P<0.0001) (Fig 3). However, mancozeb did not have a consistent negative impact on the bac-
terial amoA transcripts, which shortly after treatment increased similarly to the control without
pesticide application. However, a significant interaction between both time and ammonium
sulfate (P<0.001) and mancozeb treatment (P<0.05) indicates that mancozeb conferred inhi-
bition for a limited duration. Three days after treatment, the increase in the bacterial amoA
transcripts was disrupted, and the maximum abundance of transcripts was not reached until
day 21, compared with day twelve in the soil without pesticide (Fig 1A and 1C).

Ammonium sulfate had a positive effect on the bacterial ammonia oxidizers as shown by a
significant increase in the bacterial amoA gene copies (P<0.001) (Fig 2A and 2C) both in the
soil that was treated with mancozeb and in the soil without pesticide application. In contrast,
ammonium sulfate had a negative effect on the archaea, as reflected in significant interactions
between time and ammonium sulfate (P<0.0001) and mancozeb (P<0.05) on the archaeal
amoA transcripts (Fig 1B and 1D). The archaeal amoA genes, however, were not significantly
affected by either mancozeb or ammonium sulfate (Fig 2B and 2D).

Nitrate production
The nitrate concentration increased rapidly after amendment with ammonium sulfate in the
soil without pesticide, and followed a sigmoid trend with an increasing rate, followed by a de-
creasing rate toward the end of the study (Fig 3). A calculation of the N pools indicates that
this development was due to an exhaustion of the added ammonium substrate during the ex-
periment. The accumulated amount of nitrate-N in the N-amended controls (200±4 mg N/kg)
approximated the amount of nitrogen that was added to the system as ammonium sulfate plus
the nitrate that developed in the non-amended control (190±2 mg N/kg). This suggests that
the fraction of produced nitrate-N that was removed by denitrification or biomass
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Fig 1. Quantification of amoA transcripts by RT-PCR. Abundance of amoA transcripts for bacteria (A+C
+E) and for archaea (B+D+F) in treatments without pesticides (A+B) and in treatments with mancozeb (C+D)
and dazomet (E+F). In each plot, the number of transcripts is shown in treatments without N amendment and
with the amendment of ammonium sulfate. The depicted values are the means of triplicate samples, and the
error bars indicate standard error. Note that the first data point in each plot indicates measurements one hour
after pesticide exposure.

doi:10.1371/journal.pone.0126080.g001
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Fig 2. Quantification of amoA genes by qPCR. Abundance of amoA gene copies for bacteria (A+C+E) and for archaea (B+D+F) in treatments without
pesticides (A+B) and in treatments with mancozeb (C+D) and dazomet (E+F). In each plot, the number of genes is shown in treatments without N
amendment and with the amendment of ammonium sulfate. The depicted values are the means of triplicate samples, and the error bars indicate standard
error. Note that the first data point in each plot indicates measurements one hour after pesticide exposure.

doi:10.1371/journal.pone.0126080.g002
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incorporation was minor. The nitrate concentration also increased significantly in the non-
amended soil during the experiment, albeit approximately seven times less than that in N-
amended soil (Fig 3). Because the nitrate-N removal in our systems was minor, we could use
our data points to estimate the nitrate production rate as Δnitrate/Δt.

Correlation between amoA abundance and nitrate production
The number of bacterial amoA transcripts correlated significantly with the nitrate production
rate, albeit with a much higher coefficient of determination in the N-amended (r2 = 0.55) than
in the non-amended (r2 = 0.16) soil (Table 1). The archaeal amoA transcripts, however, did
not explain the nitrate production rate neither in the N-amended nor in the non-amended soil
(r2 � 0.13) (Table 1).

Fig 3. Production of Nitrate. The accumulated production of nitrate is shown in soil without pesticides (squares) and in response to dazomet (triangles) and
mancozeb (circles) and in treatments with (filled symbols) and without ammonium sulphate (open symbols).

doi:10.1371/journal.pone.0126080.g003
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Quantification of the 16S rRNA and rRNA genes
Dazomet significantly reduced the size of the soil bacterial population, and three days after ex-
posure, the number of 16S rRNA genes was reduced by more than one log unit (Fig 4). After
twelve days, the 16S rRNA gene number increased again, particularly in the non-amended soil
where the population size was fully reestablished. Curiously, however, in the N-amended soil, a
significant negative effect of dazomet was still evident after 28 days (Fig 4). The impact of dazo-
met on the abundance of 16S rRNA, indicating the number of active bacteria in the soil, was
short lasting. One hour after the dazomet treatment, the abundance of 16S rRNA decreased in
both the N-amended and non-amended soil, but these effects were not significant (Fig 5).

Mancozeb did not have any significant negative effect on the overall number or activity of
the bacterial population, except for an unexpected decrease in the 16S rRNA on day 21 (Figs 4
and 5).

Species richness
The identity and number of OTUs were determined for all of the samples from day twelve and
for the soil without pesticide application on day 0. The number of OTUs on day twelve was in
the range of 400 to 500 for all of the 16S rRNA gene samples, except for those that were treated
with dazomet, where OTUs decreased to approximately 150 (Fig 6). In the soil that was treated
with mancozeb, the bacterial community composition of the 16S rRNA genes was very similar
to that of the soil without pesticide application (Fig 7). Here, Proteobacteria and Actinobacteria
were the most abundant and accounted for approximately 25% of the total 16S rRNA gene se-
quences each, but Firmicutes, Chloroflexi, Acidobacteria and Gemmatimonadetes also oc-
curred in high numbers. Treatment with dazomet resulted in a large increase in the relative
abundance, particularly of Firmicutes but also of Proteobacteria, which comprised approxi-
mately 85% of the 16S rRNA gene sequences on day twelve. In contrast, the fraction of Sphin-
gomonadales and Rhizobiales decreased upon dazomet treatment. Additionally, the archaeal
Crenarchaeota, which are ammonia oxidizers, occurred in low numbers in the control soil but
were undetectable in the soil that was exposed to dazomet.

Table 1. Correlation between nitrate production rates and amoA abundance.

amoA origin +(NH4)2SO4 No N-amendment

Bacterial transcripts 0.55*** 0.16*

Archaeal transcripts 0.11NS 0.03NS

Total transcripts 0.47*** 0.11NS

Bacterial genes 0.45*** 0.18*

Archaeal genes 0.10NS 0.13*

Total genes 0.31*** 0.16*

Coefficients of determination (r2) for the correlation between the nitrate production rates and the number of

amoA transcripts and genes. The coefficients were determined for the bacterial, archaeal or total summed

amoA for either N-amended or non-amended treatments. The nitrate production rates were calculated as

the net development in nitrate concentration between each sampling day during the experimental period.

These rates are plotted against the amoA abundance on the last of the respective sampling days. The level

of significance is indicated in superscript;
NSNon-significant,

*P < 0.05 and

***P < 0.001.

doi:10.1371/journal.pone.0126080.t001
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Although Firmicutes also showed an overrepresentation amongst the active soil bacteria as
indicated by the abundance of 16S rRNA sequences (Fig 8), the effect of dazomet treatment on
the distribution of the 16S rRNA sequences was lower than the effect on the distribution of the
16S rRNA gene sequences (Fig 7).

Fate of the pesticides in the soil
The mineralization of mancozeb followed the 1st order of kinetics (R2 = 0.99), with the mineral-
ization rate decreasing with time and with the concentration of mancozeb (S1 Fig). The total
amount of mancozeb that mineralized after 62 days was 23% without N amendment. Ammoni-
um sulfate significantly (P<0.05) increased the mineralization to 31%.

The sorption of mancozeb in the soil seemed to be determined primarily by the concentra-
tion in the aqueous phase. The sorption isotherm could be described by a Freundlich equation
with KF values of 1.91 l/kg after two hours of sorption and 2.00 l/kg after 24 hours of sorption
(R2 = 0.99). The Freundlich constant n that was calculated for the isotherms was 1.04 and 1.01
l/kg for two and 24 hours of sorption, respectively.

The volatilization of the active component of dazomet (MITC) occurred rapidly from the
soil under the conditions of water content and temperature corresponding to those that were
applied in this experiment. The volatilization measurements showed that approximately 60%

Fig 4. Quantification of total bacteria by qPCR. Abundance of 16S rRNA gene copies is shown in samples from the soil without pesticide (green), with
mancozeb (red) and with dazomet (grey). The bars with a crossed pattern represent the non-amended samples, and the filled bars represent the samples
that were amended with ammonium sulfate. The depicted values are the means of triplicate samples, and the error bars indicate the standard error.

doi:10.1371/journal.pone.0126080.g004

Pesticide Side Effects on amoA Expression and Diversity

PLOS ONE | DOI:10.1371/journal.pone.0126080 May 4, 2015 12 / 20



of the added MITC evaporated within the first hour and that approximately 95% disappeared
from the soil after 48 hours (S2 Fig).

Discussion
The standard analyses that are used for the hazard assessment of pesticides only provide limit-
ed insight into the potentially adverse effects on soil microorganisms. In this study, we focused
on two new approaches, including 1) the quantification of amoA transcripts as an indicator of
the pesticide effects on the activity of ammonia-oxidizing organisms and 2) 454 sequencing as
a method to analyze the effect of pesticides on the diversity of soil bacteria.

The impact on the ammonia oxidizers and the bacterial diversity was investigated here in re-
sponse to the pesticide dazomet, developed to exert a universal pest target effect, and manco-
zeb, developed to target a more narrow group of pests i.e. fungi. In moist soil, dazomet rapidly
transforms into the highly volatile toxicant MITC, which targets biological thiols and amines
[39] and is active against bacteria, fungi and larger eukaryotes [40,41]. In this study, dazomet
exposure strongly reduced the number of bacterial and archaeal amoA transcripts, which was
also clearly reflected in the significant inhibition of nitrate production. However, the volatiliza-
tion experiment with MITC showed that most of this compound evaporated from the soil

Fig 5. Quantification of total bacteria by qPCR. Abundance of 16S rRNA is shown in samples from the soil without pesticide (green), with mancozeb (red)
and with dazomet (grey). The bars with a crossed pattern represent the non-amended samples, and the filled bars represent the samples that were amended
with ammonium sulfate. The depicted values are the means of triplicate samples, and the error bars indicate the standard error.

doi:10.1371/journal.pone.0126080.g005
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within three days, and an increase in the amoA transcripts occurred. Thus, the reverse-
transcription PCR assay targeting amoA transcripts was highly sensitive in measuring dazomet
inhibition and notably so in measuring the subsequent release of inhibition. Such information
on the early recovery was not extractable from the standard nitrification test, most likely due to
a lower sensitivity and inability to detect nitrate production from the low number of surviving
ammonia oxidizers.

Dazomet exposure also caused a significant decrease in the total number of soil bacteria, but
after the evaporation of MITC, the bacterial community resumed growth. The regrowth was
primarily due to a confined fraction of resilient and fast-growing bacteria that were largely
dominated by members of the order Bacillales and Burkholderiales. Bacillus spp. belonging to
Bacillales dominates the bacterial community after fumigant exposure, possibly due to the ca-
pability to produce stress-resistant endospores [42,43]. A large fraction of bacteria belonging to
the Burkholderiales, primarily the family Oxalobacteraceae, are early colonizers with high
growth rates [44,45]. Interestingly, we found that the species richness on day twelve after dazo-
met exposure was higher at the 16S rRNA level than at the gene level (Fig 6). We speculate that
this observation is related to a halt in the activity of the dominating early opportunists, which
at this stage again became dormant due to the lack of easily accessible carbon sources. Thus,
after the growth stagnancy of these few species, the 16S rRNA pool in the soil likely reflects a
step toward undisturbed conditions with active bacteria of a broader suite.

Mancozeb inhibits the potential nitrification in arable and grassland soils [46]. In this exper-
iment with mancozeb, we observed a minor inhibition of bacterial amoA transcripts in parallel
with the inhibition of nitrate production from day three to twelve in the N-amended soil.

Fig 6. Species richness of total and active bacteria. The figure shows OTUs derived from 454-amplicon sequences of 16S rRNA genes (dark grey bars)
and 16S rRNA (light grey bars) representing the control from 1 hour (day 0) and all treatments from day 12. The data presented are the mean and standard
deviation of three replicates. Rarefaction analysis was done with 980 randomly selected sequences from each sample. Asterisks represent samples that
were statistically different from the non-amended control day 12 (one-way Anova, p < 0.05 followed by Tukey HSD).

doi:10.1371/journal.pone.0126080.g006
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Fig 7. Composition of total bacteria. The bars show relative abundance of the 16S rRNA genes of the twelve most abundant phyla in soil treatments with
and without pesticides and with and without ammonium sulfate from day twelve and in the control soil without pesticide and ammonium sulphate from day 0.
The bars represent the mean of replicate samples (the individual replicates are shown in S3 Fig).

doi:10.1371/journal.pone.0126080.g007

Fig 8. Composition of active bacteria. The bars show relative abundance of the 16S rRNA of the twelve most abundant phyla in soil treatments with and
without pesticides and with and without ammonium sulfate from day twelve and in the control soil without pesticide and ammonium sulphate from day 0. The
bars represent the mean of triplicate samples.

doi:10.1371/journal.pone.0126080.g008
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Curiously, mancozeb did not inhibit bacterial amoA transcription immediately after exposure
but only after day three. Ethylenethiourea (ETU), which is a degradation product of mancozeb,
is a strong inhibitor of nitrification [47]. We hypothesize that the delayed inhibition of amoA
transcripts may be due to the degradation of mancozeb and the production of the more harm-
ful metabolite ETU in the first few days after exposure [48]. The mineralization and sorption
experiments for mancozeb indicate that the majority of mancozeb had either been fully degrad-
ed through ETU and EU to carbon dioxide or sorbed into the soil after approximately two
weeks. We propose that the bioavailability of ETU in particular was negatively correlated with
bacterial amoA transcription and nitrate production, resulting in a shorter inhibition period of
the pesticide.

Ammonia-oxidizing bacteria, due to high sensitivity, have often been used as indicator or-
ganisms to monitor soil perturbations. The quantification by qPCR or fingerprinting by DGGE
or T-RFLP of amoA genes or specific 16S rRNA genes of ammonia oxidizers have been applied
to assess specific changes in the population [49–52]. However, many of these studies are indis-
criminately based on DNA, which may largely derive from functionally inactive bacteria. In-
stead, focus on the active portion of the population is likely to result in a stronger response,
e.g., Nyberg and co-workers found that 4-ethylphenol affected the community composition of
actively replicating ammonia oxidizing bacteria but not that of the inactive population [53].

In this study, the development in bacterial amoA transcript number correlated with nitrate
production and with the amoA gene numbers when ample substrate was available. Therefore,
under these conditions, the conversion of ammonia by ammonia monooxygenase is tightly
connected to growth, thereby linking amoA transcripts, nitrate production and amoA genes. In
this N-amended system, both bacterial amoA transcripts and amoA genes could be used as in-
dicators of pesticide inhibition, although transcript numbers responded more promptly and
showed a slightly better correlation with nitrate production compared with the amoA genes.

In the non-amended soil, the correlation between the bacterial amoA transcripts and nitrate
production was very low compared with the N-amended soil. We speculate that substrate de-
pletion in the non-amended soil limited the bacterial ammonia oxidizers and allowed archaea
to take over a larger part of nitrification. In this system, pesticide application also inhibited bac-
terial amoA transcripts, but concomitant substrate limitation seemed to blur the release of inhi-
bition, thereby making it more difficult to assess the impact of the pesticides.

Several studies have stated that bacteria rather than archaea are the major ammonia oxidiz-
ers in N-rich soil ecosystems. Although this statement has been accepted as a general phenom-
enon, the reason for this niche differentiation between communities is still greatly debated
[14,54,55]. Jia and Conrad demonstrated that nitrification parallels the abundance of bacterial
but not archaeal amoA gene copy numbers in soil microcosms that are amended with ammoni-
um sulfate [56]. Likewise, nitrate concentration correlated (R2 = 0.56) with bacterial but not ar-
chaeal amoA gene copies in six grassland soils that were amended with urine-N substrate [57].
In fact, the abundance of archaeal amoA genes was negatively related to N-fertilization in both
of these studies. We similarly observed that N amendment resulted in a 1-log decrease in ar-
chaeal amoA transcripts and a tendency to decrease in the archaeal amoA gene copies. In con-
trast, the archaeal amoA dominated in the non-amended soil. Despite the high abundance, the
number of archaeal amoA transcripts or genes did not show any correlation with nitrate pro-
duction in this study. The lacking correlation of nitrate production with archaeal amoA in gen-
eral and the weak correlation with bacterial amoA genes under low substrate availability could
be partly explained by mixotrophic growth [56,58]. Furthermore, a change in the conversion
factor between the transcription of amoA and the activity of the ammonia monooxygenase
may occur in response to altered substrate availability. Such a switch may be present in the bac-
terial ammonia oxidizers Nitrosospira briensis and Nitrosomonas europaea, for which both a
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constitutive and a higher substrate-induced level of ammonia oxidation have been reported
[59,60]. A deeper knowledge of this regulation is required to understand ammonia oxidation
under N-limiting conditions.

We believe that molecular techniques targeting particularly the active soil microbial com-
munity can be applied to broaden the current hazard assessment of pesticide side effects. In
this study, we demonstrated that the sequencing of the 16S rRNA and the quantification of the
amoA transcripts provide valuable input to assess the impact on the soil microbial community.
Similar to other process-based methods, this molecular approach is more sensitive when care is
taken to avoid the inhibition of microbial activity by other stress factors, such as substrate limi-
tation. We recommend bacterial amoA transcripts as good bioindicators of pesticide inhibition
that, when substrate is provided, can also be used to measure ammonia oxidation.

Supporting Information
S1 Fig. Mineralisation of mancozeb. Accumulated mineralisation curves for mancozeb at
20°C in soil depicted as the percentage of added pesticide. Mineralisation of mancozeb without
N-amendment is shown as filled squares and mancozeb with ammonium sulphate as open
squares. Error bars show standard error of the means.
(TIF)

S2 Fig. Dazomet evaporation from soil. Volatilization of the active component of dazomet
(MITC) from soil at 20°C and 60%WHC.
(TIF)

S3 Fig. Total bacterial composition. Relative abundance of the twelve most abundant phyla
for individual replicates A-C of the control samples without pesticide or ammonium sulphate
from day 0 and for all treatments at day 12. The dazomet treated samples only exist in duplicate
because of problems with the nucleotide quality.
(EPS)
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