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pplication of Molecular Biology and Genomics
f Probiotics for Enteric Cytoprotection

ioomeh Moslehi-Jenabian, Dennis Sandris Nielsen and Lene Jespersen

e intestinal microbiota plays an essential role in host nutrition, intestinal cell
liferation and differentiation, development of the immune system and acquired
sponses to pathogens. Alterations in the composition of the intestinal microbiota
ve recently been linked to various diseases, including inflammatory bowel dis-
e, allergy and diabetes type II (Guarner and Malagelada 2003; Larsen et al. 2010;

max and Calder 2009). Probiotics are among the variable indigenous constituents
the gut mictobiota. There are various evidences for different beneficial functions
probiotics and the mechanisms underlying these health effects include both mi-
be-microbe and microbe-host interactions. Nevertheléss, the molecular basis of
se mechanisms is still largely unknown. However, recent modern molecular biol-
y based —omics technologies (genomics, proteomics and metabolomics), allow-
simultaneous analysis of huge numbers of genes, proteins or metabolites, have
sealed insights into understanding the molecular basis for these health promoting
tivities and increased our knowledge concerning the roles of probiotics in mi-
e-microbe and host—-microbe interactions. The microbial genomic content re-
s metabolism, physiology, biosynthetic capabilities of the microorganism, and
ability to adapt to varying conditions and environments. Hence, genome analysis
probiotics will help us to understand their metabolic processes and functionality
human health and well-being. Beside the scientific itnportance, it will provide
way to improve functional foods, which attracts the interest of the industry and
nsumers. Consequently, it is of significant concern to exploit the recent studies on
s molecular details of the interaction of probiotics with the human host and other
crobes. This chapter provides an overview of current progresses in molecular
d genomic technologies of probiotics to elucidate the role of these microorgan-
ms in human health and well being. Emphasis will be on the model probiotic

Moslehi-Jenabian (5)
partment of Food Science, Food Microbiology, Faculty of Life Sciences,
iversity of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark

. Malago et al. (eds.), Probiotic Bacteria and Enteric Infections, 133
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bacteria Lactobacillus spp. and Bifidobacterium spp., which are phylogeneticany
distant relatives with different features. When relevant, references will be made tq
the probiotic yeast Saccharomyces cerevisiae var. boulardii (van der Aa Kiihle ang
Jespersen 2003), which is widely used as a therapeutic agent.

6.2 Functional Genomics

Functional genomic analyses including whole genome sequencing, genome dats
mining and comparative genomics have been useful in understanding the influence
of genetic content, organization, function and regulation on gut and probiotic func-
tionality as well as to identify the differences and similarities between probiotics
since many of the probiotic features are species and even strain dependent. Fune-
tional genomic analysis is therefore essential to understand the cellular physiology,
metabolic pathways, sensing and signalling in order to clarify mechanisms underly-
ing the probiotic functions of these microorganisms (Klaenhammer et al. 2002). In
addition, genomic tools to investigate the gene regulatory networks are important in
order to analyse the response of microorganisms to different environmental condi-
tions, especially, the gut-related environmental stresses. ;

Various studies have investigated the molecular response of probiotics using
in vitro models mimicking the gut and intestinal environment, for instance acid and
bile stress response and tolerance. In many cases, the genes and proteins identified
encompass the general stress proteins like GroEL, GroES and DnaK (Frees et al,
2003; Lim et al. 2000; Weiss and Jespersen 2010), and functions related to mainte-
nance of the cell-envelope integrity due to the destructive effect of bile on the cell
wall (Bron et al. 2006). It has been shown that these responses are controlled by dif-
ferent regulators that are involved in control of the general stress response (Ferreira
et al. 2001, 2003). In vitro models are useful for investigating the response of the
microorganism to a specific intestinal stress. However, investigation of the full re-
sponse of a given microorganism will only be achieved using i vivo approaches.
Therefore, some functional genomic approaches have focused on the study of ge-
netic responses of microorganisms in vivo with the goal of identifying bacterial
genes that are important during residence in the gut. ‘

Three main strategies have been developed for the identification of genes that
are highly expressed in vivo, as compared with laboratory conditions: (1) (recom-
bination-based) in vivo expression technology ((R-)IVET), (2) signature-tagged
mutagenesis (STM), and (3) selective capture of transcribed sequences (SCOTS):
These in vivo gene identification strategies have been applied for investigation of
important genes in bacterial pathogenesis (Mahan et al. 2000). In addition, IVET
has recently been employed to identify genes potentially influencing the probiotic
functionality in both Lactobacillus reuteri 100-23 (Walter et al. 2003) and Lactoba-
cillus plantarum WCFS1 (Bron et al. 2004). This approach allows identification of
promoter elements that are expressed during in vivo transit of probiotic cultures, and
reveals the corresponding genes driven by these promoters. ‘
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The DNA microarray technique is a functional genomic approach enabling mon-
ing the global transcriptional response at the time of sampling and can be used
elucidate the genomic expression of gut-related bacteria in the intestinal tract
carate-Peril et al. 2004; Denou et al. 2007). This approach together with real-
¢ PCR, can be used for quantitative analysis of the transcriptional response of
e cells under conditions of interest, e. g., cells that are located at specific intestinal
tes (Tao et al. 2006).

Targeted insertional mutagenesis is another alternative to study the gene regions
at are presumed to be involved in probiotic traits, and thereby a number of gene
gions have been characterized and functionally correlated to important pheno-
pes (Azcarate-Peril et al. 2004; Velez et al. 2007).

Thus far, functional genomic analyses have revealed a number of interesting
atures that are generally considered to be important for the roles of probiotics in
teric cytoprotection and health.
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Tolerance of probiotics to the stress conditions of the intestinal environment and
heir adaptation to the gut niche play significant roles in the functionality of pro-
iotics. Different genomic studies have demonstrated the genetic adaptation and
metabolic activity of Lactobacillus spp. or Bifidobacterium spp. in the intestinal
nvironment, which will be discussed in detail in the following sections.

6.3.1 Genes and Molecules Involved in Stress Adaptation

Genes encoding acid resistance responses are essential in tolerance of probiotics
' to intestinal stress. As an example induction of putative heat shock proteins, i.e.,
I of identifying bacteria DnaK, Dnal, GrpE, GroES and GroEL, in acid adapted cells (exposure of cells to
sub-lethal adaptive acid conditions) has been shown in-Lactobacillus acidophilus
CRL 639 (Lorca et al. 2002). Recently, a transcriptomic study has shown the ex-
pression of stress related genes GroEL, DnaK and ClpP in L. acidophilus NCFM
after exposure to gastric juice following passage through an in vitro gastrointestinal
tract model (Weiss and Jespersen 2010). In L. acidophilus, the atp operon is an acid
inducible operon containing 8 genes encoding the various subunits of the F.Fy-

ATPase, a multimeric enzyme either synthesizing ATP using protons or conversely
_ expulse protons out of the cell with the energy provided by ATP hydrolysis. Acidic
_ stress induces expression of the afp operon accompanied by an increase in the activ-
ity of the membrane-boind enzyme, which results in active expulsion of protons out
of the cell and maintenance of cytoplasmic pH under acidic environmental condi-
tions (Kullen and Klaenhammer 1999). Further studies have shown the presence of
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four loci contributing to acid resistance in the L. acidophilus NCFM genome. The
role of the four loci in acid tolerance was proved by insertional mutagenesis in these
regions, which resulted in acid sensitive derivatives (Azcarate-Peril et al. 2004). A
two-component regulatory system has been found in L. acidophilus NCFM play-
ing a role in acid resistance (Azcarate-Peril et al. 2005). Insertional mutagenesis o
this two-component regulatory system resulted in an acid sensitive mutant. Whole
genome microarray analysis of the mutant showed that expression of 80 genes in
cluding two oligopeptide-transport systems, other components of the proteolyti
enzyme system, and a /uxS homolog was affected by the mutation. The gene Jux
is involved in AI-2 mediated interspecies quorum sensing (cell-to-cell communica
tion) among bacteria (Federle and Bassler 2003). A transcriptomic study has show
that the JuxS gene is induced by acidic stress in L. acidophilus NCFM and Lactobq
cillus rhamnosus GG and plays a role in the acid stress response in these probiotics
Tt was observed that in both species, the JuxS gene was transiently up-regulated afte
acidic shock (pH 4.0). Acid adaptation of cells attenuated the transcription of th
TuxS gene. Thus, this gene might be important in not only the survival of Lactobacil
Tus spp. during the passage through the gastrointestinal tract, but also in the cell-to
" cell communication among bacteria in the intestinal microbiota (Moslehi-Jenabia
et al. 2009). Genome wide expression analysis experiments using microarrays hav
revealed that in L. reuteri ATCC 55730, the clpL chaperone gene (encoding a
ATPase with chaperone activity) was involved in the early response to severe acidi
shock. This was validated by mutation in clpL and the mutant was significantl
more sensitive to acidic stress compared to the wild type (Wall et al. 2007).
Genes involved in the tolerance to bile salts are also important for survival o
probiotics after passage through the gastrointestinal tract. DNA micro-array analys
of the global transcriptional response of L. plantarum WCFS]1 against bile reveale
12 bile-responsive gene clusters. Seven of the identified bile-responsive genes an

gene clusters encoded typical stress-related functions, including glutathione reduc-
tase and glutamate decarboxylase, involved in oxidative and acid stress defence,
respectively. Besides, 14 bile-responsive genes and gene clusters were detected that
encoded proteins located in the cell envelope, including the dit operon and the F,Fy
ATPase. The induction of a high number of genes encoding cell envelope functions.

show the significant effect of bile salts on the integrity and/or functionality of the
cytoplasmic membrane and cell wall (Bron et al. 2006). Genes encoding bile salt
hydrolases (bs#) have been identified in intestinal Lactobacillus spp., i.e., L. ack-
 dophilus NCFM (McAuliffe et al. 2005), Lactobacillus Jjohnsonii 100-100 (Elkins

et al. 2001) and L. plantarum WCFS1 (Lambert et al. 2008a), which shows the eco:
logical adaptation of these species to the intestine and the importance of this trait for
Lactobacillus spp. in order to colonize the lower gastrointestinal tract. ‘

As for Lactobacillus spp., Bifidobacterium spp. have developed a system that
attempt to maintain their cytoplasmic pH near neutral under acidic stress. In this
respect, the proton-translocating ATPase (F F,-ATPase) plays an important role
and is encoded by the atp operon including nine genes. This multi-subunit enzymé
is essential for growth of Bifidobacterium spp. under acidic conditions (Venturd
et al. 2004). It has been shown that bile induces expression of the F F -ATPast
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increases the membrane-bound H*-ATPase activity in Bifidobacterium anima-
omparison of B. animalis IPLA 4549 and a mutant with acquired resistance
le (B. animalis 4549d0x) has shown that the bile-resistance mutant was able
Jerate bile by increasing the intracellular ATP reserve and by inducing proton
~‘ ping by the F,F-ATPase (Sanchez et al. 2006). Genes encoding bile salt hydro-
(bsh) have been detected in Bifidobacterium longum BB536 (Shuhaimi et al.
), Bifidobacterium bifidum ATCC 11863 (Kim et al. 2004), Bifidobacterium
escentis ATCC 15705 (Kim et al. 2005) and a bile tolerant strain of B, animalis
p. lactis KL612 (Kim and Lee 2008). In a recent study, two putative multidrug
tance (MDR) transporter genes, i.e. the BL0920 gene from B. longum subsp.

m NCC2705 and its homolog, Bbr0838 gene, from Bifidobacterium breve
2003, were induced after exposure to sub-inhibitory concentrations of bile.
expression of the BL0920 gene in Escherichia coli conferred resistance to bile,
ich was probably mediated by active efflux from the cells. This study represents
~rst identified bifidobacterial bile efflux pump (Gueimonde et al. 2009). Mo-
ar analysis of B. longum NCC2705 cells grown in the intestinal tract of mice
realed that different genes and proteins are expressed in the cells for adaptation
longum to intestinal stress. Among these, EF-Tu (related to the retention or
achment), bile salt hydrolase and stress proteins which protect B. longum against
, action of bile salts and other destructive components of the gastrointestinal tract
been identified. In addition, it has been found that intestinal growth triggered
osphorylation of LuxS protein (the active form of LuxS) that possibly play a key
in the regulation of quorum sensing between microorganisms of intestinal mi-

iota (Yuan et al. 2008).
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2 Genes and Molecules Involved in Nutritional Adaptation

complete sequencing of several Lactobacillus spp. genomes has revealed a
iderable degree of auxotrophy for amino acids and other cellular components.
 compensate for these auxotrophies, Lactobacillus spp. have been shown to en-
multiple genes for transport and uptake of macromolecules and metabolism of
mplex carbohydrates (Pfeiler and Klaenhammer 2007). Due to their auxotrophy,
obacillus spp. will predominantly be present in the ileum, which is a nutri-
al richer environment than e.g. the colon. Comparing the genome sequence of
estinal isolates of Lactobacillus spp. with food isolates indicates a strong degree
iche adaptation. As an example, Lactobacillus helveticus DPC 4571, a cheese
rter culture, has additional genes for fatty acid biosynthesis and specific amino-
id metabolism, but remarkably fewer cell-surface proteins and phosphoenolpyru-
te phosphotransferase systems for sugar utilization compared to L. acidophilus
CEM, which is a closely related species well adapted to the intestine. In addition,
functional mucus-binding proteins or transporters for complex carbohydrates are
coded by the L. helveticus DPC 4571 genome, indicating adaptation to the milk
vironment. Whereas L. acidophilus that is adapted to the gut ecological niche,
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contains functional gene sets such as mucus-binding and cell surface proteins
enzyme complexes that are absent from L. helveticus DPC 4571 (Altermann et
2005; Callanan et al. 2008), emphasizing the importance of these gene sets
gut adaptation and probiotic functionality. The genes encoding the mucus-bind
or cell surface proteins found in the genome of intestinal Lactobacillus spp.

predicted to produce secreted proteins such as the S-layer proteins, which are ma
tained at the cell envelope via either covalent interactions affected by the sort
enzyme or electrostatic interactions, and interact with human intestinal compoun
such as extracellular matrix proteins and mucus (Avall-Jasskelsinen and Pal
2005). These extracellular proteins are essential not only in the interaction of pro
otics with host cells or tissues, but also in degradation of complex extracellular ¢
bon sources and have a prominent role in the adaptation to erivironmental chang
and intestinal persistence (Boekhorst et al. 2006; Buck et al. 2005). Analysis oft
predicted extracellular proteins of L. plantarum WCFS1 has revealed that at le
12 proteins are predicted to be directly involved in adherence to host componen
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In vivo studies using an IVET strategy based on the i vivo selection of an a
tibiotic-resistant phenotype have shown induction of 3 i vivo induced genes th
are highly expressed in L. reuteri 100-23 during intestinal colonisation in Lactob

cillus-free mice (Walter et al. 2003). In another study using a recombinase-basec ferent mechanisms, in¢

adhesion sites (compet
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gens and associated with survival and adaptation to the gut environment. Whole gé

nome transcriptional profiling of L. plantarum during colonization in the cecum o Interaction.
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depend on its location in the mouse intestine (Denou et al. 2007, 2008). Some Lac
tobacillus spp. can utilize fructo-oligosaccharides which are known as prebiotics
(non-digestible oligosaccharides which stimulate growth and/or metabolic activity
of probiotics in the host intestine) and thereby interact metabolically with host and
other microbes. L. acidophilus NCFM metabolise fructo-oligosaccharides by in-
ducing the transcription of a specific transport and degradation system (Barrangou
etal. 2003). Similarly, L. plantarum WCFS1 have a specific gene expression pattern
when exposed to fructo-oligosaccharides, even though it is only able to degrade the
short chains of these compounds (Saulnier et al, 2007).
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Contrary to Laéi‘obacillus spp., Bifidobacterium spp. are autotrophic and are

refore well adapted to growth in an environment with low concentrations of
me growth substrates such as the human colon (Ventura et al. 2007a). This prop-
gives them an ecological advantage in the intestinal ecosystem. Bifidobacte-
m genomics has demonstrated their relative broad autotrophy for amino acids,
cleotides, vitamins, and cofactors and has verified their ability to degrade and uti-
& complex carbohydrates (Schell et al. 2002). Gene clusters coding for complex
gar degradation pathways are abundant in bifidobacterial genomes (Ventura et al.
07b) and preliminary intestinal transcriptomic studies have shown expression of
fidobacterial genes including oligosaccharide metabolism and vitamin production
the human infant gut (Klaassens et al. 2009). Bifidobacterium Spp. are also able
hydrolyse different types of fructo-oligosaccharides (prebiotics) and the operons
r fructo-oligosaccharide metabolism, specific transporters and hydrolases for oli-
osaccharides have been identified in the bifidobacterial genome (Gonzalez et al.

008; Ryan et al. 2005).
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6.4.1 Genes and Molecules Involved in N utrient-Based
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Nutrient-based interactions between prob
gut microbjota has been proved using germ-
roides thetaiotaomicron ATCC 29148 (a prominent comp
gut microbiota), B. longum NCC2705 and L. casei DN-
of these microorganisms. Whole genome transcriptional

species as well as the intestinal epithelium showed that pr
gered an expansion in the diversity of polysaccharides targeted for degradation by

B. thetaiotqomicron (€.g., mannose- and xylose-containing glycans), and induced
host genes involved in innate immunity. Presence of L. casei in this model resulted
in an expanded capacity of B. thetaiotaomicron 10 metabolize polysaccharides and
increased expression of genes for inorganic ion transport and metabolism, the same
results as those observed by B. longum. This model showed how a resident symbi-
ont and a probiotic species adapt their substrate utilization in response to each other
(Sonnenburg et al. 2006). Indeed, it has been proposed that depletion of iron by
Bifidobacterium Spp. which is an essential nutrient for many intestinal pathogens
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6.4.2 Genes and Molecules Involved in Competitive Exclusion

proteins (Pretzer et al. 2005).

Multiple copies of genes encoding mucus-binding proteins have been found in

different Lactobacillus spp. The predicted mucus-binding proteins are unusually
large proteins representing the largest open reading frames (ORFSs) in the genome,

with relatively low amino acid identity offering considerable sequence variability

within surface proteins which are supposed to have important roles in mucus bind-
ing (Altermann et al. 2005; Pridmore et al. 2004). Inactivation of genes encoding a
mucus-binding protein, a fibronectin-binding protein and a surface layer protein in
L. acidophilus had a great impact on adherence to intestinal Caco-2 epithelial cells.
The adhesion ability was reduced significantly in the mucus-binding protein mutant
(65%), the fibronectin-binding protein mutant (76%), and the surface layer protein
mutant (84%). However, the decreased adhesion ability in the latter mutant was
due to the loss of multiple surface proteins that may be embedded in the S-layer.
This study showed that in L. acidophilus NCFM multiple cell surface proteins in-
dividually have a role in the ability of organism to attach to intestinal cells {Buck
et al. 2005). Recently, a transcriptomic study using an in vitro gastrointestinal tract
model has shown up-regulation of the genes encoding mucin binding protein and
fibronectin-binding protein in L. acidophilus NCFM after exposure to duodenal
juice and bile (Weiss and Jespersen 2010). The important role of mucus-binding
pilli in the adhesion ability has been proved in L. rhamnosus GG. Comparative ge-
nomics of this probiotic bacterium with a starter culture strain L. rhamnosus LC705
(exhibiting reduced binding to mucus) revealed one genomic island in L. rhamnosus
GG which was not present in the other strain and contained 3 pilli encoding genes
(spaCBA). Molecular analysis showed that the spaC gene is involved in the adher-
ence of strain L. rhamnosus GG to human intestinal mucus and presence of this gene
is crucial for the interaction between Lactobacillus spp. and host tissues offering a
likely explanation of the longer persistence of L. rhamnosus GG in the intestinal
tract compared to other L. rhamnosus strains (Kankainen et al. 2009). Furthermore,

One of the beneficial roles of probiotics is competition with enteropathogens to
adhere to intestinal miicus or competitive exclusion. Therefore, the capacity of pro-
biotic bacteria to adhere to the intestinal mucosa is an important factor for competi-
tive exclusion. Different molecular methods including comparative genomics have
revealed a number of genes involved in the adhesion of probiotic Lactobacillus spp.
to the intestinal tract, such as genes encoding mucus-binding proteins (Altermann
etal. 2005; Buck et al. 2005), surface layer proteins (Buck et al. 2005; van Pijkeren
et al. 2006), fibronectin-binding proteins (Altermann et al. 2005; Buck et al. 2005),
fimbrae (Pridmore et al. 2004), EPS clusters (Altermann et al. 2005 ; Pridmore et al.
2004), mucus-binding pilli (Kankainen et al. 2009) and mannose-specific adhesion
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ant factor in the protective effe nnose-specific adhesin gene (msa) which encodes a: de
it (Kot and Bezkorovainy 1993 e protein has been found in L. plantarum WCFS1 (Pretzer et al. 2005). In a pig
odel, a msa knock-out mutant of L. plantarum 299v exhibited decreased associa-
1 with intestinal epithelia and increased jejunal fluid absorption. The wild-type
plantarum 299v induced expression of the gene encoding pancreatitis-associated
rotein, a protein with proposed bactericidal properties but this feature was not -
bserved in the msa mutant that suggests arole for the msa gene in the induction of
host responses in the pig intestine (Gross et al. 2008). Adhesion to mannose resi-
es is a likely mechanism behind various bacterium-host interactions. Presence of
annose specific adhesin genes and mannose-specific binding properties has been

an important factor for compet
Ing comparative genomics hav sbserved in different pathogens such as E. coli and Salmonella enterica serovar Ty-

! Of?mbiOtic Lactobacillus spp shimurium and is the basis for competitive exclusion by the potent probiotic yeast
us-binding proteins (Altermann ' cerevisiae var. boulardii that have mannose containing polysaccharides in the cell
 (Buck et al. 2005; van Pijkere wall (Moslehi-Jenabian et al. 2010). S. cerevisiae var. boulardii prevents bacterial
n et al. 2005; Buck et al. 2005) Jdherence and translocation in the intestinal epithelial cells, due to the capacity of
nann et al. 2005; Pridmore et a cell wall to bind enteropathogens. The S. cerevisiae var. boulardii cell wall has been
and mannose-specific adhesio shown to bind enterohaemorrhagic E. coli and S. enterica serovar Typhimurium
(Gedek 1999). :

The genome sequence of B. longum and other Bifidobacterium spp. contain pre-
dicted glycoprotein-binding fimbriae and mucus and fibronectin-binding proteins
that could be involved in the bacterial adhesion to the intestinal tract (Klaassens
et al. 2009; Schell et al. 2002). B. adolescentis BB-119 binds to type V collagen
at galactose chains as target site via its two cell surface proteins with molecular
masses of 36 kDa and 52 kDa and lectin-like activity (Mukai et al. 1997). It has
been shown that several species of Bifidobacterium produce a compound in the
growth media which inhibits binding of enterotoxic E. coli-expressing colonization
factor antigen II to gangliotetraosylceramice (asialo GMT1 or GAl), a common
hacterium-binding structure (Fujiwara et al. 1997).
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6.4.3 Genes and Molecules Involved in Production
of Antimicrobial Compounds

)

Probiotics are able to interact with enteropathogens by production of bacteriocins
(antimicrobial peptides). Bacteriocins are a heterogeneous family of small, heat
stable peptides with antimicrobial activity against closely related bacteria (Cotter
et al. 2005). Numerous studies have shown the production of various bacteriocins
by probiotics with antimicrobial effect against enteropathogens (Corr et al. 2007;
Todorov and Dicks 2004; Zamfir et al. 2007). However, in most of these studies, it
was not proved that the bacteriocin production was the main reason for inhibitory
effect against pathogens by the probiotics. Nevertheless, bacteriocin-based interac-
tion of probiotics and enteropathogens have been proved for L. salivarius UCC118
which has the ability to eliminate Listeria monocytogenes EGDe and LO28 from a
mouse model due to the production of the broad spectrum bacteriocin Abp118 (also
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known as salivaricin) (Corr et al. 2007). It was observed that a bacteriocin-negative produC'tion
derivative of L. salivarius UCC118 was not able to protect mice against listerial in. by the acti
fection. On the other hand, L. salivarius UCC118 could not protect the mice against ; ot al. 2004
infection with a L. monocytogenes derivative expressing the bacteriocin-immunity ; jmportant ¢
protein (Corr et al. 2007). This study demonstrates precisely the importance of bac. source of €
teriocin production by probiotics for the protection against enteropathogens. Inad- | sential for
dition to bacteriocins, production of lactic acid and H,0, has also been shown to be Bile sal
important measures used by Lactobacillus spp. against enteropathogens (De Keers- of probioti
maecker et al. 2006; Pridmore et al. 2008). biological
In addition to inhibiting enteropathogens by production of antimicrobial com- antimicrot
pounds; it has been shown that the probiotic yeast S. cerevisiae var. boulardii pro- . compound
duces two proteins of 54 and 120 kDa being responsible for degradation or neutrali- jugation it
sation of bacterial toxins. The 54 kDa protein is a serine protease that decreases the steps of b
enterotoxic and cytotoxic activities of Clostridium difficile by proteolysis of C. diffi- ary bile st
cile toxin A and inhibits binding of the toxin to its brush border membrane receptor, gallstones
In vivo studies have shown that oral administration of S. cerevisiae var. boulardii in mucin |
or its supernatant decreases toxin A-induced intestinal secretion and permeability nutritiona
due to activity of this enzyme (Castagliuolo et al. 1996, 1999; Pothoulakis et al. 2008b). B
1993). The 120 kDa protein has no proteolytic activity but competes specifically munity (I
with the chloride secretion stimulated by the toxins of Vibrio cholera by reducing involved
the cyclic adenosine monophosphate (cAMP) in the intestinal cells (Czeruckaetal. |
1994; Czerucka and Rampal 1999). Both S. cerevisiae var. boulardii and S. cere- :
visiae W303 have the ability to protect Fisher rats against cholera toxin (Branddo 5.2
et al. 1998). S. cerevisiae var. boulardii also synthesizes a protein phosphatase that 6.5.
dephosphorylates endotoxins such as lipopolysaccharides of E. coli 055B5 and in-

activates its cytotoxic effects (Buts et al. 2006).
Probiotic
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6.5.1 Genes and Molecules Involved in Metabolic Interactions rhamno.

' ' tinal ep

Probiotics interact metabolically with the host by modifying the nutritive func- anti-ap(
tion of the epithelium. For example, expression of the /dh gene encoding lactate | p38/mit
hydrogenase by Lactobacillus spp. after entrance to the gastrointestinal tract and terleuki

Probiotic-host interactions that benefit the host can be investigated by genome
mining and molecular analysis of the bacterial proteins or macromolecules, which
might be involved. Probiotics interact with host and confer beneficial effects by
means of different mechanisms including metabolic interactions, modulation of
mucosal barrier function and modulation of the innate and adaptive immune system.
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uction of lactate by these bacteria, that later could be converted to butyric cid
the activity of some of the colon bacteria such as Eubacterium hallii (Duncan
1. 2004; Marco et al. 2007; Oozeer et al, 2005). The production of butyrate is
yportant due to its beneficial effect on the gut epithelium. Butyrate is an important
ce of energy for the colonic mucosal cells, and it has been suggested to be es-
_qtial for the maintenance of the colonic epithelium (Hamer et al. 2008).
Bile salt hydrolase activity and metabolism of bile salts is another positive effect
e probiotics on the host positively influencing host physiology due to its role in
ogical processes in the host, i.e. in serum cholesterol lowering. Bile salts have
microbial and emulsification properties and probiotics by metabolizing these
mpounds might affect the amount of fat absorbed by the body. Bile salt decon-
gation is the obligatory first reaction in further oxidation and dehydroxylation
gps of bile salts by intestinal bacteria, and it includes the production of second-
bile salts, which negatively affects the host by being involved in formation of
allstones and colon cancer. On the other hand, bile salt deconjugation plays a role
‘mucin production and excretion in the intestinal lumen, and this could affect the
utritional environment encountered by the intestinal microbiota (Lambert et al.
008b). Besides, bile acids act as local signalling molecules that regulate innate im-
unity (Inagaki et al. 2006), while re-absorbed bile salts act as signalling molecules
volved in regulation of systemic endocrine functions (Watanabe et al. 2006).
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5.2 Genes and Molecules Involved in Modulation of Mucosal
Barrier Function

robiotics preserve the barrier function by different mechanisms such as induc-
on of mucin secretion (Mack et al. 2003), up-regulation of cytoprotective heat
ock proteins (Petrof et al. 2004; Tao et al. 2006), enhancement of tight-junction
nctions (Klingberg et al. 2005; Seth et al. 2008) and modulation of epithelial
11 apoptosis (Yan et al. 2007). Some of the signalling pathways involved in these
echanisms have been identified; however, the probiotic effector molecules and the
genes encoding them are mostly unidentified.
Induction of mucin secretion is one of the mechanisms by which probiotics
trengthen the intestinal barrier functionality, This mechanism is dependent on di-
ct adhesion of probiotics to the epithelial cells as it has been shown by losses in
the ability of mucin induction followed by spontaneous mutation in the adh gene
(involved in adhesion) in L. plantarum 299v (Mack et al. 2003).
Increase in the level of inflammatory cytokines and apoptosis of intestinal epi-
thelial cell lead to disruption of epithelial integrity. It has been indicated that L.
rhamnosus GG prevents cytokine-induced apoptosis in human and mouse intes-
tinal epithelial cells by regulating signalling pathways, i.e., by activation of the
anti-apoptotic Akt/protein kinase B and inhibition of activation of the pro-apoptotic
p38/mitogen-activated protein kinase by tumor necrosis factor-alpha (TNF-a), in-
rleukin-1 alpha (IL-1 o), or gamma-interferon (IFN-y) (Yan and Polk 2002). Two
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secreted proteins (p75 and p40) have been found in the spent culture of this pro
otic bacterium, which activate Akt that has inhibitory effects on cytokine-induc
apoptosis and loss of intestinal epithelial cells. Thereby these two proteins prom
cell growth in human and mouse colon epithelial cells and cultured mouse col
explants (Yan et al. 2007). Intestinal epithelial tight junction is structured by dis
bution of different specific proteins such as occludin, zonula occludens (ZO-1, Z
2, and Z0O-3), claudins, E-cadherin, beta-catenin and junctional adhesion molecu
(Anderson and Vanltallie 1995). Hydrogen peroxide induces the re-distribution
these proteins and cause disruption of tight junctions. Secretory proteins of L. rha
nosus GG have been shown to protect intestinal epithelial tight junctions and
barrier function from hydrogen peroxide-induced damages by preserving the dis-
tribution of occludin, zonula occludens (ZO-1), E-cadherin, and beta-catenin in the
intercellular junctions by a protein kinase C (PKC)- and mitogen-activated protein
(MAP) kinase-dependent mechanism (Seth et al. 2008). In addition, an acid and
heat stable low-molecular-weight peptide has been found in the spent culture of L,
rhamnosus GG that induce expression of heat shock proteins (Hsp25 and Hsp72) in
intestinal epithelial cells in a time- and concentration-dependent manner (Tao et al
2006). DNA microarray experiments showed that Hsp72 is one of the genes mos
highly up-regulated in response to exposure to L. rhamnosus GG spent culture
Real-time PCR and electrophoretic mobility shift assays indicated that the L. rham
nosus GG spent culture modulates the activity of certain signalling pathways in
intestinal epithelial cells by activating MAP kinases. In addition, functional studies
suggested that treatment of gut epithelial cells with L. rhamnosus GG spent culture
protects them from oxidative stress, possibly by preserving cytoskeletal integrity.
Inhibition of nuclear factor-kappaB (NF-kB) and induction of heat shock proteins in
colonic epithelial cells through proteasome inhibition has also been observed afte
exposure of the epithelial cells to spent culture of the probiotic mixture VSL#3 (L.
casei, L. plantarum, L. acidophilus, L. delbrueckii subsp. bulgaricus, B. longum,
Bifidobacterium infantis, B. breve and Streptococcus salivarius subsp. thermophi
lus) (Petrof et al. 2004). Investigation of individual strains of VSL#3 showed tha
spent culture of B. infantis had the highest effect on increasing the TER compare
with spent cultures of other probiotic strains in the mixture. B. infantis spent cul
ture decreased claudin-2, and increased ZO-1 and occludin expression in T84 cells
which was mediated by changes in MAP kinases. Besides, B. infantis spent cultur
inhibited reduction of TER induced by TNF-a and IFN-y and re-distribution of tigh
junction proteins. In addition, oral administration of spent culture reduced coloni
permeability in mice (Ewaschuk et al. 2008). These results may account for the anti-
inflammatory and cytoprotective effects reported for probiotics and the mechanism
of microbial-epithelial interaction. However, more research is needed to identify the
unknown factor(s) in spent culture of various probiotics, which exert the protective
effects on intestinal epithelial cells mediated by multiple signalling pathways.
Anti-inflammatory effects and lowering the proinflammatory response has also
been shown for S, cerevisiae var. boulardii upon exposure to enteropathogens (Chen
et al. 2006; van der Aa Kiihle et al. 2005). Production of products with anti-inflam-
matory effect has also been shown by S. cerevisiae var. boulardii. This yeast pro-
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ces a soluble factor (<10 kDa) that exerts anti-inflammatory effects after stimula-
1 with C. difficile-toxin A, by reducing secretion of IL-8 in human colonocytes
d activation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2)

oth human colonocytes and murine ileal loops (Chen et al. 2006). Besides, S.
revisiae var. boulardii produces a low molecular weight soluble factor (<1 kDa)
hich blocks NF-«B activation and NF-kB-mediated IL-8 gene expression in intes-
fal epithelial cells and monocytes (Sougioultzis et al. 2006).
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53 Genes and Molecules Involved in Modulation of the Innate
and Adaptive Immune System

Modulation of the innate and adaptive immune system is another beneficial effect
probiotics on human health. Modulation of the immune system by Lactobacillus
spp. is mostly ascribed to priming immunoregulatory responses via modulation of
dendritic cell (DC) function and induction of regulatory T cells (Rook and Brunet
2005). Numerous studies have shown the immunomodulating effects of probiot-
ics. However, only a few probiotic effector molecules have been identified in this
ntext. One of the probiotic effector molecules which has been identified based on
genomics of B. longum NCC2705 is a gene encoding a homologue of the eukaryot-
ic-type serine protease inhibitor (serpin) (Schell et al. 2002). Some of the members
f the serpin family have the capacity to suppress inflammatory responses through
inhibition of human neutrophil elastase (Ivanov et al. 2006).
The ability of probiotic Lactobacillus spp. to prime DCs to drive development of
regulatory T-cell varies among different species and depends on their recognition of
the C-type lectin receptor DC-SIGN (DC-specific intetcellular adhesion molecule
grabbing nonintegrin), which has an important role in regulatory T-cell stimula-
tion (Smits et al. 2005). It has been shown that mutation in a surface layer protein
(SIpA) in L. acidophilus NCFM resulted in significant reduction in binding capacity
easing the TER compare to DC-SIGN. The protein SlpA is the first identified probiotic bacterial DC-SIGN
ligand that is functionally involved in the modulation of DC and T cell functions
(Konstantinov et al. 2008).
Teichoic acids, and especially lipoteichoic acids (LTA), are one of the major
immunostimulatory components of pathogenic Gram-positive bacteria (Morath
_ etal. 2001). Transcriptional profiling of L. plantarum WCFS1 during colonization
_ of the cecum of germ-free mice have shown that a set of bacterial genes encoding
_ cell surface-related functions were differentially regulated compared with in vitro
growth conditions. Genes encoding the biosynthetic pathway responsible for ad-
dition of p-alanyl substituent to LTA were down regulated, while the expression
_ levels of teichoic acid biosynthetic genes remained virtually unchanged and it has
been proposed that L. plantarum WCFS1 modifies its gene expression in vivo and
minimize the levels of p-alanylated LTA present on the cell surface (Marco et al.
2009). The importance of teichoic acid composition on the cell wall of probiotic
Lactobacillus spp. in their immunomodulatory effect has been studied using a mu-
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tant of L. plantarum NCIMB8826 (dlf) which was modified in the teichoic aciq jcs. In
biosynthesis pathway and presented much less p-Ala in its teichoic acids compareq biotics
to the wild type strain. This mutation positively influenced the Toll-like receptor 2 might
(TLR-2)-dependent immunomodulatory properties of L. plantarum NCIMB8826 More
(Grangette et al. 2005). A considerably lower secretion of proinflammatory cy. | secreti
tokines by peripheral blood mononuclear cells and monocytes in parallel with 5 mator
significant increase in IL-10 production was observed after stimulation with the tective
mutant as compared to the parental strain. In addition, the mutant was significantly of gen
more protective in a murine colitis model compared to its wild type counterpart, uncov
These studies demonstrated that composition of teichoic acids has a great impact level.
on the immunomodulatory effect of L. plantarum and this probiotic modifies its immu
gene expression in vivo in a way that will increase its immunomodulatory effect. nisms
However, it should be kept in mind that dlz mutants of other strains of Lactobacil- been |
lus spp. have shown other behaviour. As an example dlt mutations in L. rhamnosus funeti
GG resulted in unaltered immunomodulation and the mutant showed lower survival for fu
under intestinal conditions (Velez et al. 2007). Similar results were found for a L, ciale
reuteri 100-23 dlt mutant (Walter et al. 2007). These studies confirm that the im- yivot
munomodulatory effects of probiotic Lactobacillus spp. are strongly species and that k
even strain dependent. of the
Investigation of the immunomodulatory effect of probiotic preparation VSL#3 benel
has shown that VSL#3 is a strong inducer of IL-10 by DCs from blood and intesti- micr
nal tissue, and prevents generation of Th1 cells. However, individual strains within dent,
VSL#3 presented different immunomodulatory effects on DCs and bifidobacteria unde
strains (B. longum, B. infantis and B. breve) offered the highest anti-inflammatory divet
effects. Interaction of cell wall components of these Bifidobacterium spp. with hu- © andl
man intestinal lamina propria mononuclear cells, whole blood, or an enriched blood veloj
dendritic cell population showed that Bifidobacterium spp. up-regulate IL-10 pro-
duction by DCs and decrease IFN-y production by T cells (Hart et al. 2004). In
a similar study using a murine macrophage-like cell line, B. adolescentis and B. Ref
longum induced higher secretion of a proinflammatory cytokine IL-12 and TNF-o,
compared to B. bifidum, B. breve, and B. infantis, whereas B. adolescentis did not
stimulate the production of anti-inflammatory IL-10 as the other tested bacteria,
showing that this bacterium is less capable of down-regulating the inflammatory
response in macrophage-like cell line (He et al. 2002). However, the signalling
pathways and genes involved in these immunomodulatory effects have not yet been
identified. .

6.6 Conclusion and Future Perspectives

L e

Recent functional genomic analyses and molecular studies have identified some of
the genes and molecules offering the health benefits of probiotics. These studies
have proved the role of both stress response genes and genes involved in adaptation
to new ecological environments being important for the functionality of the probiot-
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In addition, different genes have been found to be involved in adhesion of pro-
tics to intestinal epithelial cells and production of antimicrobial products, which -
t be crucial for competitive exclusion and interaction with enteropathogens.
fore specifically, different genes have been recognized to be involved in mucin
ecretion, in regulation of the different signalling pathways resulting in anti-inflam-
Jatory effects, and in strengthening the epithelial tight junctions, which have pro-
,ctive effects on intestinal epithelial functionality. However, only a limited number
fgenes have been identified in this regard and additional studies are necessary to
ncover all genes involved and to clarify the specific mechanisms at the molecular
vel. Several studies have detected some genes that are involved in modulating the
immune response toward development of T-regulatory cells, but the exact mecha-
isms and genes are still missing. Altogether, genomics and molecular studies have
een proved to be useful to unravel the genes and molecules involved in probiotic
functionality and to recognize the regions in the genome that might be interesting
or further investigation to identify the exact mechanisms involved in the benefi-
ial effects of probiotics on human health. In this context, effective in vitro and in
yivo models combined with omic approaches and assisted by mathematical models
that help exploiting the complex information obtained will facilitate identification
of the precise mechanisms by which probiotic microorganisms confer their health
benefits. However, considering the biodiversity of these microorganisms in the gut
microbiota and the fact that their mode of action is species and even strain depen-
dent, we are still in the beginning of this field of research. Therefore, it is crucial to
understand the human gut microbiome to get a comprehensive view of the genetic
diversity of the gut residents and the variations in their molecular characteristics
and host interactions. This will allow us to find more efficient probiotics and to de-
velop new functional food products and therapeutic agents with improved quality.
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