Design of prodrugs targeting the intestinal di/tripeptide transporter hPEPT1 (SLC15A1

Omkvist, Diana Højmark; Nielsen, Carsten Uhd; Steffansen, Bente; Larsen, Simon Birksø; Olsen, Lars; Jørgensen, Flemming Steen; Brodin, Birger

Publication date: 2014

Document version Early version, also known as pre-print

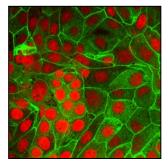
Citation for published version (APA):

Omkvist, D. H., Nielsen, C. U., Steffansen, B., Larsen, S. B., Olsen, L., Jørgensen, F. S., & Brodin, B. (2014). *Design of prodrugs targeting the intestinal di/tripeptide transporter hPEPT1 (SLC15A1. Abstract from Meet the Experts: Transporter Conference- 2014, Budapest, Hungary.*

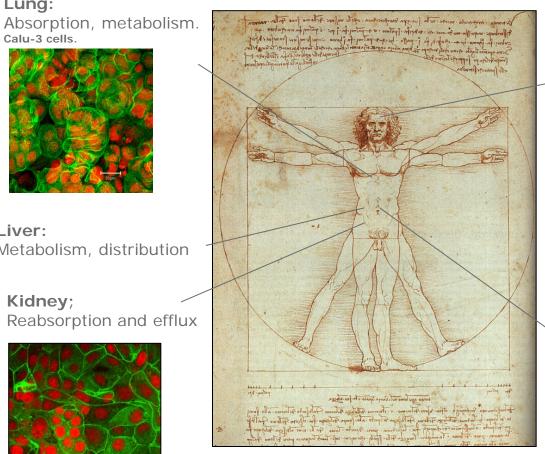
Design of prodrugs targeting the intestinal di/tri-peptide transporter PEPT1 (SLC15A1)

Birger Brodin Drug Transporters in ADME Pharmaceutics and Drug Delivery Section Department of Pharmacy

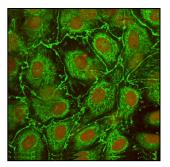
Carsten Uhd Nielsen Bente Steffansen


Date 4/4-2014 Dias 1 Lung:

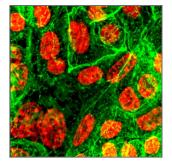
Membrane transporters may determine drug ADME properties


Calu-3 cells.

Liver: Metabolism, distribution

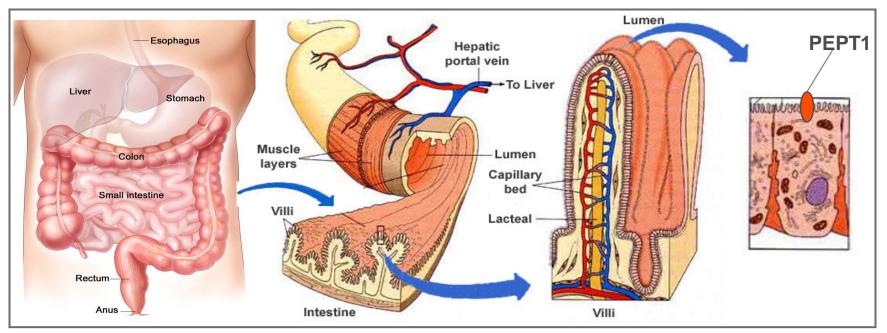

Kidney; Reabsorption and efflux

Kidney tubule cells LLC-PK1, SKPT, MDCK

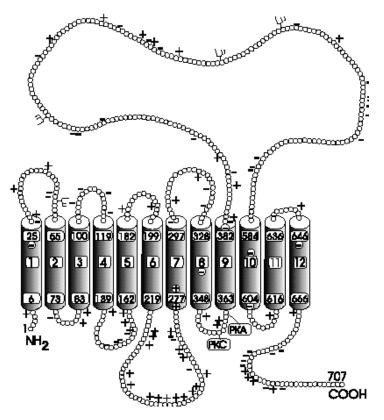


Brain Influx/Efflux across the BBB

Bovine endothelial cells

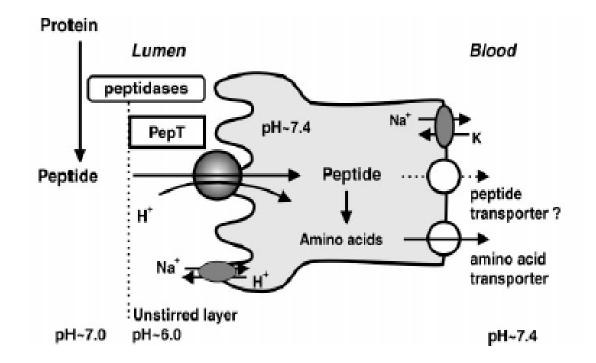

GI; Absorption and efflux

Intestinal cells, Caco-2


Localisation of PEPT1

Adapted from http://www.colorado.edu and www.meb.uni-bonn.de/cancer.gov

The PEPT1 protein


- hPEPT1 is expressed in the small intestine, pancreas, kidney and liver
- Consist of 708 amino acids, ~79 kDa
- Predicted to contain 12 transmembrane domains
- Proton coupled and electrogenic
- Ancestral forms dates back to prokaryotes

Fei et al. 1994

The di/tri-peptide transport pathway

Adapted from Nielsen, M.J. 2006

Human peptide transporter 1 (hPEPT1) substrates

Di-and tripeptides (~8400 combinations)

β-lactam antibiotics (aminopenicillins and cephalosporins)

Bestatin (anticancer drug)

Valaciclovir (transport form of Aciclovir)

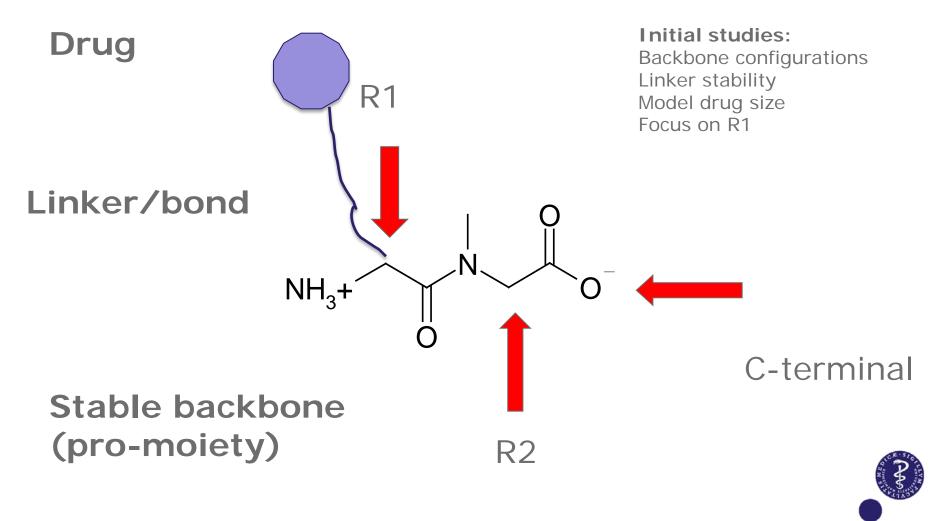
Both acidic, neutral and basic peptides are transported

The transport system has a preference for L-amino acids

Examples of Drugs taken up via hPEPT1

Substance	Structure	Ki (mM)	Bioavailability
Acyclovir		Not a substrate	15 %
Valacyclovir	H_2N N N O H_2N $H_$	0,7	54 %
Ceftibuten	H_2N COO H N O O COO	0,3	80 %
Enalapril	$H_{3}C \longrightarrow O \qquad O \qquad CH_{3} \qquad H_{3}C \qquad O \qquad H_{3}C \qquad O \qquad CH_{3} \qquad H_{3} \qquad H_{3} \qquad CH_{3} \qquad H_{3} \qquad H_{3} \qquad CH_{3} \qquad H_{3} \qquad$	4,6	60 %

hPepT1 is a high capacity "promiscous" transporter


The hPEPT1 drug delivery project

Aim: To investigate the potential of hPEPT1mediated transport as a drug delivery route for peptidomimetics or peptidomimetic prodrugs.

Initial strategy: To make a structure-affinity relationship of ligands binding to hPEPT1, in order to be able to identify molecular features in the substrate, necessary for binding.

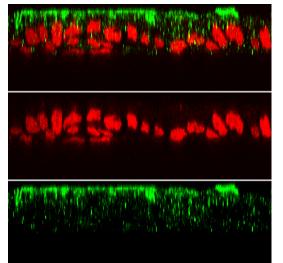
The hPEPT1 prodrug concept

The assay system, the Caco-2 intestinal cell culture model

Grows on permeable membranes for 21 days in 95%O2/5%CO2 .

Media contains salts, serum, Lglutamine, NEEA & Pen/Strep.

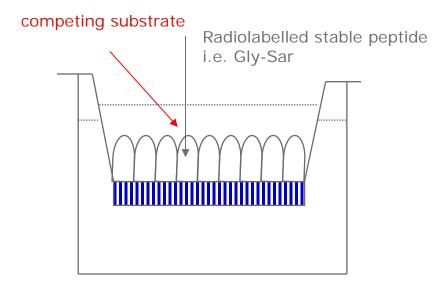
Growth is dependent on passage number, serum batches and technician.


Monolayer transport characteristics must be characterized routinely by measuring TEER, mannitol fluxes and standard substrates, along with CLSM imaging of morphology.

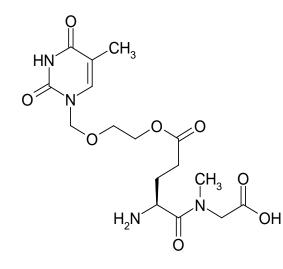
Caco-2 cells express hPEPT1 n the apical membrane after 21 days of culture

http://inn.ingrm.it/Ricerca/transport/Heavymetal.htm

hPEPT1 localization



Nielsen et al, 2001


The assay system, hPepT1 activity and substrate affinity is measured using radiolabelled stable dipeptide

Structure-activity relationships were made by competition assays estimating inhibition constants (Ki) against a known stable radiolabelled substrate, glycylsarcosine (14C-Gly-Sar)

Glu(Acyclothymidine)-Sar, a promising model pro-drug?.

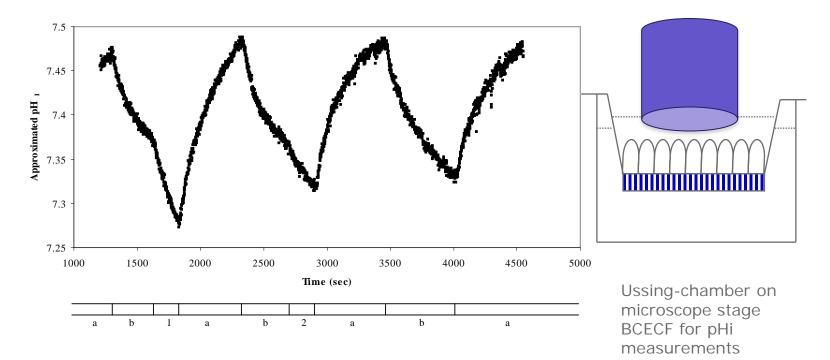
Ki 0.072±0.002mM (natural substrates have Ki's below 2mM)

Stable backbone (methylated)

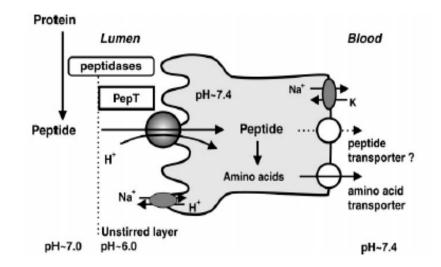
t¹/₂ at pH 7.4 is 3.7 hours (drug release)

Translocation ?

Erikson et al, Eur J Pharm Sci 2005 25, 145-154


Translocation can be tested by measuring pH_i

Adapted from Nielsen, M.J. 2006


Addition of substrate causes intracellular acidification

- a) buffer pH = 7.4,
- b) buffer pH 6.0,
- 1) 2 mM Gly-Sar in buffer pH 6.0
- 2) 0.23 mM III (Glu(Acyclothymidine)-Sar).

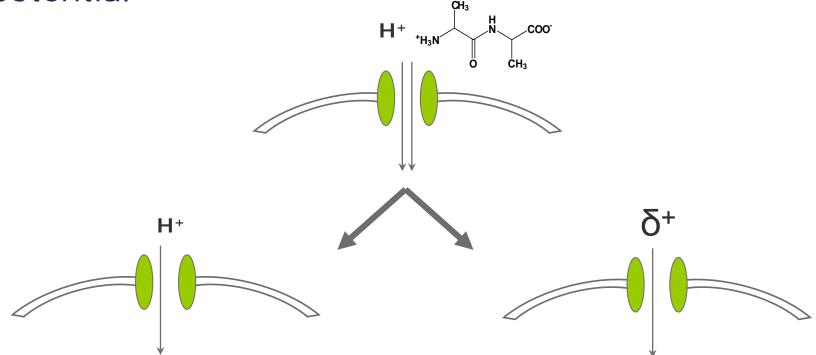
Erikson et al, Eur J Pharm Sci 2005 25, 145-154

Failure: Affinity does not necessarily imply translocation

Derivatisation in the R1 position led to a number of *inhibitors* of PEPT1-mediated substrate uptake

In order to predict uptake via PEPT1, translocation must be measured (in-silico models has previously primarily been based on competition studies)

New strategy in the hPEPT1 drug delivery project

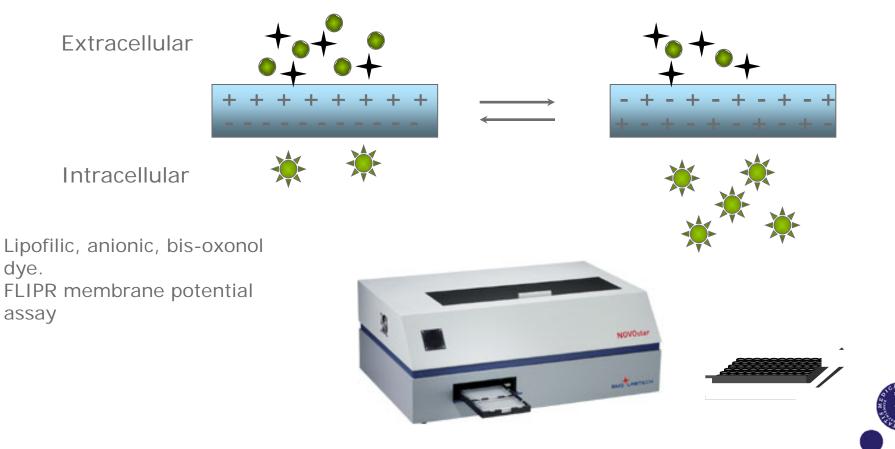

Aim: To investigate the potential of hPEPT1-mediated transport as a drug delivery route for peptidomimetics or peptidomimetic prodrugs.

Revised strategy: To make a structure-translocation affinity relationsship of lsubstrates transported by hPEPT1, in order to be able to identify molecular features in the substrate, necessary for binding and subsequent translocation.

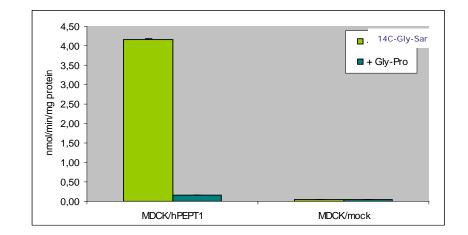
Revised goal: To obtain a predictive computational model for hPEPT1-substrates.

PEPT1 substrate translocation estimated via intracellular acidification or changes in membrane potential

Translocation is accompanied by acidification

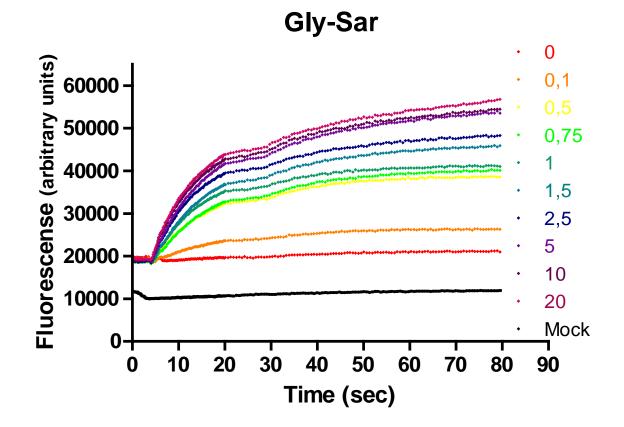

- coupling ratio varies with charge of substrate Dias 18 Translocation is accompanied by depolarisation

- one charge per substrate


Assay: A membrane potential assay and plate reader setup was employed

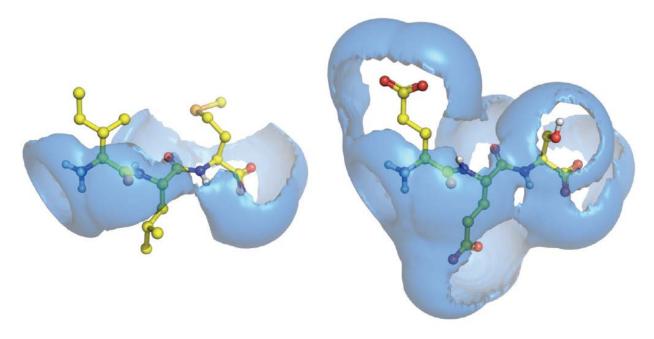
Ex: 544 nm Em: 590 nm

Assay: MDCK-hPEPT1 cells


MDCK-hPEPT1 cells were grown under standard conditions for 3 days

Kindly donated from Bristol-Meyers Squibb Company

Translocation of substrates can be measured directly


Dias 21

Test set

- 55 di- and tripeptides was selected, using computational methods (PCA, VolSurf descriptors).
- The compounds were been tested for their translocation properties (Km,Vmax).
- A structure-translocation relationship was constructed (QSAR, tested against a randomly choosen test set).

Hydrophilic interactions in the side chains lowered lumen-cell translocation rate

Figure 8: Two tripeptides, Ile-Leu-Met (good substrate, $K_m^{app} = 0.43$ mM; left) and Glu-Glu-Ser (poor substrate, $K_m^{app} = 28$ mM; right), displayed with their hydrophilic molecular interaction field at -4.0 kcal/mol. Adapted from (Omkvist *et al.* 2010c).

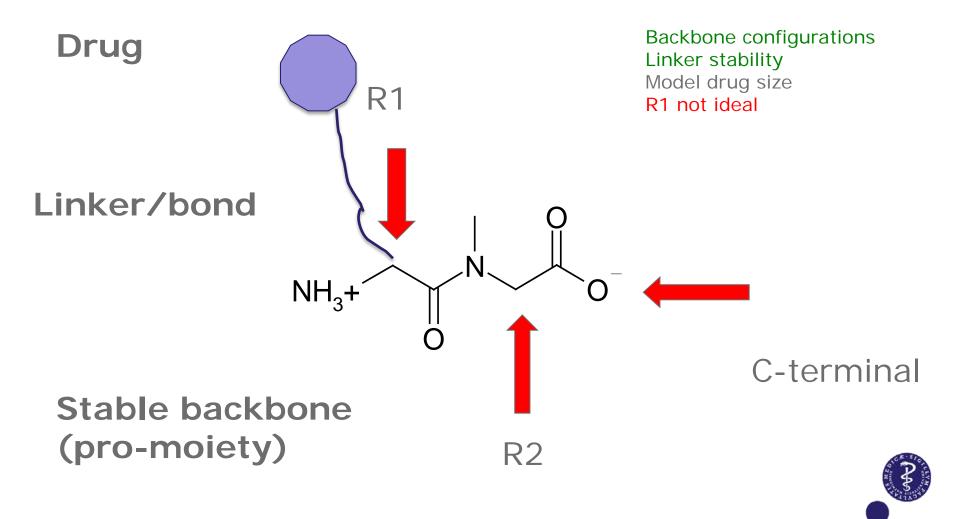
Met-Pro-Pro inhibitor: $K_i = 20$ um

Omkvist et al, 2010.

Dias 23

Recent examples of prodrugs designed for carrier-mediated transport via hPEPT1.

Parent drug	Structure	Promoiety (R)	hPEPT1 affinity	Comparison of prodrug versus parent drug	Reference
[3- (hydroxymethyl)- phenyl]guanidine (3-HPG)		Val Ile	0.65 (IC ₅₀ , mM) ^a 0.63 (IC ₅₀ , mM) ^a	Both prodrugs showed increased permeability as compared to the parent drug in an in situ rat perfusion study	Sun et al., 2010 [81]
Zanamivir	HO CH C C C C C C C C C C C C C C C C C	Val	1.19 (IC ₅₀ , mM) ^a	The valyl ester prodrug showed increased permeability in both cellular transport studies in Caco-2 cells and in in situ rat perfusion studies as compared to the parent drug.	Gupta et al., 2011 [82]
Guanidin oseltamivir carboxylate (GOC)	$\bigcup_{\substack{0, \dots, m \in \mathbb{N}^{H_2} \\ HN \\ \rightarrow 0^{H_1} \\ \rightarrow 0^{H_1} \\ H}} \bigcup_{\substack{0, 1 \\ M_1} \\ M_1} \bigcup_{\substack{0, 1 \\ M_2} \\ M_2} \bigcup_{0, 1 \\ M_2$	Val	0.19 (IC ₅₀ , mM) ^a	The ester prodrug showed increased cellular uptake, rat intestinal permeability and bioavailability in mice when compared to the parent drug	Gupta et al., 2013 [83]
Didanosine	R NH2	Val	0.27 (IC ₅₀ , mM) ^a	Oral bioavailability in rats was increased from 8 % for the parent drug to 47 % for the valyl ester prodrug	Yan et al., 2011 [84]
Maltosine		Ala-R R-Ala	0.33 (K _i , mM) ^a 0.16 (K _i , mM) ^a	Electrophysiological measurements in hPEPT1-expressing oocytes showed significant increase in transport of the prodrugs as compared to maltosine	Geissler et al., 2011 [89]
Rebamipide		Ser-Gly	ND	Electrophysiological measurements in hPEPT1-expressing oocytes, cellular transport studies in Caco-2 cells and intestinal in situ rat perfusion experiments showed increased transport of the dipeptide ester prodrug as compared to rebamipide.	Kikuchi et al., 2009 [91]
Thiodipeptide conjugate of nabumetone		-	0.46 (K _i , mM) ^b	Cellular transport studies in Caco-2 cells showed increased permeability of the prodrug when compared to the known hPEPT1 substrate PheΨ[CS-NH]-Ala	Foley et al., 2009 [92]


a) In competition with Gly-Sar

b) In competition with D-Phe-Gln

Saaby et al, 2013.

The hPEPT1 prodrug concept

Challenges and future directions

Expansion of substrate sets to include more diverse compounds

Crystal structure of hPEPT1 for understanding of binding and translocation pocket

True "rational" design not possible yet

Characterisation of the basolateral peptide transport exit step remains.

Acknowledgements

From the group

Carsten Uhd Nielsen, Bente Steffansen, Diana Omkvist, Andre Huss Eriksson, Rikke Bjerring Andersen, Anne Engelbrecht Thomsen

From the Faculty

Lars Olsen, Flemming Steen Jørgensen, Simon Birksø Jensen

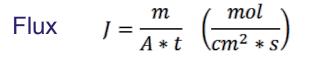
Funding

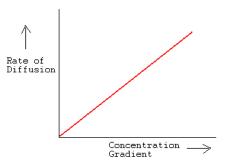
PDA (Predictive Drug Absorption consortium), Novo Nordic foundation, Carlsberg foundation.

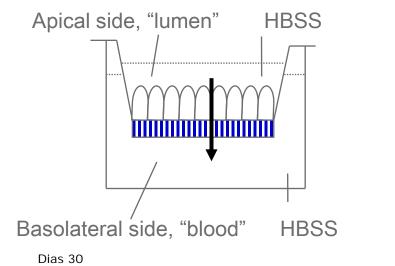
BioSim Consortium.

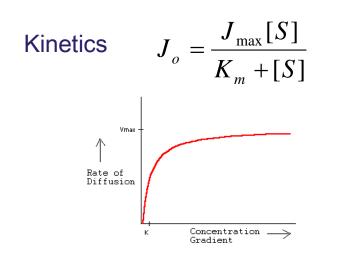
Thank you for your attention.

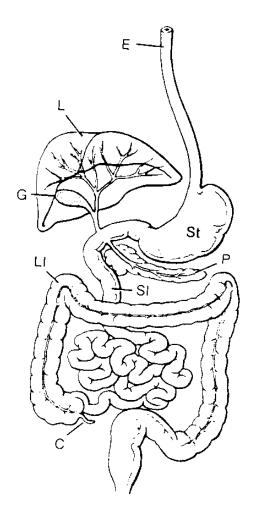
Sted og dato Dias 28 Supplementary slides




Sted og dato Dias 29


We measure fluxes and kinetics of drug transport in barrier tissues


Intestinal cells, Caco-2



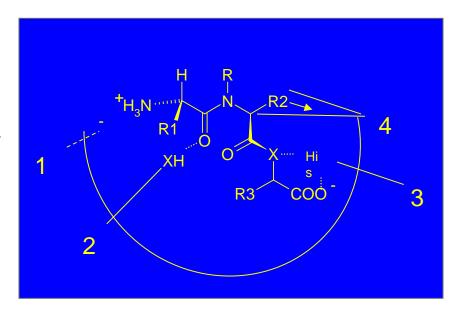
Absorption of peptides from the small intestine

Proteins are broken down to peptides and amino acids in the stomach and in the small intestine.

Three hours after a protein meal (50 g bovine serum albumine), 120 mM of amino acids in the small intestine are in the form of peptides (with the majority consisting of 2-4 peptides), 30 mM are in the form of free amino acids

Peptide transport probably accounts for ~50 % of total amino acid uptake

Molecular characteristics of human di/tri-peptide transporters


Transporter	hPepT1	hPepT1-RF*	hPepT2
Family	POT	POT	POT
Accession No.	U13173	AB001328	PS01023 g2833279
Chromos. loc.	13q.34-q.35		3q13.3-q21
Protein length	708 a.a.	208 a.a.	729 a.a.
TMD's	12		12
Substrate	oligopeptides peptoid drugs	-	oligopeptides peptoid drugs
Tissue distrib.	intestines	intestines	Kidney, brain(?)
Function	H ⁺ -dependent transport	pH-sensing regulatory factor	H ⁺ -dependent transport

*Possible alternative splicing product of hPepT1

Expression is however questionable (Sondergaard et al, 2013)

Proposed model for substrate binding to hPEPT1

The backbone of a substrate must mimick a di- or a tripeptide.

Properties of the side chains (R1 and R2) influences binding

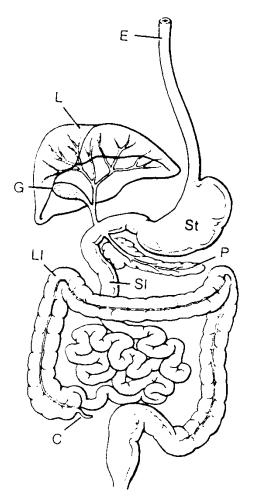
- 1) Ionic interaction
- 2) Hydrogen bonding
- 3) Interaction with histidine residue
- 4) Hydrophobic pocket

Bailey et al. Angew. Chem. Int. Ed. 39:505-508, 2000

Di-and tripeptides as substrates

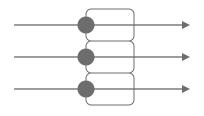
- The peptide transporter accepts di- and tripeptides (400 + 8000 possible combinations)
- Both acidic, neutral and basic peptides are transported
- The transport system has a preference for L-amino acids

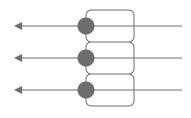
Allowed backbone conformations


	Regular peptide bond L/D peptide	+ +
Ń H		
o L	Ketomethylene	+
O N I	N-methyl amide	+
N H	Methylene amino	-
OH	Hydroxyethylidene	-
S N H	Thio amide	+
F F	Fluoroalkane	+

+ Affinity to PEPT- No affinity to PEPT

Steffansen et al., 2005 EJPB 60, 241-245 Andersen 2006


Transporters in GI drug absorption


Adapted from "Animal Physiology" Eckert, Randall & Augustine 1988

Absorptive nutrient transporters Amino acids Glucose **Di/tri-peptides**

Organic ions

Efflux transporters Organic ions Hydrophobic xenobiotics

