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Preface

Three years are gone since the first edition of the book has been published and at least
four classes of students at the Department of Chemistry, University of Copenhagen,
have tried to solve the exercises. Two classes, in particular, have been very dedicated
and could be convinced to help me with finally finishing the solution manual. I am
extremely thankful for their input and dedication and happy to share the authorship
of the solution manual with them.

While writing the solution manual we found of course several errors in the book.
All the corrections to these errors and errors, that I might find in the future in the
book or the solution manual, will be collected on my blogpost for the book at:
http://molecularelectromagnetism.blogspot.dk

Stephan P. A. Sauer
Copenhagen, February 2015
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Solutions to Chapter 2

2.1 We start by inserting the product trial solution for the time-dependent wavefunc-
tion, Eq. (2.4), in the time-dependent Schrédinger equation, Eq. (2.3)

nuc,e

A, 190 (R, 7) 9(1)) = - (2O (R, 7) 0(1)
which can be rearranged to

L0 e0@EH) =" 2 19w
SO (R, 7) "

The left hand side depends now only on spatial coordinates, whereas the right
hand side depends only on time. Because both sides are equal for all values of
the variables they must be constant. We call the constant E(®) and obtain two

equations
— 1 g0 160 (&, 7)) = BO
(P(O) (R, ’f") nuc,e )
and
h 0O
BO = % 1y
90 ot [9(2))

which can be rewritten as
aS). . 190(R, 7)) = EV0C)(R, 7))

and
1

9 0
5 [P = —#«7( Jo(t)

The first equation is the time-independent Schriédinger equation, Eq. (2.5),
whereas the latter is the eigenvalue equation for the time-dependent phase factor
¥(t), with the solution

I(t) = eTE



2 Solutions to Chapter 2

2.2 When we insert the trial-solution <I>(L02}J(R 7) = VS (7; R) 6) ( R), Eq. (2.11),
in the total time-independent Schrodmger equation, Eq. (2. ) we obtain

o L X g2 MM,
NC 52 K
v ) om, zl:pi 471'60 Z |7 — rj| 4reg Z |7 — Rk|
e? Z ZKkZL | (0
4meg K<L |Rix — Ryp| "
+ \I,(o)} ﬁ/[: ﬁi@(o) + 0 1 f: ﬁiq} 0) 4 iw: L(ﬁK\p(O)) . (ﬁK@(O))
n'y - o v,J v,J 2 = K n — mi n v,J

E(O) \IJ(O) @( )

n,v,J

Using that o (7; R) is the solution of the electronic Schrédinger equation
(including the nuclear repulsion), Eq. (2.10), we can rewrite the first parenthe-
sis of the left hand side as E,(LO)(R) \II%O)(F; R) and combine it with the second
parenthesis of the left hand side

=2
p 0
v {53 2 0 ol

K

1L 5 Mo

(0) K (0) I O N ) 0) (0 (0)
@vJQZ \Ij +;mK(pK\Ijn ) (pK@'U,J) Ean @

Comparison with the nuclear Schrodinger equation, Eq. (2.12), shows that the
terms which are neglected in the Born-Oppenheimer approximation are given as

o 1 P2 1 4 -, 0
9,,7?;5 Pt LU me(P xU0) - (7xO%))

They involve the first and second derivative of the electronic wavefunction with
respect to the nuclear coordinates weighted by the corresponding nuclear masse

mg.
2.3 Starting from
Ipl (7, 1) 9 0/ n = - o .
at:—eNm/F2~~-/FN‘\If,(c)(rl,rg,---,T‘N,t) dry - - diy

we take the time-derivative of the probability density

6pel(’l“1, _ —eN/ / { \I/(O)* {Tz} t)\I/,(QO)({F}} 0

0)r=
* R (3K — —
+ul® ({ﬁ}7t)78 k ((9{;} t)} dry---dry
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The time derivative of the wavefunction and its complex conjugate is given by
the time-dependent Schrodinger equation Eq. (2.13) leading to

%elé;«l, _ QZ;JZ/ / o){ A O HOw o)*({ 1)

—u (F L OHOU (7)) ) diy - di

All potential energy terms in the Hamiltonian are multiplicative operators and can
therefore be moved in front of the product of the two wavefunctions. Consequently
these contributions cancel and we are left with the kinetic energy terms

dp (7, t) 1eN ©) /1 N noe (O fm
ot T T omuh vy, ({Ti}»t)zpi‘l’k ({7i}, 1)

{71t Z 7200 ( {ri},t)} Ay - - diy

2.4 We start by rewriting the second part of the integral in Eq. (2.26) in the following
way

N
[ / O ({7}, 1) Zﬁ VO (7)) diy - diy

- / / VO (7}, 05200 (7). 1) dFy - dF
T2 TN

N
[ [ WL Y O R dr e di
2 N i—2

and correspondingly for the first part

N
L] V(R 0 PP () ey
/ /\11(0){ A 05200 (7)1 diy - dity
N ~
/ / {n}tZﬁ OO ({7}, ) diy - diy

:[ o [ @1(60)({7;;_}7 t)]j'?\llffo)*({ﬁ-}, t) dity - - - dfy

(/ / T ({7}, 0) Z O({7 Y, 1) drg---dFN>*



4  Solutions to Chapter 2

where the last equal sign is a consequence of the fact that for a given value of

7 the second integral is just an integral over an hermitian operator for a N — 1
. N 29 .

electron system. The expectation value of ;" , p's, however, is real and we can

therefore write it as

N
[ [ \1/560)({7:;} t Zﬁ \I’(O)* {Tz} t) iy ditn
T2 TN =1
:[ [ ‘I’gj)({ﬂ},t)ﬁflll,io)*({f;}?t) dity - - - dFy
T2 TN

N
+[ / v ({7, Z;ﬁ VO ({7},1) diy - - diy
T2 TN 2

which is the same integral over the Zf; f)’ 2 as in the second contribution to Eq.
(2.26). These two contributions cancel therefore and we are left with

8€lF, —1eN .
et = g [ [ {0t g

U (LR (R | dry - diy

2.5 We have to show that the change of the scalar and vector potentials according to

65 (0) = 6% (1) = 9 () - 2D

AB(7 t) — AP (7, t) = AB(7,t) + Vx(7,1)

will leave the electric field £(7,t) and the magnetic induction B(7,t) unchanged.
Inserting the gauge transformed potentials in the expressions for the fields, Eqgs.
(2.33) and (2.34) gives

o
E'(Ft) = -Vt (7 t) — ‘MT(:"J)
e e )\ 9 (EB(r,t) +§x(r,t))
=-V (d’ (Tat)i ot > - ot

B'(7,t) =V x AP (7,t)
=V x (A5(7.1) + V(7))

If we now expand the gradients and curls we get

_ox(F ) 9AB(Ft)  OVX(FY) .
ot at praiad G
B'(7t) =V x AB(7t) + V x Vx(F,t) = B(F,t)

E'Ft)=-Vo (Ft)+V
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because the curl of a gradient vanishes, V x ﬁx(f', t) = 0, and the partial
derivatives with respect to time and spatial coordinates can be interchanged,

SM(Tt) _ OVX(TD)
o ot

The task is to show that on insertion of the Lagrangian

mev 2

2

L(F,T,t) = +edpf(Ft)—ev- AB(F 1)

in the (Euler)-Lagrange equations

d {ac} oL 0

dt | Ov, ory
we can recover the Newton’s second law, Eq. (2.50), where the force F is the
Lorentz force, Eq. (2.43), i.e. we should obtain Eq. (2.51). The (Euler)-Lagrange
equations are a set of equations, one for each coordinate. Here we will restrict
ourselves to only one coordinate which we choose to be the cartesian coordinate z.
Therefore we should recover the equation relating the  component of the velocity
to the x component of the Lorentz force.

Let us start with the second term in the (Euler)-Lagrange equations, Eq.
(2.49). For the x-component we obtain

aﬁfWW)(ﬁmm+awm+a&m>

—e—"2 —¢ v, v,
ory Yo or, ory

ory ory

For the corresponding first term we get

d (0L d o
p <3U ) == (mevm - eAf(r,t))

dv,  dAB(7,t)

e T ar

_ dvg
= meﬁ
. <8Af(77, t) n OAB(7,t) Or,  OAB(F,t) ory OAB(7,t) 87’Z>
ot ory ot ory ot or, ot
B duy,
T

L (ABED) AR AR | 4B
c ot ors e ory Yy or, vz
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Combining the two terms we obtain

v, (DAB(RY) | OAB(R)  OAE(RY) . 0AB()
g N\ ot o, * or, YT or. ¢

£(F, B(p OAB(7 ¢ B(f,
09 <r,t>+e<%an<r,t>+ AGLN aAmt)) "

v v
Yy z
ory ory ory ory
After some re-arrangement we can write

(= Bz
dug _ e@qﬁ (7, 1) +68Am (7, 1)

et or, ot
A (2D 04RY) (0ARRY 04GR
Y Ory ory or, Ory

which is the z-component of Eq. (2.51).
Any vector field F(7,t) can be separated in two components

where Fip(7,t) and Fp(7,t) are the transverse and longitudinal components which
are defined by the following relations

V- Fr (F t) =
V x F(7t) =0

Choosing the Coulomb gauge V - A for the vector potential implies therefore
that the vector potential A is transverse, i.e. A = AT because the transverse
component has no divergences per definition and the divergence of the longitudinal
component vanishes only if A; = 0. However from the relation between the
magnetic induction B and the vector potential we can see that

B=VxA"
= x (A5 + 4%)
—VxAE+Vx

However the last term is zero due to the definition of the longitudinal component
and therefore we can conclude that

> = og
B=VxA7
and that the longitudinal component of the vector potential, A ? , does not con-

tribute to the magnetic field. It can therefore be set to zero without loss of
generality.
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However in a time-dependent case the vector potential contributes also to the
electric field

- - OAB
_ E
E=-V¢ o
- 0AB  9AB
_ £ L T
=-Vé ot ot

The contribution from the scalar potential ¢ ¢ is purely longitudinal because the
curl of a gradient (V x V¢ ¢ = 0) vanishes. The two components of the electric
field are therefore in general given as

. - OAB
_ E L

fL=-V9 ot

. 7_6/1’5?

T ot

The Coulomb gauge, V - A and thus A = Ay implies that the vector potential
contributes only to the transverse component of the electric field

&L =-V¢t
- AL
fr=—"5;"

Thus, the two components of the electric field are nicely separated in the Coulomb
gauge.
We proceed like in exercise 2.7. The Lagrangian is now given as

72
L(7,T,t) = —me 021/1—1;—2—&—6(;55(77775)—617-

The second term in the (Euler)-Lagrange equations is therefore the same as in
the non-relativistic case (exercise 2.7). However, the first term reads now

AB(F, 1)

d (0L d MUy B/o
de)—ﬁ — R0
d  mevy dAB(7,t)
T dt iz dt
-5
B i MUy
dt 1— %2
. 0AB(7,t)  0AB(7t) Ory OAB(7,t) ary OAB(7t) Or,
ot ory ot Ory ot ar, ot
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or

d(oLN _d_me,
dt \ov, ) dt 1_ o2

c2

(AR 0ABGLY)  9AB(RY) L DAE(RY)
N o o, *T o, YT o, ¢

Combining the two terms we obtain

i MeUy 8Af(F,t)+8Af(F,t) +8A§f(1",t) +6‘Af(77,t)
dt 1_ 82 © ot ory Ve ory Yy or, vz

C

a¢5<m>+e<v QAR | DAY aAf(F,w):O

—e——> v v
Yy z
ory ory ory

ory
and after some re-arrangement we can write

E(m B(=
d mev, _68¢ (r,t)+68Ax(r,t)

dt \/j oy ot

- e{v (@Ag(f;t) - aAf(m)> . (aAf(m) - 8Af(f’,t)>}

ory ory or, ory

which is the z-component of Eq. (2.64).
2.9 Inserting the relativistic canonical momentum, Eq. (2.67), and the relativistic
Lagrangian, Eq. (2.66), in the expression for the classical Hamiltonian, Eq. (2.54),

gives
H(r, P, t)
" 52
= e Uﬂ —e AB(Ft) | - T+ me 02\/1—1;—2—e¢g(r,t)+ev AB (1)
-2
C
me U2 2 7 £/
= — +me /1 - — e ()
-
C

However, we cannot make the transition to quantum mechanics from this Hamil-
tonian because it is written in terms of the velocity and not the canonical
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momentum. Using the expression for the canonical momentum, Eq. (2.67), we
can eliminate the velocity. Before doing so we have to rearrange the expression
and square it on both sides

2 4
. L2 mic
(H(’I",p,t) +e ¢€(T7t>) = 1 j T2
C2
The right hand side can also be written as
2 2 =2
S L2 ms ¢® U
(R ) +e ¢ ()" =me !+ =5
C2

When we also rearrange and square the expression for the canonical momentum,
Eq. (2.67), we obtain

> 2 m2y?

- B(= -
(p+6 A (r,t)) = 71i =
C2

and can therefore identify the second term of the right hand side of the previous
equation as

2 2 =2 2
mZ ¢ v . 2B
16_ GE = <p+eAB(r,t)>
C

The Hamiltonian becomes therefore

- 2
(7 pt) = \/mg e (Fre ABFEL) —eof(F1)

In order to show that

o, + oo, = (O g) for u #v

00
o, B+ Ba, = <O 0) for p=x,y,2

we make use of the commutator and anti-commutator relations of the Pauli spin
matrices
[0i,0])] =21€j, 0 OF 0,0 =1¢€; O

and
[Gi,Uj]+:2(5ijI or O'iO'iZI

where €, is the Levi-Civita symbol [?].
We obtain then for

0 o 0 o o2 0 I o0
(o, ¥ T)-(% 2)-07)
I o\/I o I o0
ﬁQZ(o I) (0 I>:<0 I)



10 Solutions to Chapter 2

( Z aaéa> Z O'Bﬁg —0'10 a’w —&—a’wC 0',,D —I—O'QJC a’z P

+ o'yC O'TD +0'yC’ a'y +a'yC az
+0.C.0,D, +0.C.0,D, +0.C.0.D
Using that [, Cs] = 0 and [0, Dg] = 0 we obtain
= aiéxﬁm + Uwayéwﬁy + axazéwﬁz
+ a'ya'wCA’yﬁw + UiéyDy + UyUZCyDz + UZU:ECA’ZZA)CE + GZUyC’ZDy + ogCA’ZDZ
Using that o0 =1 €1 o) and 0;0; = I we can write
=1C,D,+1C,D,+1C.D,
+ 10, (C'yﬁz — C’zf)y) +10y (C’Zﬁm - C'Iﬁz> +10, (C’xﬁy — C'yf)x)
S(@-B) 140 Y ou(GxD)
a= x,y z

.12 We will show that

for the z-component:

[9x(0)], = 5 (60) - 52 (6w)
= @@ b+ c}a%w - (i@y) ¥ Gyt
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2.13 Using equation Eq. (2.90) we can rewrite
( > oa(iate Asm)) ( > o (it eAsm)) [9z)
a=x,y,z a=x,Y,z
as
- 2 2 - 5, - 5 -
((ﬁ+ cAB®) 41 Y3 ou[(F+e ABM) x (F+e A"”(ff))}a) 1)
a=zx,y,z

On expansion of the cross product we obtain

((ﬁ'—f—e;fB(F)f—&—z Z o [eﬁ'x 14:1‘6(77)-}-6;8(7:‘) XﬁL> )

a=T,Y,z

because the cross product of a vector with itself is zero. Since ﬁ' = —zhﬁ, we can
make use of Eq. (2.91) and obtain

((ﬁ+eﬁB(F))2 +he Y o [—IZTB(F) XV + (% x “Tgm) AR x ﬂa> V)

((ﬁ+eﬁ’3(ﬁ)2+he 3 o (§><QTB(F))Q> lor)

a=xz,y,z

2.14 In order to proof that we let (ﬁ — zh%) act on e*#X(M1)|4)(t)). This should then
give ' 7 X(T1) (ﬁ’ - zh%) 1h(t)). Let us therefore start with He'#X(0]4)(t))

e bt CARL G0) R ) Y )

2me

Inserting the expression for the canonical momentum operator, expanding the
outermost parenthesis and expanding the square we can write

= o (i A5 0)) (<Y + A B(F0)) T (1)

- 2Me
— e FXD ¢ GE (7 )|y (t))

Letting the right parenthesis act on the transformed wavefunction gives

=5 ! (-m@ +eAB(F, £)) e (e%x(ﬁ t) — ihV + eA B(7, 0) ()

Me

— e #X0) ¢ GE (7 1) |0 (t))
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Expansion of the left parenthesis gives

1 S e s > 2 S
_ vex(t) (L B 7
o VD (< e (A5(70) + Vx(70) ) [0(0)

Application of the gradient operator in the first line gives

=

e /= 1 5 5 2
= e TN eV (7.1) (=nV + e (A5, 6) + Vx(71) ) [e(0)

= =

WV (—zfﬁ +e (A B(7t) + %(ﬁ t))) [(t))

_ et RX(TY)
2m.

=

eAB(F, 1) (_mé te (JY B(7,1) + Vx(7, ) ) ()

Collecting terms we obtain

1
2me

— et rx(7t)

(fzhé +e (Z’B(F, £) + Vx(7, t)))

=

(¥ e (A8 1)+ Fx(n) ) (o)
— e FXD ¢ GE(7) [y (1))

or finally

et Ex)

o) =0 [ (e (860 + 9xirn)) - e 620 | o)

2Me

Now we have to apply —zh% to e A XMt |eh(t))

0 ,e 7 2 e (T 0 F,t 1 £ x(7, 9
2 e ix (1)) = BT D gy gperinn Oy

Combined with the previous results we obtain

i a e = e = 1 A ot N 2
S 1£x(7,t) ot x(7t) = B> -
(H m&e)” [ (t))=e'F {2 : (p+e(A (r,t)+Vx(r,t)))

—e (- 200) nl v

_ X (ﬁ’ - zhgt) [ib(¢))
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2.15 We have to proof two things. First that
(W7 |9) = (7 X [ BXO) 7 erfx iy
= (| e FXM e mX(T) 7 XM e 7X(T) | ) = (4| 7] 4))
which is hereby already shown, and secondly that
B — i) 2o RN — f e (/TB(T*) + %X(ﬁ)
The proof is completely analog to the solution to exercise 2.14.
F e Oyp) = (4 cAB(7) PO y)
Inserting the expression for the canonical momentum operator we can write
7R Oy) = (<h¥ + eAB()) eFXO)y)
= et#x(™) (e%x(?) —hY + 6/11'3(7“')> [¥)

— et Ex(® (1%4_ e (;1)8(1?) + %X(F))) [¥)
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3.1

Projecting

o (F)) =3 1) o (F)
140

on the unperturbed bra <\II£LO)|, now for a change, we obtain
(W (F) = 3w | v O ()
10
But the unperturbed wavefunctions \\I/l(o)) are orthonormalized
(0 | ") = b

and thus
Y U FE) = Y O (F) = O3 )
1£0

Projecting the first-order equation
2 1), 2 2 0 0 (1) 2 1) 2\, (0
HOWG (F)) + BOw") = BV 1w (F)) + BV (F)wg”)
again but now on the unperturbed bra <\I/$?)| we obtain
(U | |0 (F)) ) | HD | wg”)
= B0 | w) (F)) + BV (F)(el) | wg”)

Using again that the unperturbed wavefunctions |\I/510)> are orthogonal and
eigenfunctions of H(®) we can write

EQ @O | oV (F)) + (@O AD 1wi) = B (0 | vV (F))

n

or
(w0 HO 0 = (B - B0) (00 | 00(F)
But (¥ | {Y(F)) = C{(F) according to Exercise 3.1 and for EY # B\’ we
obtain thus
(\I/%O) u:[(l) |\I/§)0)>
By - B

O(F) =
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3.3 First, we determine the second-order coefficients. The second-order equation reads
HOWE (F)) + AV (F) + AP0 = B0 (F) + By (F)|wg”)
+ B (F)lwg”)
Projecting onto an unperturbed state <\I/$LO)| gives
(PO (F)) + (U EO 0" (F)) + (001w
= EQ (@O (7)) + BN (F) (@0 wi?) + B (F) w0 wi)
which reduces to
BP0 06 (F)) + (WP H V1060 (F)) + (00| H v
= B (@010 (F) + B (Fy 0w )

by applying the Hermiticity of the unperturbed Hamiltonian and the orthonor-
mality of the unperturbed eigenfunctions. Inserting the expansions for the first-
and second-order corrections to the wavefunction, Eq. (3.23), gives

O 3 (WO Cud(F) + 3 (WD) O (F) + (w0 A v

m=£0 k0
=By DU CRF) + B (F) 3 (D19 Ol (F)
m#0 k#0
or
B S SumCrg(F) + D (WP HONWD) O (F) + (v |wg?)
m=0 k0
= B S 6umCE(F) + EVF) S 6O (F
m#0 k#0
and finally
EOCE(F) + > (WD AV ) CR) (F) + (00 A w ()
k0

= B C(F) + B (F)CR) (F)
The second-order coefficients therefore become
(@A) — BV (F)C () | 5 (01190 Cg) (F)

2,z
CnO (‘T..) =
(B — B = (Y -EY)

As we show in Exercise 3.4, the first-order correction to the energy can be writ-
ten as an expectation value of the first-order perturbation Hamiltonian over the
unperturbed wavefunction

EMN(F) = (@A)
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Inserting the first-order correction to the energy and the first-order coefficients
yields

C@(F) - (@9 @ EO ) @ 7O
n0 E(go) _ Ego) (Eéo) _ ET(LO))Q

+y (W AN (w0 0w
iz (BY - ED)VED - B

The second-order correction to the wavefunction therefore becomes thus

0) £ 0 0) £ 0 0) £ 0
WO F) = 3 o) @A) (@O ) @ a0
0 = B — g® (B — )2

(O [HO ) w1 A0 e
(B — EOYEY - B)

k0

3.4 Projecting the first-order equation

HOW (F)) + AN = B0 (F)) + B (F) wg”)
on the unperturbed bra <\Il(()0)| we obtain
(w0 ) (P 7O )
= B (w0 (F) + B ) | vy)
Using that the unperturbed wavefunction \\Iléo)> is normalized
(wg | wg”) =1
and that it is an eigenfunction of H©®, i.e.
(Wi O = w| B
we can write
By | 0 (F)) + (" [HD | 0g”) = B @ | w6V (F) + BV (F)
and thus
gD (F) = (g 1A v

Note that for the first-order energy correction it is not necessary to use the
consequence of the intermediate normalization, i.e.

(o | eV (F) =0
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Projecting similarly the second-order equation
N (F)) + BN F)) + B )
= B[O (F) + B (A (F) + B (F)|ef”)
on the unperturbed bra (Wéo)| we obtain
(W L [0 () 4+ (g | D 1w (F) + (u ) w?)
= BP0 | wl(F) + B () | Wi (F) + BS (F) el | v

Using again that the unperturbed wavefunction |\P((JO)> is normalized and an
eigenfunction of H(®) we can write

EQ (W 1w (F)y + (w O AD [w i (F) 4wl A e
EL(w | WP (F)) + BN (F) e | wiD(F) + ES(F)

The two terms E(() <\IIO | ‘1/(()2)(]_-» cancel again, but for the term E(()l)(.f)@/f)o) |
\Il(()l)(f» we have to use now that

(o | v (F)) =0
due to the intermediate normalization. This leads then to
2), & 0) 7 1), 2 0) 7 0
E(F) = (u? | B |w) (F)) + (v | B | w)
For a Hamiltonian quadratic in the perturbation, the mth-order equation reads

HOWW (F)) + AON0{ 1 (F) + ﬁ@w(m‘z)(f»
= B (F)) + ZE e (F)) + B (F)|eg”)

Projecting onto the unperturbed ground state gives

(g [HOG™ (F)) + (e O (F)) + (e |26 (F))
m—1
= BV (W w5 (F)) + S EP(F)e 1w (F)) + B (F) el e i)
or
EL (@™ (F)) + (wAO @D (F)) + (e A [ (F))

0 0 m 0 m—1i) & m)
E'()<\I/()|\I/( ) ZE() \I/()|\Ifé )(.7'—)>+Eé )(]:)

Again, we apply the intermediate normalization condition and obtain for the
mth-order correction to the energy

E{(F) = (O AV (F)) + (e AP (F))
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3.5 In order to derive an expression for the third-order energy correction we have to

start from the third-order equation
HOW (F) + AV (F) + A |95 (7))
= EV[0(F)) + BP0 (F)) + B 1w (F)) + B (F) e )
which we again project on the unperturbed bra (\Iléo)\
(W THO 1w (F) + @O | HO e (F)) + <\If<0> |H® WiV (F))
= B | 9P (F) + B (F) el | v (F)) + B (F)el” | v (F)
+ B (F) ) | q/g°>>

Using again that the unperturbed wavefunction |\Il(()0)> is normalized and an
eigenfunction of H(® and that

(@ W™ (F)) =0

due to the intermediate normalization, we obtain for the third-order energy
correction

EP(F) = (@ AW WP (F)) + (wi” |A® 1w (F))

However in order to evaluate the first time one needs to know the second-order
correction to the wavefunction, |\I/E)2)(]-' )). On the other hand, if one recalls that

0) | 7 2) 2 2) 2\ | {5 0)\
(g | A wg? (F)) = () (F)| 2D | w ()
we can obtain this term by projecting the first order equation on <\IJ(()2) (F)|
2) 2\ | 1 1), 2 2) | f 0
(g (F) | H O w0 (F)+w” (F) | B [0 ”)
0) ,q,(2) [ 2 1), 2 1), 2y a2 2 0
= By (W) (F) | o) (F)) + gV (P (F) | wi”)
Using again the intermediate normalization and rearranging we obtain
2) 2\ B 0 2), 2 0 A 0,2
(g (F) | BD [w?) = (v (F) | B — 2O | W) (F))
If we recall now that
(W (F) | = HO W (F) = (ug) (P | By = B Y ()
we can obtain this term by projecting the second order equation now on (\Il(()l) (ﬁ)\

(U (F) [ HO WD (F)) + () (F) HD w0 (F)) + (w8 (F) | A )

= BV (W (F) | v (F)) + B (F) e (F) | o (F)) + B (F)el)(F) | o)
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Using again the intermediate normalization and rearranging we obtain

(O (F) B — 4O 19F(F)) = (w1 (F) | HD e (F)
— BN (F)eMN(F) | e (F))
+ (U (F)  HO(F)| v )

Going back this means that (\I!(()O) | HW(F) \1162) (F)) can be rewritten as

(U | HO(F) w8 (F)) = (0P (F) | HD |w )
= (O (F)|EL - HO |9 (F))
= (Wi (F) | AD | w i (F))
— B (A)((F) | ) (F))
+ (B (F) B

and that the third-order energy correction can alternatively be written as
3), 2 0) | 7 2) 2 (© 1), 2
B () = (u? [HO W (F) + (v | 7 w7 (7))

= (U (F) B [w3(F) — BV (F)(wg) (F) | v (F))

+ (W(F) A ey + (v A eV (F))

showing that it only depends on the zeroth and first order wavefunction in
agreement with the 2m + 1 rule

3.6 Deriving Eq. (3.81) starting from Eq. (3.80):

(L F)) = — Ot T (1, F)) + e 7 un S o, F)

The time derivative zh% of |Wo(t, F)) is known from the electronic Schrédinger
equation, Eq. (3.74):

S wo(t, ) = (BO + AOW) [wo(t, F)
Inserting this we obtain

zh—|\III(t F)y=— A W (1, F)) + ek AV (O + D)) |Wo(t, )

= —HOer 1wy (1, F)) + eF 17 O w4 (1, F))
+ HIOGO )y (1, F)
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And, because e%ﬁ(o)t7 HO| = 0, we can write:
9 . 0 . L . . .
ths (G (8, F))==eF T O o (8, F)) + eF 7 (AO + HO@0)) [Wo(t, F))

_ e%H(°>tﬁ(1)(t)|‘1/0(t,}:)>
— AT (1)t At F Ay (1, F))
= HO1 ()| Wi (t, F))

3.7 As shown below, the linear response function only depends on a time interval
t — t' and not on the two absolute times, ¢ and ¢’

s A 1 A R
i 0 FI 0
(P (1: 051 (1) = ot — ) =] [P(1), O ()] 196"
=0t - t’)%(\yé% [e%f“”)tﬁe;ﬁ“)te;ﬁ(%'ég - HHOY
7
= e%ﬁm)tlég_'e_%Hm)t’e;ﬁ“’)t}ae—gfl(“’t] |\I/(()O)>
1 L Ny & / A 2 ’
- @(t - t/)%<\lléo)| |:eﬁE(()0)tP€hH(0>(t _t)Ogne—gE(()O)t
- cHEOF b0 ek o)

where we have used that |\IJ(()O)> is an eigenfunction of the unperturbed Hamilto-
nian with eigenvalue E(()O) which implies that

2 f7(0) 0 1 /9 - n 0 1 /v 0 \"™ 0 2 (0) 0
AT = 37 (GEO) 1) = 3 (FE) Y = eh )

. . . . k2 ( ) . .
and likewise for the complex conjugate. Using the fact that e# B0t is a function

(and not an operator), and thus, commutes with all the operators, we obtain

. A 1 A 47 ’ A B '
(IO 071 0) = Ot — ) (0| Pei A 007 ks

- cH B0 k0 p o)

1

_ o
=o(t—t)—

<'1’80)| [Pe;ﬁ(o)(t/—t)ég”e—gH(O)(t’—t)
_ e';LFI(‘”(t’t)OAIJ;“e;LH(O’(t’t)p] |\II§)O)>

1 A A ~ ~
— Ot - t’)—h(\lféo)| [POZ,T’I(t’ —t) - 07t - t)P] 1w
.
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or

(PHO:O710) = 0~ ) (0| P. 0T~ o) 104?)
= (PO — 1)

3.8 The linear response function in the time domain reads, Eq. (3.107),

(P 07 ) =60 (01| .07 o) 4

21

where ¢ now denotes a time interval. The eigenfunctions of the unperturbed Hamil-
tonian form a complete set and we use this to invoke the resolution of the identity,

ie.
1= [Ty

This gives

1
1h
1
1h

(PO (1)) =6(—t) = (Wi PO (1) — O (1) Plw”)

ey [<wé°>|ﬁw;°>><w>|é§tf (1) v

@107 (1) 0O () |P|ﬂzéo>>}

~ 2 fr(0)y A _ 2 0
—0(-t) 37| U P e OF e )
n

- <wé°>|e%ﬁ(°’t0£..e‘%ﬁ”’twwwP|wé°>>]

1

=e<—t>m2[<wé°>|ﬁw59>><w£?> HFENOF e HE 1w )

— (v e%Eé‘”tOi..e%Eff’“|w$?>><w;°>m50>>]
1 A A a0 (0)
= <—t>mZ[<wé°>|P@£?>><\If£?>|0£..e BB wgY)

N @ (0) _ 1(0) N
— (|07 eh B0 Ex >f|w;0>><w;0>|P|\Pé°>>}

Performing the Fourier transformation of the response function

oo

(P05 )0 = / (PO (1)))e "t

— 00
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we obtain
(Pi03. 0 =5 2 /_O:O o(~1) {<\Pé°>|15|\lf;°>><qf;0>|Og_”e;<E30>E51°>+nw>t|\1,go>>
— (U002 e (BB —h)t g (0)) (g © |P|@é°)>} dt
:% > {<‘1’80)|13|‘1’59)><\I/£?>|O§m|\I/go)> /_‘: O(—t)e— B —ED +hot gy
- <‘1’50)\OA;’.A.|W2°)><W;°)|P|\yg°>> /Oo @(_t)e;(Eé")—E;W—nw)tdt]

Change of integration variable x = —t (the limits of integration have been changed
accordingly, however, subsequently they have been interchanged by changing the
sign of the integral) gives

w 1 X Ao 1 [ 2(EO 5O L pVe
<<P;0ﬁ‘..>>w=hZ[<WéO>|P|w;°>><w;O>Oﬂ‘..lwg% / O(a)ek o —F e gy

n

A A 1 [ .
(105 eI PE), [ e B gy

Using that
1 [ > d(a — 1 1
/ etQ(t)dt = lim Na=@) b~ lim _—
) n—0t J_ T+ n—0t a+m a

with a = A= (E”) — E{”) + hw) in the first integral and a = —h~1(E” = B — hw)
in the second, we arrive at

0)) A, (0 0)| Aw 0 0)| Aw 0 0) A, (0
@1 Pey @ 10s 1wy w0y 1wy Plel”)
© 00 + © 00
Ey’ — En’ + hw Ey’ — By’ — hw

The contribution from n = 0 is

0) £ 0 0)| Aw 0 0) Aw 0 0)) 0
@ Pe) e 10s vy w10y [yl Pley”)
© 0 + © 0
Ey’ —Ey’ + hw Ey) — By’ — hw

and hence n = 0 can safely be omitted in the summation thereby giving Eq.
(3.110)

0) A 0 0) Aw 0 0)| Aw 0 0) 5., (0
(w1 Pey e 0s [w ) .\ (w105 1wy @ Ple)
N E — B + hw E — B — hw

n#0 0 n 0 n
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3.9 The second-order correction to the time-dependent expectation value of P reads
(Wo(t, F) P Wo(t, F)) @ =(w (¢, F)| Pl (¢, F))
+ (U (¢, PP (8, F)) + (67 (1, F)| Ple (¢, F))

where according to Eq. (3.87) and Eq. (3.88) the first- and second-order correction
to the time-dependent wavefunction are given as

1

R t
0 6 F) = W[ a0 ) )

1h

2 t t'
- 1 1 [ ] 3
|\I/E)2) (t,F)> — (Zh) e_EH(mt / dt// dt”H(l)’I(t/)H(l)J(t”)|\11§)0)>

and their adjoints are

(6 (¢, F)| =3 (| / d O (e 1

(\1162)(t’]?)| :<) |/ dt/ at" )f{(l),l(t//)e%f{w)t

using the Hermiticity of H(© and (HM1)T = (ex 1Ot M=z HOT — 1)1
Inserting the expressions for the first- and second-order corrections to the wave-
function into the second-order correction to the expectation value, we obtain for
the first term

(i (¢, F) | P 1, F)
2t t 3 J
_ <1h) / dt// dt”<\1/é0) |f{(l)J(t,)e%H(O)tﬁ)ef%H(U)tf{(l),I(t//)|\I,(()O)>
7 — 0o —00

1 2 st t ~
(m)/ dt’ / dt" (W [ ADL () PLAOT (") | w )

The function is symmetric with respect to ¢’ and ¢ and we can therefore rewrite
the expression as,

— 9 ( h) / dt// dt” \II(O) |H 1), I( )PIH(l) (t ")|\I/(O)>
(3

(ORI @) |9 ))

where t” now is integrated from —oo to t'.
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The second term becomes

(O (t, F) | PleS (1, F))
1 2 Lt t L. . A N ~
:(m> / dﬂ/ dt" (W (t, F)|[ e #1 HOL ) HOL (1) w )
(m) / at’ / dt" (U et Pt () EOT (1)) 0 )

:(1h> / at’ / dt" (@ | P HO () EO ()| w)

while for the third term, we have

(wi? (¢, F) Pl (t, f“>>
(m)/ W/ /(A OT(EO (e TP 1, F))
— ( ) / dt / dt// @(O)|H(1)I( //)H(l)l( )eﬁH(O)P —7H(O)t|\:[j O)>

(n)/ dt’/ e (W AT () O ()P (0] w)

where we have used that | (¢, F)) = e’%Eémﬂ\IlgO)) = e~ # A9, Finally
collecting the three terms and recognizing the double nested commutator, we
arrive at

(To(t, F)|P|To(t, ]?)>(2)

— (];_l / t’/ dt"” \II(O)| |:PI( )H(l) I( )H(l)’l(t”)
+H(l)J(5/)16[(1),1(,5/)]31(0 _ H(1),1(t/)pz(t)g(l),f(t//)

AOT) P O)]0f)

1\2 t t/ . . .
= () [ [ [t ao) aoen] ey

This is Eq. (3.120) and can be turned in to Eq. (3.121) by using the heaviside
step function.

3.10 Using the fact that the perturbation operator in the Schrdodinger picture OA/J; -

is independent of time and that [ei%ﬁ(o)t,f[(o)] = 0, we show below that the
time derivative of an operator in the Interaction picture is the commutator of the
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operator with the Hamiltonian, i.e.

d AT T d 2O ~F 2 f(0)
—05"(t) = (eﬁ tof e t)
dt 8 dt B
(Lm0 oF 3O, gaOrnF (4 g0
- %ﬁ(O)e%ﬁ(o)tégue—%ﬁw)t _ EG%H(O)tOg“Iﬁ[(O)e—%ﬁ@t
U Ar(0) AFL LHO AT 1Oy 2
=2 [ OO7 1 () — ex 1 VOT e iM fH“”}
= [AOOT (1) - OF wA®)]
L rAFI 7
Ry {OB '(t)’H(O)}

3.11 The equation of motion of the linear response function in the time domain, Eq.
(3.133) , reads

(P, OF1O)) = —s(a) (W[, OF 1) — (P (A, OF (1)

Using the inverse Fourier transform of the linear response function, Eq. (3.135),

(.05 = o [ T (P03 )™

2 )
and the definition of the Dirac Delta function as the inverse Fourier transform of
1, i.e. Eq. (3.136)
1 oo
o(t) = o [m e"tdw

the equation of motion can be rewritten according to

1 d S Ao w 1 ° w O)rH Aw (0)
e | (P05 ))we = e fdw (W, |[P, 05 1% ")
1 o ra 71 (0 Aw W

5 | A (P, 05 e

The order of differentiation and integration can be interchanged on the lLh.s.,
because they are with respect to different variables

oo d A oo A A
/ do ih g (<<P;og__,>>wewt):_/ e“tdw(|[P, 0% ]| w )

— 0 —oo

_ / T (B[O, 0% 1))t
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Subsequently, we remove the integration over the frequencies which occurs on
both sides of the equality and obtain

s ((P505 D)we ) = = e (I[P, 05 1|0(") = (P [A®, 05 ]))we™"

or after differentation

i ((P;0% e (w)et = — et wP ([P, 0% 110) — ((P;[H©, 0% ]))we™!

Finally, elimination of the exponentials yields the equation of motion of the linear
response function in the frequency domain, Eq. (3.134),

fw ((P; 0% ) =(0|[P,0% 100y + (P [H®,04 1))

(V]
—_
[\

If one chooses the state-transfer operators to be, Eq. (3.165),

{hn} = {“hns b} = {100y (@], (9 (w0}

the overlap matrix and electronic Hessian matrix become diagonal, i.e. the off-
diagonal blocks of the overlap matrix ¢S and %S, and the electronic Hessian
matrix, “/E and %E, vanish in this basis. For the off-diagonal blocks of the
overlap matrix, we have

T
a5y, = ()| (W) w) ol )| o)
= (@] {1y 1wy (] wl?)

= (U@ @O e ) — o e ) (w0 e (el )
=0

and
T
e 0 0 0 0 0 0
tes,; = (] | (16 1oy o)

0 0 0 0 0 0
= (@) [1w) w10y (@] 1wi”)

= (O[O w1y e ) — (o e ) (e[ (e )
=0

where we have used the orthonormality of the states, recalling that 4,7 # 0.
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For the electronic Hessian matrix, we have
Il .
a5, = (ol | (e 1)’ [0, o] |19
0 0 0 5 0 0 0 0) 1
= (wg”| [l ), (BN | - ) P EO) | )
0 0 0) £ 0 0 0 0 0 0 0 0) 1 0
= (o) @O O (1) — (w8 e ) (e O e ) (0O 7O )
0) 7 0 0 0 Y5
— (O[S @O e ) (@O ey 4 @ ) e O FO ) (e e )
=0
and
de (0) O 1Y [0 19O /g (0) (0)
By = (]| (1ww)) A0, ) ]| 1e?)
0 0 0 5 0 0 -
= (W {1y (O] - 1y w1 1w )
0 0 0) £ 0 0 0 0 0 0 0 0) 1 0
= (W[ P A O (w0 ey — (w1 e O (Wl [ (e O 1w )
0) 7 0 0 0 0 0 Y5
— (P EOE O (o [ ) w1y + w0y (e EO [ e )
=0
3.13 If one chooses the state-transfer operators as, Eq. (3.165),
{hn} = { s b} = {100y (@), () (D]}

the diagonal blocks of the overlap and electronic Hessian matrices are themself
diagonal. To show this we use the following identities

S = (U] [B o | 1967 = (O] [ o = D] [067) = (00 D 9

= (V0B 7)
S = (U] | 197 = (71 [ = T 1967) =~ B 947

= (0", R}, |0
B = (0] [0, [0, || 1067) = (@, [HO) ] 197

— (W RE, (A | 10)

By = (0| [0, [0, || 107 = (@) [0, | 0”)
N .~ 74 .
= (O [AO R |0

To derive these, we have used the fact that the deexcitation operators are the
hermitian conjugate of the excitation operators ¢h! = 9h,, as well as the killer
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condition dfzn|\P(()O)> = 0. The elements of the diagonal blocks of the overlap matrix
are

0 0 0 0
Sum = (T[T (@ D) (el = (w10 (OO (w [
= 5nm
and

0
g, = (WU @O (e @O Ty = — (@ e (e Oy (w V[ w )

- _6nm

The elements of the corresponding blocks in the electronic Hessian matrix are
Tra 0 0
“Enm = (00" (|00)w7]) (A9, 109) w7 1)
5 0 0
= (@] (1o w0 [2O, w0y w]) 1wy
0 0 7 0 0 0 0 0) A 0
= (W ) (@O O[O (0 [0 ) — (w8 e ) (@O [ (v O )
= Sum(EY — Ey”)
and
.
0 0
B =~ [AO, 1067 (@] (e 0]) v l)
0 0
—1 ([, )y (w1 o) o) |9 7)
5 3 0 0
= (@ HOEPY @O @) (P 10) + (@0 (e QOO (v v )
= Onm (EELO) - E(gO))
Analogously, for the property gradient vectors

TT(P) = (B[P, b |9) = (US| P Chy |0 ) = (w57 | P10y
ITT(P) = (WS |[P, 4 ho)[05”) = — (W5 |2h, POy = —(w | Plw”)
“TT (0% ) = (W |[h), 05 WSy = (W|[%hn, 0% 1) = (07 |9h, 0% |0

w O
= (0% v

Aw 0)1dit Aw 0 0)(re;  Aw 0 0)|Aw e} 0
T3(05.) = (U |[*h], 08 )1w”) = (W |k, 05 )1WG”) = —(WG” |05 hal ¥5”)
0)| Aw
(w05, v
3.14 First-order correction to the eigenvalues starting from Eq. (3.189):

EORO { EORD — (WUS(@ + fiwl© >s<1>) RO 4 p@SORD
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and projecting it against the zeroth-order left eigenvector
LOEDRO 4 LOEORD = 1, (;-Mglns(m n rm;O)S(l)) R
P LOSORD
From Eq. (3.187) and Eq. (3.188) we know

LOEVRO® =0
LOSHRO =0

which leads to
LOEORD = awVLOSORO 4 puOLOsORD
From Eq. (3.178) and Eq. (3.180) we know

L,.SR, = 0mn
L%O)E(O) - L%O)S(O)hw,(lo)

and we can write
Lg?)E(O)RS) - hw%l) + M%O)L;P)S(O)Rg)
hwr(zl) — L;O)E(O)RS) _ hwr(lo)LglO)S(O)Rg)
o) = (L;‘))E(O) _ m;‘))LS{))S(O)) R
hwlD =0

The second-order correction to the eigenvalues can be derived in a similar way
from Eq. (3.190):

E®RO + EVRY + EOR®
_ (mfﬁ>s<0> + @8 4 hwg)S(l)) R
+ (hwDS® + r@SM) RY + VS ORE
Using Eq. (3.175) we can write
E(Q)R%O) + E(”R;D
— (hwf)s(()) + 8@ 4 hw,(})S“)) R(©)

+ (mgws@ + hwg))s(l)) R
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Projecting against the zeroth-order left eigenvector
Lg?)E(Q)R%O) + LSLO)E(l)R?(’Ll)
—LO (hw;g)S(m + hw®8® 4 hwg)s(l)) R

+LO (mg)S(O) + hwff’)s(l)) R

L;O)E(Q)R;O) + L;‘))E(”Rﬁ})
= hwPLOSOR
+ hw{VLOSOR
L5L0)E(2)R$LO) + L%O)E(l)RS)
= hw® + O LOSORO 4+ pOLOSORMD

(0) M(O)L(O)S(Z)R%O) + hwfll)LSLO)S(l)RSP)

n n n

D 4 hwOLOsORM

n n

By rearranging we obtain

hw® = LO) (E(z) _ hw’(p)g@)) RO 1+ LO (E(l) _ hwﬁf’)s“)) R
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4.1 Taking the first partial derivative of ﬁ gives

9 8 (/= 2] 2
o o ()

Evaluating this derivative for ¥ = Ro gives

9 1 _ Ba—Ro.a
Ora | R—7 i | R— Ro |3

Taking now the second partial derivative of ﬁ gives

8 1 _ 0 Bs-rs
Oradrg | R—7| Ora|R—7[?
(Rs — B)t;iﬂﬁl”dﬂsaﬁ (afa(RB—TB)> | ~i?7|3
_2(3[3%){(1%’?)2};&(37*)25aﬁ|éi~|3
2%(2}2&%%)5&5@
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and finally

(92 1 - 3(R5—T5) (Ra—ra) —5 1
Oradrs | R — 7| |R—7)p PIR-7p

Evaluating this derivative for = Ro gives

<a2 L ) _3(Rs—Rop)(Ra—Roo) , 1
7F=Ro

9radrs | R — 7| |R— Ro |° SR Ro PP

Expanding the definition of the electric dipole moment, Eq. (4.5),

a(Ro) = / (ra — Ro.a) p(F) dF

77

as

Ma(éO) = [ra p(F) dr — [Ro,a p(F) dr

= /ra p(7) dF — Ro,aq

one can see that only for a neutral molecule, ¢ = 0, the dipole moment will be
independent of the origin Rp.

Similarly starting from the definition of the traceless quadrupole moment tensor,
Eq. (4.8),

= 1

Ouilfio) = 5 [ [3ra = Row) (3~ Roys) = bus (7~ Fo)?] p(r) a7

which can be rewritten as

. 1 N .
O.5(Ro) = 3 /ﬂ [3rarg —0ap T 2] p(7) drF

1 _,
- 5/ {37’QRO,5 + 3Ro)a7‘5 — 2§a6 (F Ro) p(f') dr

1 = "
+5 [ [BRoaRos — 8us 5] o) dr

I
or

—

.3 - 3 - L
Oap(Ro) = ©as(0) = SHa(O)Ro,s — 5 Ro.ans(0) —daslo - A(O)

1 .
~bap RS q

3
—Ro.oR —
+2 0,adt0,8 q B

one can see the quadrupole moment tensor is only independent of the origin Ro
for a neutral, ¢ = 0, and unpolar, i = 0, molecule.
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4.3 The Taylor expansion of the electric potential, Eq. (4.15), is
5 99 (7)
¢€(7:') — q/)f(Ro) + Z (ra — Ro.) O |f‘:1—éo
0°6° (7)
—Ro.) — R o
+ 5 Z 0,a) (rs — Ro,p) el | 7= Fo
where the term depending on the second order electric moment reads
9¢* (7“)
- — R « — R « oc R
Z 0,a) (rs — Ro,p) iy 7o = ZQﬂ s(Ro)

Adding a constant C' to the diagonal elements Q),g gives

(
= 3 [@er(Fo)euatio) + @y (R0, (Fo) + Quu(Ro ). (o)
+ 50 [Euu(Bo) + £y (o) + £..(Fo)|
Collecting the terms including the constant C' we obtain
5 [Que(Bo)enn(Fo) + Quy(Ro)Eyy (Ro) + Qs (Ro)e.. (o)
+ %C {SM(EO) +Eyy(Ro) + gzz(éO)}

_ % Qe (B0)Ers (Ro) + Quy(Ro)Ey (Ro) + Qus(Fo)- (Ro)]

1 52 ¢£ 52 ¢£ 52 ¢5
3¢ {8%895 * Oydy * 826,2]

= % {wa(R'O)Exx(RO) + ny(R'O)gyy(éo) —+ QZZ(RO)gzz(RO)]

[ o o 0?

£
* Ox0x * Oyoy + 3282] ¢

DN | =
Q

1 . . . . . .
= 5 | Qe Fo)Era(Fo) + Quy(R0)E,y (Ro) + Qua(Ro)Eoc (o) |
1 -
+ -CV?¢f
2
Using now Laplace’s equation

V2% (Ro) =0

33

20) + C)eua(Bo) + (Quy(Ro) + C)Eyy(Ro) + (Q--(Ro) + C)E..(Ro)]
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we finally obtain for this term
1 —' _ . - . _
= 5 [wa (RO)ECC.’E (RO) + ny(RO)gyy (RO) + sz (RO)gzz (RO):|
1 -, o
= 5 Z [Qaa(RO)gaa(RO)

This terms is thus unchanged by adding a constant C' to the diagonal elements
of the second electric moment tensor Q, Eq. (4.6).

In Eq. (4.18), the traceless quadrupole moment tensor, Eq. (4.8), is used instead
of the second-order electric moment, Eq. (4.6),

Qap(Ro) = / (ra — Ro,a)(rs — Ro.p)p()di*

in the Taylor expansion of the electric potential. But the quadrupole moment
tensor can be rewritten as

Oas(Ro) = %/ [3(ra — Ro.0)(r5 — Ro.g) — bap(F — éo)z} p(F)dF
= g/( — Ro,a)(rg — Ro,p)p(F)dr — = /5aﬁ Ro)2p(P)di
B 26’2 - %/fsaﬁ(??* Ro)*p(F)d7
2 “*BZQW

which implies that it is essentially the second electric moment tensor with a
constant added to the diagonal elements, which leaves the electric potential
unchanged, as shown in Exercise 4.3.

Verification of Eq. (4.62) with an electric field (&;, &,,0) and the dipole moment
only expanded in the polarizability. The line integral

(€2,€4,0)
S LT s | de
( 3

0,0,0)

is independent of the path and we can therefore integrate in two steps: one from
(0,0,0) to (&;,0,0) and the second from (&;,0,0) to (&;,E,,0)

(E2,E4,0)
Z/ fo + Y aapEly | dE,
B

0,0,0)

(Ex,Ey,0)

(€2,0,0)
:Z/ ua+2aa5€ﬂ d&! —l—Z/ ,ua—l—ZaagS/g &’
@ ( B

0,0,0) (€2,0,0)
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or
(€2,0,0) (Ex,E4,0)
= / (po + Qzr&l) dEL + / (1y + oo + ayyé’;) d€,
(0,0,0) (£2,0,0)

Integration gives then

(€x,Ey,0)

>/ ot 3" sl | e
« (07070) B

1 2 1 2

= gy + 5049:1:51 + pyEy + 0y EE + §ayy€y

1 1
- Z el + (Qzy&&y + yaaly) + ozm52 + ayy€2

a=x,y
Finally using
Qpy = Qg

one obtains

(Swvgy’o)
Z/( po+ > aplh | AL = D | Habat Y %aaﬁsa&g
a B

0.0.0) oy sy

4.6 In Eq. (4.14) the electric field gradient tensor is defined as

P
" OR «ORg
Inserting the definition of the electrostatic potentlal Eq. (4.1),

Ch Y b
47T60 |R_F|

Eap(R) =

one obtains

. 1 .
Eap(R) =  drey OR 3R/3 < ‘R_ﬂ )

__L/ (—')872;
T dwe FpraRaaRg |ﬁ-f’|

Using the result from Exercise 4.1, but differentiating now with respect to R and
not 7, we can write:

e

EEE i

bap__o(Ra—1a) (R m)] .
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5.1

In the exercise it was given that
$1015@- a5 =0

for a bounding surface S’ which completely encloses the current distribution (7).
Using the divergence theorem one can rewrite it as

@005 = [ 9 [r@i] ar -

where dF is the volume element inside of S’. Using the general rule of vector
calculus

V- [g(a()] = a() - V() + g(7V - a(7)

we obtain for the r.h.s.
/ v [1@in] ar = / (5691 + 19 - 5] d =0

And since

for a steady current, we get the result
$ 10970+ a5' = [ [95@)] -G =0

which is what we wanted to show.
From Eq. (5.5) we have

[ [F109] - itmrar=o
Choosing the arbitrary function as

f(F) =ra
/F [Vra] - j(R)dr =0

/Fja(F)dF: 0

we obtain

and thus

If we choose instead

f(7) = (ra — Rgo,a)(rs — Rgo.)
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we get
ﬁ [6 {(ra — Rgo.0)(rs — Rco,p)})| - j(P)dF = 0

[ Ea(rs — Roo.s) + Es(ra — Roo.a)] - J(F)dF =0

where €, and €z are unit vectors in o or S direction. This yields then the
expression

[[(Tﬁ — R0.8)ja(T) + (ra — RGo,a)js (7)) dF =0

which is what we wanted to show.
5.3 The definition of the magnetic dipole moment, Eq. (5.10), can be expanded as

1 , .
Tﬁzi/(F—Rco)Xj(fde
R O R e
=[x iwar - [ oo x jrar
1, = 1g 2o
— ;5 [ dwar - Reo x [ fwar
Using
/ja(F)dF=O
we get

1 -
m=— / 7 x j(7)dr
2 Jm
which shows that the magnetic dipole moment is independent of the gauge origin

Rgo.
5.4 The first-order molecular Hamiltonian reads for magnetic perturbations

N
A =3 A0 ()

with
MO0 = S AF) - p, &3.[6”1‘3}
(i) = = &) i+ s (7
For the vector potential of a homogenous magnetic induction, Eq. (5.19),
N 1~ .
AB(ry) = 5B % (7i — Reo)

the operator becomes
e 1
Me 2

A (i) =
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Using then the general rule of calculus
(AxB)-C=(BxC)-A

and the fact that

we get
(0 = = 7 - ] 9e€ 5§
h (Z) e (’I”Z RGO) X pi| - B+ o i
If we define
e L = T e =
5 [(Tz — Rgo) x pz} B=-> B, (Rco)
where
o5 (Reo) = —5— | (7 = Roo) x b
« 2me a

and similarly

where

€

we can write the first-order perturbation Hamiltonian operator as
N N
HO =S RO+, = =33 Ba 65 + 65 (Bao)| = =3 Ba [0:F + OlF (Feo)
[ A a a
where
N
05 =368
N
O'B(Rao) = > 68 (Reo)

which is what we wanted to show.

5.5 The second-order molecular Hamiltonian reads for magnetic perturbations

N
) =37 ()

with

Py = & R
h (Z)Z%A (7%)
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Inserting the vector potential, Eq. (5.19), this reads

If we use the relation
(Ax B)Y(CxD)=A(D-BI;— DB")C
the second-order operator becomes

L2 (i) =

B’ [( — Reo) - (7; — Rgo) I — (7; — Rgo)(7; RGO)T} B

8me

apB
= Za{”fﬁ Ro)BaBg

and the second order perturbation Hamiltonian is

N N

2
A =3 h® ) =Y o — A7)
me

% i

8me i af

= Zo (Rco)BaBs
where

£ (Reo) Z opas(Ra

N
62

- 8me

This is what we wanted to show.
5.6 Inserting the vector potential from Eq. (5.2)

= /R—F)ﬂdq

—

B/(R) =V x

into Eq. (5.19)

A (R)

39

8me Z [ — Rgo)?- Oap — (Fia — ﬁGo@)(Fi,ﬁ - EGO,B)} Bgs

ZZB Bs ((ri,a — Rco,0)%0ap — (Ti,a — RGo,a)(ris — Rco,p))

Z ((ri,a — Rco,0)*0as — (Tia — Rgo,a)(rig — Rco,s))
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we get

By =V [0 et [ I g
EN VRN Y A R

If we look now at the x-component, we obtain

Bg(é):@[ G x 20

= dr
i =

x

_@/ 0 JZ(F) _ 0 ]y(F)
47 F_aRy|E_ﬂ OR. |R — 7

dr

Ho ) 0 1 . 0 1
- - ) — T —/—/——=—
471'/,:_] maRy |R — 7 jymaRZ IR — 7]

w0 [ @) (R
-5 [ e R‘HJ ‘

—

Ho (Ry —1y) . (R.—72) . _,
=—— ~———2 5 (F) — ~—=——%j,(F)| dF
e B YT (™) i Jy (7)

Ho (ﬁ—f‘) z =
= —— — X (7 dr
i | 1F J(7) ]

and analogously for the other components. Using this the permanent molecular
magnetic induction can be written as

dm R —

Ko (R—7) x () .
= - 7"_,—d7"

ym Fp(*) R

5.7 The first-order molecular Hamiltonian reads again
N
o - Z A (3)
i
WD) = A7) F o 5 [ < A
R (1) -~ A7) - pi + o 3; {V X A(n)}

but now the vector potential is the potential of a nuclear magnetic dipole

Z’K(Fi):@me (
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For the first term of AV (i) we get

~ r; —RK

€ >\ 5 € [ Ho - (7‘1 ) 2
— A7) Py = — | X et |
Me me | 4m |7y — Ry |3

7 — R
¢ Mo (- e) i
me 4T | |7 — Rk |?

e o li(Rrk) K
Me 4T |7 — Ry |3

For the second term of h(Y) (i) we get

« o 2 A 5 (ﬂ - EK) ]
gee al |:v X A('Fl):| — gee *#7/ V % ,UO - K -
2me 2me 47 |7y — Ry |3

Then we use the general rule of vector calculus
V x (/Txé) :E(ﬁ-é) —é(ﬁ-ﬁ)Jr(éﬁ)A'— (/Tﬁ)é

However, in our case the second and the third terms on the right hand side are
equal to zero, as the gradient of the nuclear magnetic moment with respect to
electronic coordinates is zero. We thus get

ge€ 2,
Si
2me

N

|7 — Rl

E

ES - (Fi*R'K)
[ Aw)] =y Y
e Ty — g

Let us look at the two terms in the curly bracket individually. Using the results
of exercise 4.1, i.e.
(A o

|7 — R |7 — Rl
we get for the first term
. (ﬁ - ﬁK) - 1
- K _K <V2 _ )

|’I“i —RK|3

= X 4n6 (7, — Rg)
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The second term we can rewrite as

(mKﬁ)WZ@mK ) )(ji{%)

|7 — R

If we now look at the 8 component, we obtain

) 7 — R 8 (risg—R
<amK ) . :%:mfan,a(q’ﬁ i
B

“Oria ) | |7 — Rl? ri — Rc[?
0 1
K
=>» my (rig—Rxp) — ———=——
Ea o (Tip 5) Fron 7o~ B
K
m 0
- (rip — Rk,p)

= 7 — Rxl? Oria

The second term in the last expression is only different from zero when o = 3,
and we thus get

iR -
( mk 9 ) ( K) = me (ri,3 — Rk p) (_3)M
« ﬁ -

“Oria ) | 17— Rl 7~ Rl
K
s
7 — Rk ?
m (R Bi) (s — Rics)
7 — Bl 7~ Bl

and analogously for the other components. For the whole vector we obtain then

N (TT;—EK) > K T?LK~ (7_’;—]3;}() (ﬁ—ﬁ[{)
(va) VA J
|7 — Ri|> |7 — Ri|3 |75 — Rk |®

However, this derivation is not valid, if |; — Rx| approaches zero, and we have to

take care of this special case. For 7; = Rg only the total symmetric component
of the operator can contribute and we have therefore to calculate the isotropic

part of the operator, i.e.
(7 - )
7i — R [?
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. " = (7—R .
For that we have to realize that m -V% can be considered as the product
+ —IVK
ok N S :
of the vector m with the tensor V(l;TK)‘?,. Using again that
+ —IUK

(i) o

|7 — Rkl |7 — Rkl

we have to calculate the isotropic component of it, i.e.

T
1 l/= = S - = 1
—~Traced V [ V——— =2 (VVe +V,¥, + V.V.) .
|7i — Ri| 3 |75 — Ric|
__lge 1
3 |Fi — R
Finally using again that V2 = 11% = —4#5(7*}—[%}) we obtain finally for 7; = Ry

T — UK

the additional contribution

1

> = ngélmi(Fi — Rg)

<(mK.ﬁ) @

7~ Rl

Collecting now all contributions to the second term of A(Y) (i) we obtain

2‘(7;:6 . W x fl’(ﬁ)} = 29;16@ Z—;s:} : {mmmi(ﬁ — Ri) - %mK {4m§(rz - R’K)]}
gee po [ (R (7= B)
2me AT 7 — Rl 17 — B
= 9;@:;0 §»Z 'mKé(Fi _ EK)
poe e [ (A (R Fe)

2m, 47 7 — R’ 7 — R
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The first-order perturbation Hamiltonian becomes then finally

N
O = Z A ()

N oo - A ge€ = 2 2
= ; EA(H) pi + o Si - {V X A(rz)}
== > (O + O3 ) mis

(e
where
N A
Alm* € Ho li,o(RK)
o —— =y .
Me 47 p |7’2 — RK|

N > . (= _pB o
O5h, =~ 32 Ho 3 (“ RK) (ria = Rica)
e 2me dm I7i — R [? |7 — Rk |3

5.8 The second-order molecular Hamiltonian is given as
N
o® — Z A3 (4)

where

~ 62

B ) = 5o A7)

2me

and

-

5 . e o 1s L = Lo - 7 — Ry
A(T’Z) = AB(T‘Z') + EK:AK(TZ-) = 58 X (TZ- — RGO) + - EMK X (T_;_R,Kg

Let us therefore look first at /Y(Fi)Q, where however, the summation over the
nuclei in the second term was changed from K to L

A2 =

A7) + 30 AR ()
K

A7) + 37 AL
L
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or
- 2 - R 7 — R
P S | N S e
Al _[ B (7 RGO)] - ; " |7 — Ry |3 ; " |7 — Ry |3
15 — Mo _, (rz_ﬁK)
e {B * (= RGO)} . [zl(: %mK * |7 — Ry |3

The first of the three terms was discussed in Exercise 5.5 and we found that

—

- 2

[B G RGO)} = BaBgs [(ri = Rco)*0ap — (ria — Rao.a)(ris — Rao )]
af

Using the same procedure as in Exercise 5.5, we get for the second term

st G [ (5270

A =R || R Rl

S5 mEmk (Fl B EL) . (Fl - ﬁK) 5. (ria = Rra) (rig — Ri.p)

af KL 75— Rpl® |7 — RxP |7 — Rel® |7 — Rgf?

which leads to the first contribution to the second contribution to the second-order
perturbation Hamiltonian

H® = Z Z O;”ﬁKmmemé

KL ap
where
Kt _ € (uo)2ZN: (Fi_ﬁ”L> (F"_EK)(; (ﬁ*‘)‘_RL"‘) (ﬁ*ﬂ_RKﬂ)
_ Ho Sty AP NS 4 SR Sl el
* Zme \dm/ S| — Re® |7 — Ri? 75— Rel* |7 — Ri|?
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one gets
m—R
557 o] |32 2 S
e ] e -

%mszsg (7 — fico) - wéag ~ (ria — Ra0.0) w

which leads to the third contribution to the second-order perturbation Hamilto-

nian
H(Z)_ZZOWL B K
KL afp
where
2 N F'—.ﬁ[{
AmX B/ 3 €~ Ho S B (Z (ri,p — Ri)
a RGO = 0 (Ti_RGO) '7—»504 - Ti,a_RGO,a e ——
(o) = g iz 2 o AT

5.9 We are dealing with operators that are defined as
N
é; = Z i,
3
N
05 = Zpi,a
3

=
Q

N
0)=-e¢ Z(h‘,a — Rco,a)

N
Ou(ﬁK) — € Z (ri,a - RK7Q)

dmeo |7 — Ri|?

First we want to show that the two commutators [ﬁ(ﬁgo),(ér)T] and

[6“(1?}), ((j'T)T} are zero. Since none of the operators contain a derivative with

respect to electronic coordinates, it its trivial to see that the commute.
Using the vector triple product rule

Ex(§x6>:§(ﬁ-é)—(ﬁ-§)é
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we can write the commutator

The first and the last commutators are zero as discussed before and the second
commutator can be rewritten as

(02 (01 x 07) ,(0")] = 01(0a)" [07.(0")T] (65 G1) [07,(0")"]
Realizing that [5p , (5T)T} is in reality a matrix M of commutators with elements
Mas = [Og,ég} = —1hidap

we finally obtain
f% [52 X (51 X 5”) ,(5’")T} = —51 ® 52 + (52 51> 15
5.10 The elements of the two tensors are defined as

bas = — (U |08 (Rao) + O58 (Bao) | )

0 N = 0 0 N =g 0
(O |l (Rao) [0 () [0 (Rao) | )
EO _ 5O
0 n

(W |1y (Bo) [ W) (0 |1l (Ro) | W5
0 0
n#0 E(() : B Er(L )

and
A K —
oy = (W |01 B (Reo) | 0 ”)
0 A 0 0 A = 0
S (W 1092 [T D) (0 [k (Rao) | T
5O _ 50
n#0 0 n

.S (O |1 (Rao) [ 800w [ORF |w )
EO _ 50
n#0 0 n
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We add now an arbitrary displacement vector D to the gauge origin Reo. If the
sum of the dia- and paramagnetic terms are independent of the gauge origin, the
terms containing this change should cancel.

Let us start with the nuclear magnetic shielding tensor:

A K — —
ok, = (| 0m B (Rao + D) | w)”)
0 A 0 0 N = = 0
.S (w1022 1wV (P |l (Rao + D) |w”)
E(go) . E7(lo)

n#0
0 A = = 0 0 A 0
(U |k (Rao + D) 1)) (0 028 | 0§”)
> 20 50
n#0 0 n

where according to Eq. (5.21) and Eq. (3.65) the magnetic dipole moment
operator for a shifted gauge origin can be written as

N

iy (Beo + D) = —5 -3 (7 = Roo — D) x 7]

) «
K3

2Me

N
A =3 € RS
=g (Rao) + > (D X pi>a

~l /B € = S
— il (R (D OP)
ma( GO) + 2me % [e%

and according to Eq. (5.83) diamagnetic shielding operator becomes

2

N N =
T e T
o B(R D) = — (i—R —D)-i_,(sa
ap (Rco + D) Qme47rzi: 7 — Raco 7 R

N
BN (o Rap e — D) e s
2me An i, GO,« « |7:; — EK‘d

i

5 N 5> B
A - - 7 —R s —R
= 015 B(Rao) - 5 — 123 <D~|” £ b — Dol 8 Kﬁ)

2m. 4m 7 — R 7 — Re?

i
Inserting the last expressions for both operators in the equation for the elements
of the nuclear magnetic shielding tensor, we get

0)| Am=XB/ 5 0
oy = (W |01 B (Reo) | 0 )”)
0 A 0 0 A~ =g 0
S (W 1092 [T D) (W [l (Rao) | T ()
5O _ 50
n#0 0 n

2

n#0

(O |1 (Rao) [ 80w |ORF |w )
E(()O) . ET(LO)
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plus the following contributions

, 7
_ ¢ v © |Z 5 — Do "B~ Rics ) | g0y
2m. 47T |7«z RK\?’ |7“i—RK\3
0) | /A 0 0, (R A 0
o (IO W) (D O7) )
+
2me n#0 E(SO) - E7(LO)
0 (3.4 0 0) | A 0
o N I(Dx0v) ey |02 | w)
+
2me n£0 Eéo) ~EY

In order for the tensor to be independent of the gauge origin, the three last
terms, which we denote as Aafﬁ, must cancel. Using the off-diagonal hypervirial
theorem, Eq. (3.66), we obtain

62 _' T — RK
A K _ = (0) 6() - D, i, - B \I/(O)
Tap oM. 471_ |Z 7K|3 8 ‘Fz _ RK|3 | 0 >
0) A = Ar 0
* a2 <ﬂzé>|o%i|w5?>><w;°>\(z) x0") 1ug”)

_ e O (B Fr O\ /() | AOP [p©)
MZM [(Dx07) 1w |0R% v

Using Eq. (3.67) and the resolution of the identity, >, \\115?)><\115?)| =1, we get

2 _
i — Ry rig — Rip (0)
Aag = 7_,(5(1 —Da77_,, L4
A7 2m, 47r |Z < 7, — Rk A 7 — Ril3 ¥57)
€ 50 A0P (B o Ar O € 50 (5. A\ AHOP |0
+ 55w |OR% (on)ﬂwo )~ 5w (D < 07) OR%|wg)
or
2 _' R
Ao.é( — e (0) 6(1 — D, Ti,B HK’ﬁ \I/(O)
B 2me. 471' |Z K|3 A 7 — R |3 [o7)

i A Sr (0)
b |[0M,(on)ﬁ}|%>

OOP

The operator O%

is given by

Cme dr ~ |, — Ri|? me 41 |7 — Ry P

N & N - =
ogr = € Mo~ lalRie) _ e o <mRK xs)
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which results in
e u 7 — Ry rip — Ri
AcK — (0) i K s o _p BT IVKS v©
] 2me 47T |Z |_,Z _ RK|3 ap a |Fz — RK|3 | 0 >

e o, | 7 — R - -
2 g[S (BB Y (5060
2mezh47r< o | Z | 7 — Rg |3 pi 8
1 (03
Before we evaluate the commutator and corresponding ones for the magne-

tizability later on, it is useful to proof first the following general commutator
relation

(mza) (s | =nX(Gcn-aed)

7 7 8

0
o)

where the operator 5’, commutes with 7%;, i.e. [6ia,7i 8] =0 and c 1s a constant
vector. We don’t need to consider the case, where the two operators 7’z and 0, oj X p]
refer to different electrons, as the commutator is always zero then and we will
drop the electron index i during the proof of this commutator. In order to do
proof the commutator, it is best to distinguish between the two cases a = 8 and
«a # [ and to consider two particular components like xx and zy. Fora ===z
the commutator becomes then

(G x7) (6%5) | =6,Cy [Fp) +0.C: 7.5
Using that [f,,pg] = 1fi 0o one obtains
(G x7) L (5x5) | = (0,0, +0.C.)
For o = x and 8 = y the commutator becomes correspondingly
K@an@xﬁjz—@@VMM:—m@@

The same holds then for all the other components, which proofs the commutator
relation above.
Applying the commutator now to the case of the shielding tensor, gives for
Ack
B

e? 7 — R r R
Acky = LT s DT TS ) g(0)
TR |Z< Py L
2 7 — R s —R
¢ uo _ (0)|Z K 5a5 7Doé7"z,ﬁ HK,ﬁ ‘\II(()O)
2mezh47r |7° — RK\?’ |7 — Ry |?
=0

which is what we wanted to show.
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For Ehe magnetizability tensor we get correspondingly on displacing the gauge
origin Rgo by D
Sap = (0" | 085 (Reo + D) + 088 (Ro + D) |y
0 A1 /5 = 0 0 A1l (B = 0
S (@ |l (Rao + D) |03 (03" [1ily (Reo + D) | wG”)
0 0
= CORyR

(wg” |1y (Rao + D) |w3”) (w3 |l (Ro + D) 95”)
n#0 E(gO) - E'SLO)

2 N . A2
= Z |:(Fz — Rgo — D) dap — (Ti,a = Rgo,a — Da) (rip — Rgo,p — D,B)]

© S [(7 - Fioo) - B Dutris — oo

9

~ — e2 —
= O88(Rao) + o <D25a5 - DQDB) -

(&

8Me

_ € i [ﬁ . (Fl — ﬁgo> dap — (Ti,a — Rco,a) Dﬁ}

8me

Inserting this and the expression for !, (EGO + 13) from above in the expression
for the magnetizability tensor one obtains

Sap = —(0" | OFE (Rao) + OFE (Reo) | v(”)
S (W |l (Rao) | W W08 |y (Rao) | wG”)
0 0
i By - B

~ >3 ~ >3 0
oy (w” iy (Roo) | 03”) (0l |l (Rao) | 05”)
i By - B

2
e 0 = 0
— (0 (D05 — DaDy ) 95"

€

e2

+ i (o ZN: [(ﬁ - EGO) + D 6op — Do (155 — RGO,ﬁ)} o)

e2

+

(08 i D+ (7 = Roo) das = (o = Roo.a) Ds| | 9”)
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plus the following contributions

O (3. A O\ O (7 o Ap (0)
o AW I(Dx07) || (Dx0v) w)

Am E® _ g0

o)) (ﬁ X 5?)6 1w Oy (@O (ﬁ X 5p)a R

.
T 4m2 Z

0 0
€ n#£0 E(g - Eg )
o o (U ik (Reo) (W) (| (D 07) )
+
0 0)
2me o Eé ) _ Er(L

(@l ity (o) W) (D x O7) ()

e
+2mz

(0) (0)
¢ n#0 Ey” — En

([ (Dx O7) W)l il (o) | 96")

e
+2mz

0 0
) By — B
(R oA 0 0|l (7 0
o AU I(Dx 07) (e i (Reo) | w6)
+ 0 0
2me ED _ gD

The last nine terms, which we will denote A&, 3, must be zero in order for the mag-
netizability tensor to be independent of the gauge origin. Using the off-diagonal
hypervirial theorem we get for them

2
(& —
Aoy = =7 (| (D%ap — DaDs) | 04”)
(&

2 N
e N N -
+ R<\I’(()O) |Z [(’I"z — Rgo> . Déa,g — Da (’I"iﬁ - RGO,,B)} |\I/(()O)>
62 N
+ TWOI’SO) |Z [D : <7?z - RGO) 50:/3 - (Ti,a - RGO,a) D,ﬁ} |\II(()O)>

62 (0) — % = :'r (0)
- M;@ (Dx07) 1wy (Dx0) |uf)

2 oA o
+ by (w0 (D 07) 1wy |(Dx0r) [w”)

© ©O) 1l (B OGO [ (B x (0)
5 2 (0 1t o) 1417 [(Dx0) 1)
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plus the following contributions

e = Lo
+ oW <\1;(<)0) |m,l@(RGO)‘\IJ£lO)><\I/£lO) | (D <O ) |lI/E)O)>
n#0 «

¢ B :'r R —
S (Bx O7) RO i (Reo) | w()
n#0

_© O (B x o) [TOV GO |7l (B (0)
5o 2 (06 (Dx 07) W) 0 i (Reo) | 26”)

n#0
Using again Eq. (3.67) and the resolution of the identity, > |\I!510)> (\IISLO)| =1, we
get

2

Agas = =30 | (D% — DaDj ) | 93)
2 N
+ ;n (1> Kﬂ - ﬁGO) - D ap — Do (rip — RGO,ﬁ)} o)
¢ i
e N~ TR (5 (0)
+ 4me <\I/0 |Z {D . (Ti - Rgo) 6046 - (Ti,a - Rgo’a) Dg} |\I/0 >

which can be rewritten as

2
(& —
Aap = =7 — (o (D25a5 - DaDﬁ) e )
e
62 0) N N - — (0)
+ o ("> Kh - RGO) “Dédap — Do (rig — RGo,ﬁ)} | ¥o )

e2

N
+ (U3 [+ (i = Foo) bap = (ria = Rao.a) Dy 124")

4m,
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Now we can apply the general commutator relation,

(cZ) (Saxi) [-aX (@-cr-aed)
i o j i

B

again for all three commutators and obtain

2
e 0 = 0
Aoy = =5 (0" | (B%ap — DaDs) ")

2 N . .
+ ;n ( |Z [(ﬁ - RGO) D ap — Do (rip — RGO,B)} o)

e

2 N
+ 467771601’(()0) |Z [[j (77; — EGO) 6a6 — (ri,a — RGO7a)D,3:| |\IJ80)>

e2

+

0 = 0
(¥ (D05 — DaDs) | 2”)

2 N
- 467me<\1/((JO) |Z [(FZ - RGO) . Béab’ — D, (Tiﬁ — RGO,B)} |\IJ((JO)>

9 N
e _ . _
- R@I’SO) 1> [D : (7%‘ - RGO) bap = (ria — RGo,a) Dﬁ} wg”)
=0
which is, what we wanted to show.

5.11 We start from the intermediate result for the change in the shielding tensor due
to a change in the gauge origin from Exercise 5.10

2 _' i — R
AO’f — _ € (0) 604 _Dar%ﬁ _’K7ﬂ \I’(O)
$= 'Z e RK\B =g )
(w00 W) (| (D < 07) | 0y)
' 2me n#£0 E(go) — EY
0 =S 0 0)| A 0
o (W (Dx0v) [y |0gh )
+

(0) 0)
2me n#0 Ey” - Er(t



Solutions to Chapter 5 55

The change in the isotropic shielding constant becomes then

1 K
=3 A

e? o (0) Tio — RKa g©

- o (U
3me 4w |Z o)
0 A 0 0 A 0
Z@é)w%fzw%’w%)0§|@6>>
€ aBy n#0 E(()O) - E”(LO)

0 A 0 0 A 0
081wy (w028 [w )

(o
+ Z 0 0
= EY — EY

where €4+ is the Levi-Civita symbol as defined in Eq. (5.112). Using the definition
of the electric-field gradient operator O in Eq. (4.95) and the fact that equg = =
we obtain

Aok =— ZD v |08 ()| w)

3m c?

0 A 0 0 A 0
(w1028 1wy (w105 | wi”)
Eéo) _EgLO)

+

S eunba [ ¥

afy n#0
0 0 A 0
+Z< 108wy () [0QF [w )

pr! By B

e
6m.

which implies that the components of the gauge-origin dependence vector for the
shielding constant are given as

0 A 0 0 A 0
SIS Z<Wé>|og|w;>><w%’|0%|wg>>
l,ao — afy (0) (0)
Grme By n#0 EO —En
0 A 0 0 A 0
v |02 Wi (w05 | w )
Eéo)—Eéo)

+Z<

n#0
(0|08 (Ri) | 9"

3m c?
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For the magnetizability we obtained for the change in the tensor elements in
Exercise 5.10

2
[ —
Agas = =7 (0" | (D%0ap — DaDs ) | 91)

62

+ 47%01’(()0) Ii [(Fz - ﬁGO) + D 0ap — Do (rig — RGO,ﬁ)] o)

62

+ (w |i [ﬁ : (77; - ﬁco) S — (Ti,a = RGo,a) Dﬁ} o)
¢ i

4m

(| (ﬁ x 5p)a 1Oy w?| (ﬁ X 5?)5 1oy

oy
4m§ s Eéo) _ ET(LO)

— =

2 (W (Dx07) [Pl (DX 0v) [uf)

_4jngz

n#0

E(()O) B ET(IO)

(g 1l (Reo) [ w) (w1 | (D x OF) w”)

e
T om, 2 EO 50

o (U il (Bao) (W) (WP (D x O7) )
" om, g;o EO 50

o (DX ) WO i (Rao) | W)
" om, ;0 EO 50

o (D O7) O il (Foo) | 9)
T, 22 £ _ 50

The change in the isotropic magnetizability becomes then

e2

2 N
— e . . 5
Af = (w5219 + o— (v |3 (ri - RGO) 1wy D

(&

A 0 0 A 0
v 10r [ wy (e O |w i)

e? (
_ 67% Z‘;Da z’y:(saﬁ Z E(()O) ~ E'y(LO)

n#0

A A 0
v 105wy (w08 | w )

(
2 gD

Dg
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plus the following terms

)5l (B ©)y (O [ A (O
e (Ug " |, (Bgo) | Un ) (¥ |OF | W)
t Y Do eapy [ D K.

Bm, o= o = £EO _ O

0 A 0 0 ~ = 0
s (@105 UV D id (Rao) |0
O _ 50
n#0 0 n

Using the definition that the norm of the wavefunction is equal to the number

of electrons, (q/éo) | \Ifgo)> = N, and the definition of the electric dipole moment
operator in Eq. (4.30) one obtains

e® = e o057 o A
Ae=—"_p°N—- = (0O v §
3 -~ 3me< o |H(Rco)|¥y")

0) | A 0 0) 1 A 0
2 5o, [Sa, 3 0N (00
« «
Gmg af o n#0 E(()0)7E7(10)

0 A 0 0 A 0
v |05 ey (el |08 | w )
E(go)—E,(lo)

_Z<

n#0

)50 (B OINMOIRTIRI0
e (Ug " |, (Bgo) | Wn ) (Wn” | OF [ W)
T G 2 Da D | 2 0

Bm, = o = EO _ 50

A 0 N = 0
S (@ 10510 (W [l (Rao) [ 0)
O _ 50
n#£0 0 n

which implies that the components of the gauge-origin dependence vector for the
magnetizability are given as

A N = 0
(@108 WV il (Reo) | B8”)
Eéo) . ET(LO)

» e
Cf,a(RGO) = 3m. €apy Z
¢ By n£0
N = 0 A 0
(U |l (Reo) W) (i 105 1w )
2 20 50
n#0 0 n

(&

(U5 fia(Rao) | @)

3Mme
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0 A 0 0 A 0
cs.,— -2 55 Z<\vé>|0w%)><w%)|oz|wg>>
2,08 7 Gm2 af ot E(()O)_E(O)

v n n

0 A 0 0 A 0
v |05 1wy (e |08 [w )
Eéo)—EflO)

(
-2
n#0

62

Nb,
6me A

5.12 The change in the paramagnetic contribution to an element of the shielding tensor
was derived in Exercise 5.10 to be

0) | A 0 0 2 A 0
(w105 W) (@i | (D x O7) ()
AJK,para _ B

ap 2. = Eéo) - 7(?)

(" (D> 07) 1w (@i |0RE vy

e
+2mz

0 0
B D

Now we have to derive the corresponding change in the CTOCD-DZ diamagnetic

contribution, Eq. (5.115). Let us start by deriving the change in O30 ~P7,

Eq. (5.117), on changing the gauge origin Rco by D. According to the definition
of the electric dipole moment operator in Eq. (4.30), this becomes

Og%gCD_DZ(éGO + 5) = [ﬂg(RGO + 5) OA[O(Z + O[O(i ﬂg(RGO + 5)}

me
Lor. AOP | AOP -

= I [Mé(RGO) O%ia + OFK.a Ma(RGO)}
e

+

o [Ds OR% + ORL, 15|

The change in the CTOCD-DZ diamagnetic contribution, Eq. (5.115), becomes
then

0 A 0 0 A A 0
(02 |y | [Ds OLE, + O, Ds| |9

Aoyt = 4%% %:eﬁw >

0 0
T By — B

v || D5 O, + ORE, Ds| 1wy (wi? |0z | )

+Z<

0 0
CORFQ
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The displacement Ds is a constant and can therefore be moved to the transition
moments over OF

0) 1 A 0 0) 1 A 0

N Z<\1;é)|02Da\\If%)><\IJ%)|02fx|xpg)>
af T Y 0 0
2me s Iy E(())_E’I(L)

0 A 0 0 A 0
(@ 10%8 Wy (@ |Or Ds | w)
Eéo)_EELO)

2

n#0

Recognizing 27 s egngAf’/ Ds as the 8 component of the vector product OP x D
we can rewrite it as

(" (Dx 07) 1w |Og% | wy”)

AcfA —
af T 0 0
2me 720 E(g ) E7(l )

(w001 W) (D (D x 07) |0y”)

2

CORFQ

which cancels exactly the change in the paramagnetic contribution.
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6.1 We can proof this by looking at only one component, e.g. the z-component,
[J x (é x 6)} , which is
x

A (BxC)]

Evaluating the inner vector product gives then

x:Ay<§x6)z—Az(§xé)y

[Ax (BxC)| =4,(B.C, ~ B,Cy) = A. (B.C, — B,C)

T

which can be rewritten as
{,AT x (é x 5)L = B, (A4,C, + A.C.) — (A B, + A.B.)C,
Adding and subtracting then A, B,C, we get
[;T x (é x C*)L = B, (A,Cy + A, Cy + A.C.) — (AuBy + A, B, + A, B.) C,
which is the same as
[Ex (éxé)h —B,(A-C)—(A-B)C,
and thus the x-component of
A (Bx0)],=[B(4-0) - (4-5) ],
The same can be shown also for the other two components.
6.2 The second-order molecular Hamiltonian reads for magnetic perturbations

N
H® — Z h® (i)

with
2 (2) (s T
WD) = 5o A7)

The relevant vector potentials are given in (5.19) and (6.5)

A=A+ AB
where
A7 = _%rlfx (F — Rewr)
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The square of the vector potential becomes then
~ A~ 2 ~ 2 N ~
A= (A7) 4 (AB) 4247 A"
The second-order perturbation Hamiltonian for the induced contribution to the
rotational g tensor arises from the last term, which we can write as
. 2 - o 1= o
A2y = & [—%rlJ " R ] B (7 - R
=1 x (7= Rewm)| - | 5B % (7i = Eeo)
If we use again the relation
(Ax B)(CxD)=A(D-BIs—DB")C
the second-order operator becomes

~ . e . - o - =
D (0) = =537 Ba [(7i = Rour) - (7 = Ro0)das — (110 = Ronsa) (s — Raoys)| (I7J)
aff
which leads to the second-order perturbation Hamiltonian
N
@ — Z ﬁ(z)(i)

=08 (Roum, Rao) Ba(I™ J)g
apB
where

N
Z [(ﬁ — Rowr) - (7 — EGo)éaﬁ — (ri,a — Rom,a)(Tip — RGO,[&):|

%

Ofé(ﬁcmﬁco) = -

| o

~ R 2 T
6.3 Realizing that [C’ x O, (ﬁ(Ro) X Op) } is in reality a matrix of commutators

we will show that it is equal to 4 {ﬁ(ﬁo) -C Is—[i(Ro) ® C_"} for both a diago-
nal element and an off-diagonal element. Expanding therefore the zz-element we
have

Cx 0 (i) < 07)' | = [(€x0) . (itfto) x &) ]

= |Cy0% = C20, 1y (o) 0% — - (Fo) O}
= [0 iy (Fo)02] = [C, 0% - (Ro)OF|
— €20y, iy (Ro)OZ| + | €0y, iz (50) O}
But the components of the C are constants and any component of ﬁ(éo) com-

mutes with any component of O™ and we can therefore take them out of the

B
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commutator

~ ~ T
{6* x 0", (ji(Ro) x O) ] = Cyjiy(Ro) [01,02] = Cyi- (o) 07,01
~ Cojiy(Ro) |0}, 02] + Cufie(Ro) |0}, 03

Evaluating the commutators {OAQ OZ] = 1hdag leads to

2 T . .
{c % O, ([j(Ro) x OP) } = 1hCyjiy (Ro) + 1hC.fi. (Ro)
- m{ﬁ(ﬁo) C I3 - ji(Ro) ® 6}
For the zy-element we obtain then analogously
- A e o A \T - A I 2
CxO", [[i(Rp) x OP =[(Cx0") ,(i(Rop) x O?
Ox 0 (i) < ) | = (¢ ) (ittfio) ") |

= [€,01 - C.0;, . (Ro)O — e (Fo)O?|

ry

= €05 i (Ro)O%| — |€,0%. 1o (Ro) O
- [:05. i (Bo)02] + [C-0, fun(Bo)O?]
Jii=(Ro) [02,02] = Cyia(o) 07, 07
— C.fix(Fo) [0}, 07| + C.fiu(Fo) [0}, 07
= —thCyjia(Ro)

—

= {ji(Ro) - € I~ fi(fo) & C'}

Yy

This relation can then be used in the expression for the diamagnetic
contribution to the rotational g tensor

””Zg = (0) |Z { — Rowm) - (Rgo — Ronr)dap — (Fiw — Renra)(Rao.s — RCM,ﬁ)] |\I’(()O)>
—(wi| i

Re) - (Rao — Renr)oap — fa(Roar) (Reo.s — Rou B)} |‘I’(O)>
== \I/(0 { (Rco — Rowr) % 0" }

{itfew) < 07} |10

[e3

= ﬁwé” [{(Reo = Rer) x 07} La(Fon)] [9()

[
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Expanding the commutator it becomes

; Lo f(B 3 AN N 0
gy = = (W | {(Bao ~ Roa) x O} Ls(Rear) | ¥(”)
1

(O | Ls(Renr) {(EGO — Rewr) % OT} o)
’Lh @

Inserting the resolution of the identity, >, |\IJ£LO)><\I/$LO)| = 1, between the
operators we get

i 1 5 5 5 ro3 0
gias = — S (0 |{ (oo — Rou) x O} [WONWD | Ly(Renr) | 9()
n

1

— = > La(Bean) [N [{ (oo — Roar) x 07} |9()

The constant vector (EGO — éc M) can temporarily be taken out of the integrals
ia 1 53 D 0) | Ar 7 D 0
g = = > {(Bao — Rear) < (0§ |07 | W)} (W] Lo (Rear) | 94”)
n

1

Now the off-diagonal hypervirial relation, Eq. (3.66), can be applied leading to

1 {(Roo = Roar) x (@07 |9)} (W] L (Foar) | 2”)

Me EY _ g0

(0| Lo(Foan) [07) { (Rao — Rou) x (21107 |0y}

me £O _EO

n

Using Eq. (3.67) and moving the constant vector (Ego — Rear) back in the
integral completes the derivation

(" [{(Beo — Rear) x 07} |W) (W | Lys(Rear) | 95")
me <4 E(()O) _ E7(10)

dia 1

gJ,ozﬁ -

1 (U L (Bean) | ) (8 | { (oo — Bear) x O w(”)

Me oy Eéo) _ E,SO)

6.4 The second-order molecular Hamiltonian reads for magnetic perturbations

N
a® — Z A3 (4)
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with
e? x

W@ (i) = o —A%(7)

2me
The relevant vector potentials are given in Eqs. (5.55) and (6.5)
Fodv o qn
where
AU = —%I‘lfx (F— ECM)
e
jl'K: @rﬁK X 7ﬁ_RK
dm 7i — Ri|?

The square of the vector potential becomes then

A= (A7) 4 (A%) 4 2dv . an

The second-order perturbation Hamiltonian for the induced contribution to the
spin rotation tensor arises from the last term, which we can write as
o2

N . — — r —RK
W2 :—{fﬁfljx 7R } Ho gy 11T UK
)= o [T T % Fean)] - | S

If we use again the relation
(Ax BY(CxD)=A(D-BI;— DB")C

the second-order operator becomes

52y, 5 7 — Ri ri,3 — Rowmp >
h(z) t) = _% mf ’F; - RC]V[ : 7‘17—'5(1 — Ti,a — RCMa L >3 , (I_IJ)
== | ) e = E ;

which leads to the second-order perturbation Hamiltonian for the induced
contribution to the spin rotation tensor

N

@ — ZiL@) (i)
~ K — — _ =
= 0m Y (Rom, R) mE (T J)g

af
where
AmE T B 3 o L B 7 — Ri rig— Rip
0] ](RCM,RK):—i (T‘—RCM)-iﬂ(S 7(7‘1;7 — Rewm )’7#

ap Ar . i |T_';'—RK|3 af a 70|F¢—RK|3
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6.5 Similar to Exercise 6.3 we will show the commutator relation for both a diagonal
element and an off-diagonal element. Expanding therefore the zx-element we have

0 < . (D1 07)' | = [(64w) ) (Bx) ]
- [O;(RK)Og — OM(Rx)OP, D07 — Dzoﬂ
[05( )O DOT} [O;;( )O DOT}
— [02(Fx)05, D,OL] + [0%(Fx) 03, D-0}|

But the components of the D are constants and any component of 6“ (ﬁ K) com-

mutes with any component of O™ and we can therefore take them out of the
commutator

- - T
[5u<RK> <0, (D x 07) ] = 04(Fx)D, [02,07] - O4(fx)D. [02.0})

- O2(Fi)D, (05,01 + OL(Fx)D. [ 01,0}
Evaluating the commutators [037 OAE} = —1hd,p leads to

5 2 L o A\T - S

[O“(RK) x O, (D x O’“) ] — —hO¥ (R )D, — 1hO*(Rx)D
h(= 5 = _ .

- {D .OM(Rg) I — D ®O“(RK)}

1 T

For the xy-element we obtain then analogously

(04w < ) (D) |

[51L(EK) X 57’, (5 X 5T)T]

Yy

O} (R1)0%, D, 0]

1
©>
=
Z
(@)
a%
)
18]
Q
S
|

[ + [or(Ri)or, Dwég}
= Op(R)D. [02.07] ~ Op(Fx)D. [02.07]

— O"(Ry)D., {Ol’ O’”} + O¥(Ri) D, [OZ,OZ}

1
S
Q
<%
=]
X
)
8
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This relation can then be used in the expression for the diamagnetic
contribution to the spin rotation tensor

v (7 — Rx) (rig — Rx.8) | 4,0
oldia _ (g0 Ry — Row) - K Sup — (Rico — Ronga) 22— 25571 y(0
of <0\Z(K om) R P (Rk, CM,)|ﬁ_RK|3 (Vo)
47T60 \I/(O) [ = AL (T3 (0)
W [(Rx — Rew) - O*(R) ag—(RKQ—RCMa)Oﬁ(RK)}I% )

4dmeg 1, (0 = 3 = = % 0
= 7ﬁ<\118 )| |:{O”(RK) X Op} ,{(RK _RCM) x O }B:| |\IJ((J )>

[e3

_Amme 1, (0) = 5 3 (0)
= \IJ — r U
e w1 |OR0 (e~ Fioar) x O} | 947

Expanding the commutator it becomes

Kdia __4TMe 1 g = > = (0)
) — _ T N
ck o (U |05 { (B = Rear) x O }B| o

dmme v, _(0) 3 5 3 AOP |;(0)
v | { (Rx - B 0} oRh|w
ueh< [\(Fx = Kew) x 07 ¢ Okal¥o”)
Inserting the resolution of the identity, >, |\IJ$LO)><\II$LO)| = 1, between the

operators we get

i dmm _ . 2
cldio — e N0 08 10Oy (0O [{(Ri — Rear) x O7F |0
o5 PIRCAVRLE {(Fx = Ben) < 07} 19)

poe h
47Tme - ;T R
e’ 1 o {(c = Rea) x 07 w0208 i)

The constant vector (ﬁK — FZC M) can temporarily be taken out of the integrals

Kdia _ _4Tme 1 (0) (0) 5 3 ©) | A 1¢©
hie — (W v —~ v 0" |
Cas e 1 U 1ORE W) {(Fie = Rea) > (0010719},

47Tme

oe' o 2 { e = Floa) x (93710790 } (w2 |OFL, 19y)

Now the off-diagonal hypervirial relation, Eq. (3.66), can be applied leading to

(v |OR01i) { (B — Bear) x (@i |07 9) |

E(()O) . E7(10)

5 5 0| A 0 0) | A 0
ir o {Br = Row) x (07|07 )} (i |0RE | 0g)

Hoe EY — EY
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Using Eq. (3.67) and moving the constant vector (Ri—Re ) back in the integral
completes the derivation

(W |ORL W)W | { (R = Row) x O} [0()

; 47
K,dia
CaB 0=

poe 4 EY — EY
in (O (B = Bea) < 07} 1wyl |02 wi?)
Hoe — E(()O) g0

6.6 In order to derive an expression for H(®) we have to carry out the unitary
transformation of the perturbed Hamiltonian in Eq. (6.60), i.e.

IfI — o—\8 (ﬁ(o) n )\ﬁ/) NS

Expanding the exponentials and keeping terms up to first-order in A\ gives

H = (171AS+~~> (FI(OHAEI’) (1+MS’+~-)
= AO XA X [HO, 8] + -
= H®O +A(I§r’+z [FI(‘J),S‘D 4+

The effective first-order Hamiltonian, H(Y), is thus

HO = ' 4 [, 3]

In order to determine the form of the operator S one would have to solve the
equation

(W (ks R A 40 [, 5] | w0 ({72} R)) = 0
which becomes
({7 R) L |00 ({7 ) + (W (75} B | | A, 8] D ({73 R))
= (U ({7i}s B) | H' |00 ({73} B))
+o{ EQ R0 (73 1) | 5190 ({73} B) — (0 ({72} B)| S| w0 ({7 R)EL(R) |
=0
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7.1 Consider the vector potential of a linearly polarized electromagnetic wave
oscillating with angular frequency w

—

A(F, t) _ A’wez(ﬁf‘—wt) + A’w*e—z(E»F—wt)
The length of the wave vector k is

- w w
k| =n(w)= ==
Fl = ()2 ==

where we have used that in vacuum the refractive index is n,(w) = 1. In the
Lorenz gauge, the fourth Maxwell equation, Eq. (2.129), reads

- 162 A_‘(F t)
2 = s
V=A(T,t) — 2 oe 0

Inserting the expression for the vector potential into the fourth Maxwell equation
yields

1 92

v [A’wel(lg‘ﬂm) + ﬁ‘*’*e*’(’z'F*Wt)} T [A’wez(lé-rtwt) 4 ke Fi—wt)
0? o2 92 L B o
= <8’r‘2 + ﬁ + ar2> [Awel(k-r—wt) + Aw*e_l(k'T—wt):|
z Yy z
12 [ m o
= ka 2—|— 'Lk’ 2+ Zkz 2 ./Iwel(/;;"?‘—wt)_;'_ _ka 2+ _Zk, 2+ —Zk/‘z 2 A‘W*e—i(ﬁf—wt)
! v
- Mu‘fwez(ﬁfﬂ*’t) _ Mjw*e*z(l_{- F—wt)
02 62
. . ) ) )
= —|k? [A'wez(k.ftwt) n A’w*efz(kﬂ?fwt)} n % [A'wel(k-ﬂwt) +A’W*eﬂ(k-rtwt)}
—0 =, w? - . . w2 o 2 2 L
= JRAG + S A = (R 5 ) Ay = (5 45 ) A =0

showing that the vector potential is indeed a solution to the fourth Maxwell
equation.
7.2 The oscillator strength in the mixed representation is given by

21 0), >~ = 0
= =5 (W0 10T ) (2107 7)
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This can be rewritten according to

no = *g;h@éo)l() w0y (w007 v
21 j 2
= 2 (w0 gy (O (—OP) 1w

2150 A0 0) 1A, (0
= 5 (0007w (w0 |07y
where we have assumed real wavefunctions and used that the momentum operator
is purely imaginary. If we combine now the two formulations, we obtain a third
alternative expression for the mixed representation of the oscillator strength

n0 1 1 ;T 5 > Qr
7= 1 (10O 67 — w67 ) (w1 )

which will be useful in the subsequent derivation.
The dipole oscillator strength sum S(0) is given by

0 , )
S(0) =Y (B — B fis =D fi
n#0 n#0
where we can include n = 0 in the summation, as the term is anyway zero.
Inserting the expression for the oscillator strength gives

11

S(0) = 5 > (¢ 107wy w07 w ") — (w07 w ) w07 |w ) )

or in terms of the cartesian components

11

SO) =52 > (05w )0z ws”) - (w0 e ) w0 )

n a=x,y,z

Now we make use of the resolution of the identity

11 A s NI
S0) =52 > ((105021w”) - (v (050 |w ("))
a=x,y,z
11 0T Ar A 0
=30 > (wlon oneg”)
a=x,Y,z

Evaluating the commutator according to
(|10, OF)|¥5”) = hNbas

gives the Thomas-Reiche-Kuhn sum rule
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7.3 The positive even dipole oscillator strength sums can be obtained as derivatives
of the frequency-dependent polarizability as

! P 3 d * 2, 2
Sop(2k) = (=1)" e2h2Ww1LH;o (w dw) hewaap(—w;w)

for k =0,1,2,---. The frequency-dependent polarizability reads

l

h2€2 n0,a
pp(—wyw) = E 5 i
Me n;éO( %)_Eé ))2—h2w2

From this alternative expression for the dipole oscillator strength sum, we will
derive the Thomas-Reiche-Kuhn sum rule, i.e. S(0) = N. For k = 0 the general
expression becomes

Me ..
Séﬂ(O) =53 wh_}n;o h?w2 s (—w; w)
1
N ) pp—
w—00 (E)(LO) _ Eéo))Q _ R202

n#0

1
S
- 2
w—00 oy E® 7E(<]0) 1
hw

= Z f’fL0,0&ﬁ

n#0

Averaging of the diagonal elements of the oscillator strengths gives then

S(O):é Z Séca(o):% Z ZfrlLO,aa:Z§ Z f?lz(),oza:ZfrlLO

a=z,y,z a=z,y,2 n#£0 n#0  a=x,y,z n#0

For the S!(2) sum we consider now k = 1 in the general expression

2
Sflﬂ(Z) _ M P lim (w?’;i) h2w2 s (—w;w)

e2h? 2 w—oo

First, we take the derivative

d d 2h? 0.0
[P aap(—wiw)] = — | RS Y © ! © ’
w dw Mme < (Ey) — Ey))? — h2w?

e2h? d 1
= Z fsz,oc,@

2

m dw 0 0

e n£0 <E§L)h—E((])> 1
W
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which gives
d

- [52w2aa/3(—w; w)]

-2
242 (0) 0\ 2 (0) 0\ 2
_ e‘h Zf,lloﬂﬁ _ (En h;)EO ) 1 (En ;EO ) (_2w—3)

€ n#0

2
0 0
2 5 gy )
_mewg n0,a

9 2
n;&o E(O)_E(O)
(=) ]
W

Inserting this into the expression for Sgﬁ (2) yields

me K2 2¢e? 2 1
$00(2) = i g gy 2w (B0~ 5 i

2
w—00 2
BB\
hw

2
" Flos (B0 - E)

n#0

Finally, we take the average of the diagonal elements on both sides of the equality

Z S(lloz(2):Z( (0) Z f7l10aﬁ

a=z,Yy,z n#0 Q=I,Y,z
-3 (0 - E7) g
n#0

which is identical to the definition in Eq. (7.79) for k = 2.
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8.1 We remember that we only need to consider functions of the type:

0,0
9021 ({Qa}) = ,=1(Q) [] 90 =0(Qu)
a#b
The only non-zero matrix elements between two harmonic oscillator functions
Yy, Uy and Q, to power of up to three, when v, and v;, are equal or differ by 1
are:

h
o+ 1
2wa(v’+ )

h
<19UQ|Q3|19’UG,> = ;(va + %)

a

<’l97)a |Qa|19va+1> =

2

(90, |QEID,.2) =3 | 5 (v + 1)

We see therefore that ( (0.0 ({Q.}) Q. QdQe|®(O 0) ({Q.})) is only non-zero

Vp= 1
when either all the indexes b, ¢, d, e are the same, or when b is equal to one of

¢,d,e and the other two are the same but different from b. Inserting the above
expressions we get

fZche (O ({Qu}) 1QeQuQc 017 ({Qu}))

cde

1 1
= éKbbb<19vb:1‘Qi|19vb:0> + 5 ZKbCC<ﬁvb:1|Qb|ﬂvb:0><Q9”c
c#b

= ;Kbbb ( ) \/72 beeo-
\/72 Kice

8.2 In order to derive the expression for the first order correction, we need to calculate
both integrals in equation (8.43) to the appropriate order. In the first integral we
have

020101020V = (0291Q.100) + (012 ]Q.10Y)) = 2(0{"Y Q.04

Qz10o,)

remembering that the zeroth-order term <@U:0|Qa‘@1}:0> = (Yy,|Qu|Vs,) van-
ishes. Inserting the expression for the first-order correction in equation (8.42) we
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have:

(0,0) (0, 1) (0,0) (0,0) h Kpee
20,20 |Qal0,2 Zz@ 01Qa[0,%) @Z

1 h Kbcc
- _Z %:2§ab<'l9va:0‘Qa|ﬁva:1> ﬁ Ec: We

1 h h Kacc N h Kacc
"V a2 e T T

For the second integral we have:

(©291QuQb02Y)) = 64 (90, |Q2[9,) = but

h
2w,

Inserting this in (8.43) we obtain the wanted expression for the vibrational
correction:

h 1 [Oa K h 1 (0%
ZPVC _h L af acc w - aB
Aagy 4za:wg<8Qa>onzc:<wc>+4§a:wa<an )Q:O
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9.1

In Mgller-Plesset perturbation theory the total field-free Hamiltonian is parti-
tioned as:
A0 Z fy v

where the fluctuation potential, V, is treated as perturbation. The unperturbed
wavefunctions are the eigenfunctions of the Fock operator, F, which we know
to be Slater determinants formed from the Hartree-Fock molecular orbitals.
The Slater determinant with the lowest energy is the SCF wavefunction. The
zeroth- and first-order energies can thus be expressed using Rayleigh-Schrodinger
perturbation theory according to Eq. (3.14) and Eq. (3.29) as

The sum of the zero- and first-order energies is:
EMPO + EMPl — <(I)gCF|Fv+ V|(I)3'CF> — <(I)3'CF|]:I(O)|(I)§CF> — ESCF

which is the Hartree-Fock energy as it is defined as the expectation value of the
SCF wavefunction over the total Hamiltonian.

9.2 To determine which determinants can contribute to the first order Mgller-Plesset

wavefunction, we need to consider the transition element
(@n|V|25CF)

which is the only term in (9.66) that can be zero. Since

- Nfe . ~HF /-

V=> gi,j) =Y 0" (i)

i<y i

is a two electron operator, the transition element must be zero by the Slater-
Condon rules if |®,,) differs from |®5¢F) in more than two spin-orbitals. That
single excited determinants cannot contribute, can be shown most easily by noting

that
Vo0 f

An element with a singly excited determinant is then
(@f|VI@5T) = (2| HO|25T) — (f|F|25T)

Both of the elements on the right can be seen to be zero by using the Brillouin
theorem, Eq. (9.61), that is they both evaluate to (1hg|f|t;) = 0. Thus only
double excited determinants can contribute to the MP first order correction to
the wavefunction.
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9.3 We have the coupled cluster ” A”-state:
(@3] = (@FT|(1+ A)eT

where the A operator is defined as a linear combination of all de-excitation
operators as in Eq. (9.35) - Eq. (9.38). We use here the general form:

A=,
Explicitly inserting this in the asymmetric expectation value, Eq. (9.95), gives
BN = (@51 + Ae T HOT 25T
— <(I)§CF|€7TH(O)6T|(I)§CF> + Z /\i“ <‘I’gCF|dhiH€7TH(O)€T|(I)gCF>
i#

The first term on the right can easily be identified as the coupled cluster energy.
Remembering that the coupled cluster vector function, Eq. (9.81), is defined as

e, = <q)gCF‘dhiHe—Tf{(O)|q)gC>

The asymmetric expectation value reduces to

CC,A _ CC § _rcCccC
EO = EO —+ )\i“ 61'“ = LO
i

which is, what we wanted to show.
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10.1 Since the operator O is a sum of one-electron operators 6, the Slater-Condon rules
in Eq. (9.58) lead directly to

(BFFI0I1®F) = (Wal6leb:)

Similarly the matrix elements over the Hartree-Fock Hamiltonian, Eq. (9.15),
gives a sum over one electron integrals of the Fock operator, which using the
expression for the orbital energy, Eq. (9.17), are seen to be

N
<¢gCF|F|¢gCF> = Z %lf\wg 267
J

(@00 =S¢ + e
J#i
And so we obtain
(B F|®¢) — (T |F|0fT) = €0 — €

10.2 We can show that a matrix is the inverse of another matrix by showing that their
product gives a unit matrix. To show Eq. (10.14) we thus evaluate:

U Vv (U-VvzZ'w)™ ~U WV (Z-WU'V) ')\ _(A B
0 ) (& 5)

W Z)\-z'W(U-VZ'W)"' (Z-wWu-v)™ C D

where

-1 -1

A=U((U-VZ'W) -VZ'W((U-VZ'W)

—(U-VZ'W) (U-VZ'W) ' =1
B=-UU 'V(Z-WU V) ' +V(Z-WU V) ' =0

—1 1

C=W((U-VZ'W) —-ZZ'W (U-VZ'W) =0

D--WU 'V(Z-WU V) ' +Z(Z-WU V)"

— (WU 'V+2)(Z-WU'V) ' =1

where the matrices I and 0 are appropriately sized unit and zero matrices,
respectively. W obtain therefore

U Vv (U-VZiw) " ~U 'V (Z-WU V) _ (T 0
v o) )=G 1)

W z)\-z'w(U-Vvz'w)" (Z-wu-v)™ 01
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showing that it is indeed the inverse.

Another way to show Eq. (10.14) is to derive the inverse. We recall therefore
that the solution of a set of linear equations

M= (Y D)=
G- %) ()

C . U Vv
This implies that the inverse of (W Z)

is given by

can be obtained by solving the following

linear equations.

Ux+Vy=c
Wx+Zy=d

Assuming that Z is non-singular we obtain from the second equation for y
y=2""(d—Wx)
and then from the first equation for x
x=(U-VZ'W) ' (c-VZd)

This means that

(x) _ ( (U-vziw) " —(U-Vzw) 'vz! ) <c>

y ~Z'W(U-VZ W)z 1472 'W(U-VvZiw) vzl \d

Finally (U — VZ*1W) ' VZ~1 can be rewritten using the usual rules concerning
the inverse of a product of matrices

(U-VZ'W) 'VZ ' = (U-VZ'W) ' (zv )
—[(zv ) (U-vz W)
—(ZV'U-W)"!
and for the My 5 element the Woodbury matrix identity can be used giving
Z7'+Z "W (U-VZ'W) ' VZ Tl = (Z-WU V)

The matrix form of the polarization propagator is given as

s = (e ) (3 5 ) (2%
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According to Eq. (10.14) or the solution to exercise 10.2 the inverse of the principal
propagator can be rewritten as

M;; M. \ !
Mg...l MQ...Q...

- (—M2_12 M,. P! M, +M;l, MQ...1P—1M12.,.M;,1‘2.,,)

1

Inserting this in the expression for the polarization propagator gives

(Poi05.) = (TT(Pa) . TS..(P))

( P! —P~ M. M3, ) ( Tl(OE)

Carrying out the matrix times vector multiplications gives

(Po: 05.) = (TT(B) . TE(E)

Combining these results, we can write the partitioned form of the propagator as

<<Pa§ O§>>

+ Tg..(Pa)M512 T2(O§)

10.4 We need to shown that

eP(l) — (‘I)MP|[PQ,Qli]|q)MP>(1) -0

«,al

Evaluating the matrix element to first order means that we have to replace one
of the wavefunctions with the SCF wavefunction and the other with the MP1

T,..(0%..)
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correction to the wavefunction, Eq. (9.66),

(I)Mpl ZZ 2|@

i<k b<c

It is easy to see, that this integral is zero, when we the bra is the SCF wavefunction
and the ket the MP1 correction. The commutator gives two terms and in one we
have qAL acting on a SCF function to the left, which gives zero, and in the other
(jj”- acts to the right on the MP1 wavefunction, which gives a triply exited state
and makes the integral vanish due to the Slater-Condon rules. We therefore need

consider only elements of the type:

< |[ Q7qaz]‘q)SCF> < | Oéqaz|(I)SCF> < quazp |(I)SCF>

The first term on the right becomes <¢3i|]3a|¢>f>, but this element can only be
non-zero, if the two wavefunctions differ by only one spin-orbital. This implies
that a is either equal to b or ¢ and 7 is equal to either j or k. The only contributions
are then of the form

(DG Pa| @) = F(tbal Pln)
where the plus sign applies if ai matches one of the sets b5 or ck, and the minus
if it matches at mix of them (like a = b, ¢ = k). dl is the remaining set of indexes.
In the second term qJf can only perform the deexcitation in the bra if a is either
b or ¢ and i is either j or k. In this case we similarly only get contributions of the
form
(D | POFT) = +(a| Plen)

The two contributions will therefore cancel exactly, and the first order contribu-
tion to the property gradient vanishes.

5 We consider first contributions of the fluctuation operator V to the A matrix:

(@ [qas, [V, b, ]| @MF) @)

Since V is of first order, we need to consider only terms, where one of the
wavefunctions is the MP first order correction to wavefunction and the other
is ®SCF | If we insert thus ®MP! e.g. in the ket and expand the commutators we
get contributions, which involve the following matrix elements:

PSCF \Qaivqgj \‘I’E%
— (@5 |qaiq], V| 25])
— (D5 Vg guil D7)
5 gl V gai| ®57)

The first term gives contributions of the kind (@f|‘7|¢;’2§1>, while the second and
third gives contributions of the kind ((I)SCF|V|<I>§’-§>. We should also consider the
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terms coming from using ®MP! as bra. In this case all contributions, where gq;

acts on the ket, vanish and we obtain only:
(fdaiV b |25)

—(®5¢|gaiq]; V|29T)

However, these are the same kind of contributions as before, if we remember that
V' is hermitian.
The corresponding contributions to the B matrix are of the type

(@M [qai, [V, ]| @Y7

Let’s first consider the case, where the MP1 correction is in the bra and the ket
is the SCF wavefunction. Three of the terms will then include operators trying
to de-excite the SCF wavefunction, which is not possible. This leaves us with the
term .
(D |aian; VI95T)

where however, the bra state becomes a quadruply excited determinant, which
gives a vanishing matrix element due to the Slater-Condon rules. In the other
case, having the MP1 correction as ket, we have:

(@5 |gas V4o |B)
(@5 |qaiqn; V| 257
— (@5 |V g1y s | B

(@5 | gy V i | 25
The first and last terms will give contributions of the type (®%|V|®¢), while the
second term will give contributions of the type (fI)fjb\m(I’i’li) The third term finally

will give a contribution as in the SCF energy (®SCF|V|®SCF) but multiplied by
first order double correlation coefficients.
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1 We express the perturbed orbitals ;(7, .7?) as linear combinations of the

[t

unperturbed orbitals ¢, (7):

all

r -7?) = Zﬂ}q(qui(]?)

and require that the perturbed orbitals remain orthogonal:
(7, F) | (7, F)) = 6y

Combining the above equations we get

Z F) (o) | (7)) Uygs(F)

5?‘1
= Zqu(ﬁ)*UqJ(f>
q

which is the orthogonality condition of the perturbed orbitals.
The perturbed Fock matrix is in the basis of the unperturbed orbitals given by

Foo(F) = (| F(F) [44)

where the perturbed Fock operator is given as
F(F) = 2O + hO(F) + i (F) + o577 (F)

Here the Hartree-Fock potential depends on the external field, because it depends
on the occupied perturbed orbitals. The matrix element of the Hartree-Fock
potential in the basis of the unperturbed orbitals is thus.

occ

(Wl 977 (F) 10} = 3 {0ty (F) | 0095(F)) = {0ty (F) | 03P |
occ all

= Z UL L i) = (s | i)} U (F)

occ all

= Z_ DU (F) Wyt | st) = (e | )} U ()
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Inserting the above in the definition of the perturbed Fock matrix gives

Fpg(F) = (| + 2D (F) + 13 (F) [))
occ all

+ZZ P {ptblthsto) = (ptbelabti)} Usy(F)

The Fock and coefficient matrices can be expanded in orders of the perturbation:
Fypy(F) = FQ +ZF Y peFa +
v
dpqep
Uqi U(O - Z Ul
6qi

An expression for F(gl) _pq is thus obtained by expanding the expression for Fj, (]-i )
and collecting the terms of first order, i.e. linear in the applied field F,.... We use
the expression obtained in the previous exercise, remembering that since we use

the unperturbed functions as a basis, we only need to expand the operators and
matrices.

SO paFan = (U [BO(F) |15y

Qe

occ all

FIS (Wl — G} (U5 P (P))

The one electron part is easily obtained using that
0 - Yo

meaning that we have in first order the integral (v, | 67... | 1,). For the two
electron part, we see that

U (FYU(F) = 05015+ 3 (UL 815+ 005 UL ) Far -

Taking the first-order term and inserting in the expansion of the Fock matrix we
get

1 ~
FE g = (] 07 104)
occ all

+ 30D {Wthaltste) — Wptelseg)} (U (F) 5 + 855 UL 1y (F))
j st

The summation over all orbitals in the first-order Fock matrix can be reduced
to the summation over only all virtual orbitals. This can be shown by splitting
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the summation in the part over the occupied and over the virtual orbitals, i.e.

occ all

)Y {09 By + 05U (P} (i [0 1)

occ occ

= Z U((xl)*sg(f) (‘/’p T/J(Jst d’]’) + Z (¢p #’qu/’j wt)Ug-)- 7tj(f)
Js jt

- Z Z { 1)* 5:‘.] + (55] l](1 ( _’)} (% ¢q”¢s wt)

where we have used the following short notation for the combination of a Coulomb
and exchange two electron integral

(wp quws '(/Jt) = ("/}p %Wis th) - ("/}p wt"(/}s "/}q)

As the unperturbed orbitals can be chosen to be real, we can interchange j and s
in the integral in the first sum. Furthermore we can rename the summation index
from s to ¢ and obtain for the two summations over occupied orbitals

occ occ

S USY G FV Wy ol v0) + 3 (b |y ) UL 5 (F)

Jt Jt

Finally according to Eq. (11.20) is U(il)*tj (F) = fU(Ezl) 7”(]:"), which shows that
the two summations of the occupied orbitals cancel each other and the first-order
Fock matrix can be written as

1 N
FSY). g = (0107 |0g)

+ZZ{U“)* (F)og + 05U8L 13 (F) H(ptalths) — (ptlistie)}

—
—

In order to obtain the Hartree-Fock energy to a certain order in the perturbation
starting from Eq. (11.26), we need to obtain the orbital energy to the same order.
We start therefore from the perturbed Hartree-Fock equations, Eq. (11.6):

all
ZFrq q'L ]: = (]:)UT’L(]:)

We can expand the matrices in orders of the perturbation and collect the terms of
second order. For simplicity we will use a shorter notation than in chapter 11.1,

i.e. we will abbreviate ) 6(;) i Fa- by 61(”) (ﬁ) and similarly )" U(in) qi T
by U, 5?) (F) or the Fock matrices by F\”(F). The second-order equation reads
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then

all all all

ST EO(F) +ZF(1) FUF +ZF(0)U
q

—

@FUD + eé”(fwﬁ)(f) +OUP(F)

Since the perturbed orbitals are expressed in the basis of the unperturbed ones,
the zeroth-order orbital parameter matrix is a unit matrix, U = 0,;. From this
we see that 6(2) (F )UT(?) vanishes in the equation above unless r = 4. And since

. 2), 2 . .
we are deriving an expression for 62 )(]-' ), we have to consider only the case r =14
in the equation above.

P (F)
all all

= FP(F) + Y {FPF) = 60l (P) UL (F) + Z {FY 6"} U (F)

But as the zeroth-order Fock matrix is diagonal in the basis of the unperturbed
orbitals and the diagonal elements are the unperturbed orbital energies the last
term on the right hand side vanishes leading to

all

¢(F) = EO(F +Z{F F) = eV (P} U (F)

If we introduce the following short notation for the combination of a Coulomb
and exchange two electron integral

(Vp Da|[0s 00) = (¥p Vo] s W) — (Vp We|1bs q)

and make use of the solution to exercise (11.2), we can write the required elements
of the perturbed Fock matrices as

FP(F) = (Wi | WP )
occ all

23U P+ 6,0 B+ U PP ()

occ all

D) = @il D |s,) +ZZ{ (F)ots + 663U (F) } (3t [0 )
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The second-order orbital energy becomes then

& (F)
occ all

= (Wi | h® |;) +ZZ{ US* (F)bey + 8,U8 (F) + U (FWU(F) }(zbz Pi| |95 )

all occ all

+ 318 (i RO |wq+ZZ{ UL (F)oi; + 85U (F)} (a5 1)
: A

— b N(F)| U (F)

Now we are ready to combine this with the expression for the second-order energy,
Eq. (11.26),

occ occ all

EP(F) =3 (P53 (i) {Un (P (A0 (B ()}

7 1j abed

The contribution from the sum over the second-order orbital energies becomes

S P (F) = Dl )
occ all

+ 3 {U Py + 65U (F) + UG FWUL P} (i ][, )
ij st
occ all occ all

35S @i AW [y +ZZ{ D% (F)bus + 655U (F) | (] [0 0)
i q J

— 0get ) (F)| U (F)

In addition, the second order correction to the SCF energy in Eq. (11.26) contains
also the following term

occ all

—*Z > (o o] [toe ) { (F)US (ﬁ)Ubi(ﬁ)Udj(ﬁ)}@)

1J abed

However, since the second-order corrections to the SCF energy in Eq. (11.27)
contains no contribution from two-electron integrals, the above must cancel the
terms with two-electron integrals in the expression for the second-order orbital
energy. We will proof this in the following.
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The part of the two-electron term in Eq. (11.27), that contains the second-
order correction to the orbitals is:

occ all

- Z S AU (F)ondeson + U (F)buiduids

1j abed

+ UD(F)8uibesbny + U (F)oaibuides | (ta o[ )

As we are summing over all 4 and j or a, b, ¢ and d we can freely interchange
them and write the following instead of

occ all

_722 { U (F)ovs +5aJUb (q)} (i Vi [t ty)

ij ab

which cancel the terms with second-order orbital coefficients in > (2)(.7: ).

Next we consider terms which contain the product of two first-order orbital
coefficients, where neither of them are complex conjugated. From the second-order
orbital energy we have:

occ all occ all
SOST6GUD (B (F) (i g [0s we) = 3 S UPDFVWUD (F) (w3 g [0 0)
ij stq ij  tq

From two-electron part of the Hartree-Fock energy we get

occ all
o I {8l BV (F)+ UL P U (P b (Yl [ )
ij abed

But according to Eq. (11.20) is Ué})*(}:) = —Ua(;)(]?) and we obtain

occ all

o 3 {8l B U (F)+ UL FIon (Fidis § (v )

ij abed

and interchanging the indices and using that the unperturbed orbitals can be
chosen to be real we obtain

occ all

-5 Z S 20D (FYUD (F) (i [0 400)

ij ab

which cancels the corresponding term from the second-order orbital energy.
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The remaining parts of the second-order energy are then

occ occ all
E&N(F) = szlh(z)lw +ZZ iR |9 U (F)
occ all .
+ 3 Y UG FUG F) (e )
15 st
occ all oce all
+ 3N U (F)ou U (F) (g [0 ) ZZ(Squ AU (F)
1J gst
occ all
3 Z > {Uéi)*Uéi%cﬂdj + U U 8aidni
1j abed

+ U U 60580 + UG U 0idyy ¢ (ablled)

Interchanging again the summation indices in the summation over abcd in the
last term, the four contributions in the last term can be shown to reduce to two
contributions, which cancel the third and fourth term in the expression above,
leaving us with

occ occ all occ
B (F) =D wi | ) +Zzw|h<1)wq>v<”< )= > e FWUP(F)

The total energy must be real, but the second and third terms might not be, so
we replace them by their real parts

occ occ all

EP(F) =3 (il i ) + ZZ{wm“)wq D(E) + (i O v UL (F) )

7

occ

_ ,Z{ (€] ]:-' (1) ]:-’) 1)*(f)Ui(il)*(f)}

The orbital energies are of course real, ¢\ = €' and UV*(F) = —~UV*(F)
according to Eq. (11.20), which makes the term with the first-order orbital
energies vanish. Using that h(!) is an hermitian operator we have

occ occ all

ES(F) = 3 (il i |3) + ZZ{ 10O [ U (F) + g | B0 [ UL ()}

7
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Finally, as in the solution to exercise (11.2), the summation or all ¢ can be reduced
to over all virtual orbitals

occ occ vir

BE) = 3010 i+ 5 33 { sl VD )+ 0 U )}

11.5 We can express the time-dependant MCSCF wavefunction as:

|¢.é\/]CSCF(t)> zk(t)ezS(t)|(I)é\/ICSCF>

=€

Inserting this in the Ehrenfest theorem applied to an MCSCF wavefunction, Eq.
(11.40), we obtain

d —R —5(t)7 ik W8
w7 <q)(1)\/ICSCF ) S(t)hje (t)e S(t) |(I)8/ICSCF>
+%<<I)é\/[C'SC’F|efzf%(t)efz§(1t) [ilj, ﬁ(O) + IfI(l) (t)]ezf%(t)ezé’(t) |(I)é‘/[CSCF> =0

We need to expand the orbital rotation and state transfer operators in orders of
the perturbation.

i(t) = 20 4 g(l)(t) 4.

St) =8O +5W () +
Where the time independent terms vanish, since the MCSCF wavefunction are
optimized for the time-independent potential. The exponentials are not very con-

venient to work with, so we can expand the time-dependant part, retaining only
terms to first order.

) g (01 .
(ezn(t)ezS(t)) =1+ W) +18D (1)

Where the zero-order terms are independent of the perturbation and thus cannot
change the wavefunction. The equation from the Ehrenfest theorem to atleast
first order becomes:

Z@Mcwﬂ{ — R O(1) = 18D (1) } hy {14250 (1) +05D (1)} [9h105CF)

h;
+ﬁ<q>g4050F|{ — kW (1) — 15D (1) } H(O)—i—H(l)()]{1+zk(1)(t)+zS<1)(t)}|<1>8/ICSCF>

=0

Collection the first order terms and using the fact that ®}/¢SCF is time-
independent we get the first order equation:

~ d .
(BYIOSCT [y, SR (1) + L 50 (p)] @yrooe)
— (BYICSCT |y, 7)) n<l><t> + 50 @) ppreser)

—( @41 [y, HD (]| @5
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The first order MCRPA equation can be written as
d .
th%'y(l)(t) — EYW@t) = T(HY (1))

and we can express the coefficient vector 4(¢) in terms of it’s Fourier components:

— 00

o0 2 o0 . o
'y(l)(t):/ dw(1>(w):_§z/ do X (0% ) Fp...(w)e ™"
B J=o
And thus

d d [ > d
My = = (1) - - (1)
il (t) dt/ dw v (w) /_Oo dtdw'y (w)

—00

1 * Aw —w
=3 Z/ dw X(0F..) Fp...(w)we ™"
g oo

since w and ¢ are different variables. We also need to decompose T(H™(t)) into
Fourier components:

THM @) =5 / T W T(OF ) Fa ()
e I

And we obtain

—% Z/m dw (hwS — E) X(0%..)Fp...(w)e ™!

¢ > A —w
=-3 Z/ dw T(0%..) Fp...(w)e ™"
g /o0

We require that the above equation must be true for any value of the frequency
w. We can therefore remove the integration over w and equate the terms linear in
the component Fpg... of the external field, i.e.

(hwS — E)X(0%..) =T(0%..)
We can express the time-dependant Mgller-Plesset wavefunction as:
@577 ()) = VeSO 2317

Inserting this in the Ehrenfest theorem applied to an Mgller-Plesset wavefunction,
Eq. (11.55), we obtain

d . fon .
e <q)é\4P|efm(t)671$(t)hjem(t)ezS(t) |(I)(Z)\JP>

dt
+%<q)(l)\/[P|e—z,‘%(t)e—zS(t) [;Lj’g(o) + g(1)<t)]ez%(t)ez§(t)‘(I)é\A/P) -0
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Expanding the exponentials like in exercise 11.5 to first order, the first-order
Ehrenfest equation becomes

~od d -~
(@ |[hy, RO () + S ®)|25")

dt
— (@5 Py, HOL &M () + SO (1)]]8p"")
= —o(@gP|[hy, AW ()] 25

Combining the orbital rotation and high-order excitation operators in one row
vector h1" and the coefficients in one column-vector ~(t) again

R(t) +S(t) = A"~(1)
the first-order Ehrenfest equation can be written as
e ad . .
Zﬁ@gﬁl[hth%’r(l (O][@5"7) — (@™ [[[hy, HOT, AT~ (1)]|@5"")
—o(®4"F [y, D (1)]|95F)

or collecting the first-order Ehrenfest equations for all operators fzj as rows of an
matrix equation

@ P e ) o

Y (8) = (@7 (AT, ) A0 )y 1)
= —(@3 (AT A 0)93')

Identifying the electronic Hessian matrices E and the overlap S, Eq. (3.162) and
Eq. (3.163), as well as the property gradient vector T'(H ™M (t)), Eq. (3.160), we
can write the first-order Ehrenfest equation more compact

ZHS%'Y(l)(t) — B4V (t) = - T(HD (1))

The rest of the derivation goes exactly like in exercise 11.6.
11.8 The time dependant coupled cluster and lambda states are given as

8§ (1)) = T F (95T
e(t)

(@ (1)] = (@I [1 + A@)] e e

We start by looking at the the right hand coupled cluster Schrodinger equation
T 0§ (1)) = e T O (1) 8 (1)
Evaluating the time derlvatlve on the left hand side, we see that

d d 7 )
ZIBGC(1) = STV |@FCT) e

t)z oT dtau gCF>eﬁ<;) +€T‘(t)ez%>@gcp>%d;(t)
t



Solutions to Chapter 11 91

Remembering that aat—T = efzjy and projecting from the left with the state
<¢§CF|dﬁiu we get:
_ dt;, (t) < - de(t) ,e<w
SC e SC 2 sC SC e
zhz (®5CF dh e 1) T (1) hy, |B5CT) =Ll i (D} F|dhiﬂ\¢>0 F>W€ z

= (@ |"hy, e T H (1) 05 (1))
The first matrix element on the left hand side can be evaluated as:
<(I)SCF|dh e T(t) T( t)eh |¢)SCF> <(I)SCF|dh eh |‘I’gCF> _ 5iujy

while the second matrix element is the overlap between the SCF ground state and

a singly excited determinant is thus zero. Removing the phase factors on both

sides we obtain the desired equation for the amplitudes:

dt;, ()
dt

If we instead project against the SCF ground state on the left, all the terms that
include the derivative of the amplitudes will vanish, and we obtain the following
equation for the time derivative of the phase factor:

de(t)
dt

We now turn our attention to the left hand coupled cluster Schrodinger
equation

ik (:ft«bm [1+40)] T<>”) e = (@) () H (1)

Evaluating the derivative we get:

o _ <(I)gCF|diLi“e—T(t)H(t)eT(t) |<I>g'CF>

_ _<q)gCF|67T(t)f{(t)eT(t) |q)g'CF>

d Ple) —qg s 5‘A dXj, () ) —s
ZH@FOF| [1 4 Ap)| e T Ve :]_Z< ; ST
" Ly OT dty (1), ew
— S (@ger [1 Ap)] e OS2 T e
J_Z<o [+ Aw] 0 g e
1 A i e de(t)
Inserting -2 a/\ dhj,, and % = eﬁj,, the left hand coupled cluster Schrodinger

equation becomes

(1) gt (f) e
e, 1+ ] o, L0 o
Jv
<) de(t)
<<1>SCF\[1+A<t>] AU _ g
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We can replace the time derivatives of the amplitudes and the phase factor using
the expressions derived above and then remove the phase factor exponentials from
the equation

dA;, (1)

Y@y, P

Ju
+ Z<q)6€’CF| {1 +A(t)} eibjy <(I)gCF|diliue—j"(t)H'(t)eT(t)‘@OSCF>
Jv

+(@5F| [1+ AW (@5 le W (1) | 0FT)

— (®5CF| [1 + A(t)} e TO B (1)eT®
Projecting from the right with an excited determinant, "‘fliu |®5CE), yields

X\, (t)
q)SCF Jv
e dt

_th (I)SCF|dh]V i
Jv
+ SU@FF| [1 4 Ae)] o, |5 @ e O F ()T O |05CT)
Ju
+(@FF| [14+ A1) “h, |25OT) (@5 |~ T Fr ()T O 05T

5")

4= (®5CTF| [1 + /A\(t)} e T E ()l Wep,

The matrix element in the first term on the left gives again d;,;,, while the
second term can be evaluate using the fact that excitation operators com-
mute and so creating the resolution of the identity 1 — |®5¢F)(®5CF
> eﬁju |<I>§CF><<I>SCF|dh]V7 which gives then for the second term

S (@] [+ A1) “hs, s [R5 NDEE | Phy, e O B ()] @5 (1)
jl/

_ <(I)OSCF| [1 +A 7T(t eh H( ) (t)|q)g’CF>

<(I)SCF‘ [1 + A( )] ehz |@SCF><<I>SCF‘6_T(t)H( ) T(t)|<bgCF>
where the extra term on the right side here cancels the third term in the projected

left-hand coupled cluster Schrédinger equation, which then reads

di, ()

ik
N

+ (BFF [1 + A(t)} e TWeh, H(t)e M |05F)

_ <(I)OSCF| [1 +/A\(t)} €7T(t)H( ) T(t eh |(I)S’CF>
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This can be rearranged as the desired equation for the A;, () amplitudes
dX;, ()
dt
The components of the coupled cluster vector function are given as

e, = <(I)OSCF|d}ALiM67T(t)I:I(O)|‘I)gc>

—ih — (@57 [1+ A@®)] e O (), i, ] O 95T

The only thing in the above equation that depends on the cluster amplitudes is the
cluster operator T. Using the chain rule we get the derivative of the exponential
operator as R

8€T(t) o T(t) 6T 7 ~

— = L Wef .
o, ¢ oy, ¢
Remembering that excitation operators commute, we can evaluate
9 SCF\d; de=TO 0)15,CC SCFd;  —T(t) £7(0 e ® SCF
@‘% =(®5 " [“hy, ot;, HODF) + (25T hi,e WA )W@O )

= —(®5F | hi, e " DNy, HO|BF) + (D5 |y, e O H Oy, |BFC)
The two terms in the last line can be written more compact as commutator

9
at;,

which turns out to be an element of the coupled cluster Jacobian, A;, ;, .

s, = (57| hy, e TOLH), hy, )| 6C)



