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FragBuilder: an efficient Python library
to setup quantum chemistry calculations
on peptides models
Anders S. Christensen1, Thomas Hamelryck2 and Jan H. Jensen1

1 Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
2 Department of Biology, University of Copenhagen, Copenhagen, Denmark

ABSTRACT
We present a powerful Python library to quickly and efficiently generate realistic
peptide model structures. The library makes it possible to quickly set up quantum
mechanical calculations on model peptide structures. It is possible to manually
specify a specific conformation of the peptide. Additionally the library also offers
sampling of backbone conformations and side chain rotamer conformations from
continuous distributions. The generated peptides can then be geometry optimized
by the MMFF94 molecular mechanics force field via convenient functions inside the
library. Finally, it is possible to output the resulting structures directly to files in a
variety of useful formats, such as XYZ or PDB formats, or directly as input files for
a quantum chemistry program. FragBuilder is freely available at https://github.com/
jensengroup/fragbuilder/ under the terms of the BSD open source license.

Subjects Biochemistry, Computational Biology, Computational Science
Keywords Peptides, Computational chemistry, Molecular modeling, Proteins, Biochemistry

INTRODUCTION
Modeling of chemical properties of proteins is a challenging task in modern computational

biochemistry, mainly due to the large number of atoms that need to be treated computa-

tionally, compared to the computational speed of modern computers. Although theoretical

methods to treat large systems are being developed, it is computationally more feasible

to investigate properties of small, representative, protein-like structures, such as peptides.

For example, calculations on peptides have been used to parametrize protein-specific

molecular mechanics force fields, and models for NMR properties of proteins such as

chemical shifts and spin-spin coupling constants (Mackerell, 2004; Vila et al., 2009; Case,

Scheurer & Brüschweiler, 2000).

Recently, we have used the presented Python library to carry out calculations on

peptides modeling the backbone of a protein in the parametrization of amide proton

chemical shifts (Christensen et al., 2013). Since this study, we have carried out more than

1.5 million quantum mechanical geometry optimization and NMR shielding calculations

on peptides in order to extend our model of protein chemical shifts. Naturally, an efficient

and stable method is needed in order to generate such a number of peptide models.

Two recent programs that can generate peptide structures are the Ribosome program

(Srinivasan, 2013) and the PeptideBuilder library (Tien et al., 2013). The Ribosome
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program is written in FORTRAN and thus difficult to extend and therefore not ideal

for use in an automated, scripting fashion. The PeptideBuilder library is written in Python

and is therefore very attractive for this purpose. Our library which is presented here is

very similar to PeptideBuilder, but offers a number of additional features which we found

necessary for our purpose. Most importantly, our library includes methods for geometry

optimization with a molecular mechanics force field, efficient conformational sampling

from continuous probability distributions and lastly output to a variety of output formats

or, optionally, directly as input file for a quantum chemistry program. Currently Gaussian

09 (Frisch et al., 2009) is supported via specialized classes, and nearly 100 additional file

formats are supported through the file writer.

METHODS
FragBuilder is implemented in Python and is a library that can be imported and used in

simple Python scripting style. Python is attractive, since a very large number of scientific

libraries are already available in Python, and thus easy to extend and combine with new

code. FragBuilder is implemented using the Open Babel library as back-end for handling

the molecular structure of the peptide via existing classes and methods (O’Boyle et al.,

2011). The methods present in FragBuilder thus have access to a multitude of existing

chemistry and cheminformatics related library routines which are maintained separately

by Open Babel. Especially, the code for manipulating a molecular structure, molecular

mechanics and file writers from Open Babel are used in FragBuilder. FragBuilder also

comes with the BASILISK library which can sample protein backbone and side chain

conformations from a joint probability distribution (Harder et al., 2010).

The only dependencies for running FragBuilder are the NumPy mathematics library

(Oliphant, 2006) and Open Babel with Python bindings. These packages are already

available through package managers on virtually every recent Linux distribution, or

otherwise freely available and open source.

FUNCTIONALITY AND USAGE
The functionality to create a peptide is implemented in the Peptide class which is

imported from the fragbuilder module. A typical work flow creates a peptide, defines

torsion angles, performs a constrained geometry optimization and finally writes the

resulting structure to a file. A chart describing a typical use case is displayed in Fig. 1,

and detailed examples of the functionality of FragBuilder are given below.

Furthermore FragBuilder has classes to easily access the BASILISK library, read PDB files

and write input files for Gaussian 09. An overview of the available class as well as a brief

description of each can be found in Table 1.

Creating peptides
The structure of a peptide molecule is generated as a Python object by using the Peptide

class instantiated with the sequence as argument. The Peptide class has access to classes

for each type of residues which each contain a structure for that residue in XYZ format.

Routines from Open Babel are then used to automatically rotate, translate, and connect
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Figure 1 Flowchart describing the use of FragBuilder. Simple chart of a common workflow using
FragBuilder. First a peptide is generated from the sequence. Then torsion angles are set — either specified
manually or sampled through BASILISK and a quick geometry optimization is performed using the
MMFF94 force field. Finally, the structure is written to a file.

Table 1 Overview of classes included in the FragBuilder library.

Class name Description

Peptide Class to create and manipulate a peptide structure and write output
files

Basilisk DBN Wrapper class for direct access to the BASILISK library

PDB Class to extract angles, sequence, etc. from a PDB file

G09 opt, G09 NMR, G09 energy Classes to create input files for QM calculations in Gaussian 09

the residues. Finally the structure is stored in the Peptide.molecule class variable as an

Open Babel OBMol object.

The sequence interpreted uses the single letter abbreviation for each amino acid. E.g.,

Peptide("GLG") will create a glycine–leucine–glycine tripeptide molecule which can

then be manipulated through the interface. The minimal code to achieve this could be:

1 from fragbuilder import Peptide

2 pep = Peptide("GLG")

As default values, the φ,ψ and ω backbone torsion angles are set to −120◦,140◦ and

−180◦, which corresponds to a typical extended β-strand. The side chain torsion χ angles

are set so two neighboring side chains will not have steric clashes when no side chain

torsion angle input is given. After the peptide has been instantiated, the structure can
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Table 2 Overview of the basic methods in the Peptide class. See the text for detailed descriptions of
each method.

Method name Description

set bb angles Set the backbone φ/ψ-angles for a residue

set chi angles Set the side chain χ-angles for a residue

get bb angles Read the backbone φ/ψ-angles for a residue

get chi angles Read the side chain χ-angles for a residue

sample bb angles Sample the backbone φ/ψ-angles for a residue using the BASILISK
library

sample chi angles Sample the side chain χ-angles for a residue using the BASILISK
library

optimize Perform a molecular mechanics optimization using the MMFF94
force field

regularize Perform the regularization procedure to remove steric clashes

write pdb Write the peptide structure to a PDB file

write xyz Write the peptide structure to an XYZ file

write file Write the peptide structure to one of the nearly 100 file types sup-
ported by Open Babel

Figure 2 Torsion angles that can be treated by FragBuilder. Examples of dihedral angles that can be set
via FragBuilder. In (A) the backbone ω,φ and ψ torsion angles are shown for the i’th alanine residue of
a peptide strand. In (B), the χ1 torsion angle is shown for a valine side chain.

be manipulated through built-in methods. Several convenient methods of the Peptide

class are presented in the next sections. An overview of some of the basic methods of the

Peptide class can be seen in Table 2.

Setting dihedral angles
The Peptide class allows for dihedral angles to be manually specified through setter and

getter type functions that set or read backbone and side chain torsion angles. Examples of

torsion angles that can be set in FragBuilder are shown in Fig. 2.

For example, making a glycine–leucine–glycine peptide and setting the backbone angles

to φ = −60.0◦ and ψ = −30.0◦, and side chain angles to χ1 = 180◦ and χ2 = 60◦ of the

leucine (residue 2) can be done through the following code:
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1 pep = Peptide("GLG")

2 pep.set_bb_angles (2, [-60.0, -30.0])

3 pep.set_chi_angles (2, [180.0 , 60.0])

This way it is possible to precisely specify dihedral angles manually. This code can be

used, for instance, to set up a scan of torsion angles or making peptides with geometries

extracted from experimental structures. An example of a scan is shown in Fig. 3. This scan

was created in the following manner:

1 pep = Peptide("GLG")

2 for i in range (10):

3 pep.set_bb_angles (2, [-120.0, 100.0+20.0*i])

4 pep.write_xyz("pep_%i.xyz" % (i))

The method Peptide.write xyz() writes the structure to a file in XYZ format and is

described later in this section.

Figure 3 Example of four different conformers of a glycine–alanine–glycine tri-peptide. Generated
from a scan over the ψ backbone torsion angle of the alanine residue.

Sampling dihedral angles from BASILISK
In addition to manual specification of torsion angle values, it is possible to set these to

values from predefined distributions, such as the Ramachandran-plot for backbone angles

or rotamer distributions for side chain angles. This allows for fast and efficient sampling of

realistic peptide conformations and rotamer distribution without the need for a molecular

dynamics or Monte Carlo simulation. For this purpose FragBuilder includes the BASILISK

library and convenient methods to access BASILISK from the Peptide class.

BASILISK is a dynamic Bayesian network trained on a large set of representative

structures from the Protein Data Bank (Berman et al., 2000) and is able to sample backbone

angles and side chain angles. BASILISK makes use of directional statistics — the statistics

of angles, orientations and directions — to formulate a well-defined joint probability

distribution over side and main chain angles. Backbone angles are essentially sampled
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from the Ramachandran-plot via BASILISK. Similarly, side chain angles are sampled

from corresponding rotamer distributions. The distributions offered by the BASILISK

library are continuous, in contrast to most approaches based on discrete rotamer libraries.

BASILISK can sample side chain angles either in a backbone conformation-dependent

mode or -independent mode (where backbone dependency is the default behavior). The

random seed can be set explicitly via the fragbuilder.set seed() function. If no seed

is supplied the seeding will be random.

The methods Peptide.sample bb angles() and Peptide.sample bb angles()

allows the user to simultaneously sample and set the torsion angles of a residue. The

methods return the new sets of sampled angles so they are known to the user directly.

The following code will create a glycine–leucine–glycine peptide and set the backbone

and side chain angles of the second residue (leucine) to values that are sampled from

BASILISK. The values of the sampled angles are stored in the new bb and new chi

variables.

1 from fragbuilder import Peptide , set_seed

2 set_seed (42)

3 pep = Peptide("GLG")

4 new_bb = pep.sample_bb_angles (2)

5 new_chi = pep.sample_chi_angles (2)

It is also possible to get samples from BASILISK via FragBuilder by using the

fragbuilder.Basilisk DBN class which provides direct access to the sampler in

the BASILISK library. This class is used to obtain samples of φ/ψ angles from the

Ramachandran-plot or sets of χ angles from rotamer distribution without first creating

a peptide.

For instance, a random set of χ angles (chi), φ/ψ angles (bb), and their corresponding

log-likelihood (ll) in the probability distribution can be obtained as follows (here for a

Leucine (“L”) residue):

1 from fragbuilder import Basilisk_DBN

2 dbn = Basilisk_DBN ()

3 # Amino acid type as argument

4 chi , bb , ll = dbn.get_sample("L")

10,000 of such samples from the above code was used to create the Ramachandran plot and

rotamer distribution of leucine which can be seen in Figs. 5A and 5B, respectively.

Capping peptides
One aspect of carrying out quantum mechanical calculations on peptide fragments is

the way the peptide strands are terminated or capped. This can be important, since the

properties calculated from a quantum mechanical calculation may be affected by how the

protein is truncated to a model peptide. The specific type of cap is controlled by setting the

keywords nterm and cterm keywords (for the N-terminus and C-terminus, respectively)

when the peptide object is created.
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Figure 4 Overview of the available peptide-capping schemes available in FragBuilder. All three exam-
ples show an alanine residue (shown between a set of gray lines). In (A), the caps are the N- and C-termini
in their charged states. In (B) the caps are the N- and C-termini in their neutral states. In (C) the caps are
methyl groups. Caps can be mixed and matched according to the user’s specifications.

Figure 5 Examples of sampling dihedral angles through BASILISK in FragBuilder. 10,000 samples
from BASILISK are shown for a leucine residue. (φ,ψ) backbone torsion angle pairs are shown in (A)
and (χ1, χ2) side chain torsion angle pairs are shown in (B).

By default, FragBuilder generates methyl caps by adding a CH3–C(=O)- group to the

N-terminus and an -NH–CH3 group to the C-terminus (i.e., if the keywords are not set).

This corresponds to setting both keywords (nterm and cterm) to "methyl". Additionally,

it is possible to cap the ends of the peptide as normal N- and C-termini (amine or carboxyl

groups, respectively) which can be set to either a charged or a neutral state. A charged or

neutral terminus is specified by passing the values "charged" or "neutral", respectively.

See Fig. 4 for a schematic of the three possible types of caps.

For instance, a glycine–leucine–glycine residue with a positively charged N-terminus

and a neutral C-terminus is generated by the following code:

1 pep = Peptide("GLG", nterm="charged", cterm="neutral")

Optimization
When generating peptides with a specific set of dihedral angles the structure may, in

some cases, contain steric clashes. We found this prevented us from starting quantum

mechanical geometry optimization on the structures, even when these were generated to

match angles from experimental structures. Typical problems with these structures were

Christensen et al. (2014), PeerJ, DOI 10.7717/peerj.277 7/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.277


SCF convergence issues and very large molecular gradients which cause the program

to fail. In some cases, problems with large molecular gradients may be alleviated by

adjusting the step-size in the optimizer, but this must be investigated on a case-to-case

basis. It is therefore advantageous to remove steric clashes before any quantum mechanical

calculation is carried out.

For the reasons mentioned above, FragBuilder offers specialized molecular mechanics

optimization routines, specifically designed to constrain the dihedral angles of peptides

while removing steric clashes. Optimization is performed through Open Babel which

provides access to several force fields and a number of optimizers. The MMFF94 force

field (Halgren, 1996) is arguably the most advanced force field for biomolecules in Open

Babel and is used exclusively in FragBuilder along with the conjugate gradient method.

FragBuilder offers three kinds of optimization methods in the Peptide class.

The method Peptide.optimize() will perform a conjugate gradient optimization

of the peptide with no restraints, until the default convergence criterion of Open Babel is

reached (ΔE < 1.0 × 10−6 kcal/mol or a max of 500 steps). Another option is to impose

harmonic constraints on all dihedral angles. This is achieved through an extra keyword,

i.e., Peptide.optimize(constraint=True). This will perform a conjugate gradient

minimization through Open Babel with harmonic potentials on φ, ψ and ω backbone

angles as well as all side chain χ angles.

A harmonic potential does not keep torsion angles completely fixed during optimiza-

tion, and after convergence they deviate slightly from the starting values. For situations

where this is problematic, FragBuilder is offering a routine termed “regularizing” which is

accessed via the Peptide.regularize()method.

Regularizing cycles between a few constrained geometry optimization steps and

resetting the dihedral angles to the initially specified angles, until self consistency is

reached. A default regularization cycles 10 times between 50 conjugate gradient steps

and angle resets. In most cases this converges the constrained optimization to less than

0.002◦ from the specified dihedral angles, which are then set to the specified values.

We found our regularization procedure with flexible bond lengths and angles through

the MMFF94 force field to allowing convergence of QM calculations in many cases, which

would have been hindered by steric clashes due to fixed bond length and angles.

A similar approach to avoid spurious conformations has been adopted by Vila et

al. in the creation of the CheShift chemical shifts predictor, which is parametrized from

quantum mechanical calculations on model peptides (2009). Here bond angles and lengths

are simply set to the standard values of the ECEPP/3 force field (Nemethy et al., 1992). Sub-

sequently the internal energy of the peptide is calculated with the ECEPP-05 force field and

any conformation with an internal energy>30 kcal/mol is rejected as being unphysical.

Figure 6 shows an example of a tryptophan–aspartate–glycine peptide with methyl

caps in which the backbone torsion angles are taken from the experimental structure of

xylanase (PDB-code: 1XNB), residues 99–101. This choice of angles causes a clash between

a hydrogen bonding O...H pair, and a geometry optimization at the B3LYP/6-31+G(d,p)

level in Gaussian 09 could not start (at default settings) due to an excessively large
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Figure 6 Removing clashes by regularization in a tryptophan–apartate–glycine peptide. In (A) the
peptide clashes between the amide proton on the C-terminal methyl cap and the amide oxygen in residue
1. In (B) this clash has been removed by constrained relaxation during the regularization procedure. Both
structures have identical φ,ψ and ω backbone torsion angles.

molecular gradient in the initial geometry. Regularization removes the clash, while

retaining the specified dihedral angles, and allows the optimization to proceed.

A peptide can be created and regularized using the following code, which also prints the

MMFF94 force field energy in units of kcal/mol:

1 pep = Peptide(sequence)

2 # The user can manipulate the structure here

3

4 pep.regularize ()

5 print pep.get_energy ()

Reading PDB files
While sampling and conformational scanning, etc., are efficient ways to generate new

peptide conformations, it can be necessary to extract information about the conformation

of a specific protein structure, usually given in PDB format. FragBuilder implements

functionality to extract information about the amino acid sequence and dihedral angles

from a structure in a PDB formatted file, which can then be stored or passed on in

the program, for instance to methods in the Peptide class. This is carried out via the

fragbuilder.PDB class which creates an object from a PDB file and offers methods to

read the relevant information.

The following code example illustrates the basic usage of the fragbuilder.PDB

module, and will print the amino acid type and dihedral angles of residue number 10

in the PDB file "structure.pdb":

1 from fragbuilder import PDB

2

3 pdbfile = PDB("structure.pdb")

4 i = 10 # Residue number 10 in this example

5 print pdbfile.get_resname(i)

6 print pdbfile.get_bb_angles(i)

7 print pdbfile.get_chi_angles(i)
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File output and interface to QM programs
Open Babel provides very flexible file readers and writers. The Peptide class wraps Open

Babel with functions to directly write the geometry of a Peptide object to a file in XYZ or

PDB format. This can be done simply as:

1 pep = Peptide(sequence)

2 pep.write_xyz("pep.xyz")

3 pep.write_pdb("pep.pdb")

It is also possible to write to any of the nearly 100 formats supported in Open Babel by

using the method Peptide.write file(filetype, filename) which offers direct

access to Open Babel’s OBConversion.WriteFile() method. For instance, an input file

for the quantum chemistry program GAMESS (Schmidt et al., 1993) can be created with

the following code:

1 pep.write_file("gamin", "pep.inp")

Here, the file type argument follows the Open Babel syntax, where "gamin" corresponds

to the GAMESS input file format.

FragBuilder additionally offers an interface to write input-files for Gaussian 09, beyond

the capabilities of Open Babel. Currently, it is possible to set up geometry optimization,

single-point energy calculations and calculation of NMR shielding. An example for

a simple workflow that will generate a file for geometry optimization of a peptide in

Gaussian 09 at the B3LYP/6-31G(d) level (using the fragbulder.G09 opt class) is as

follows:

1 from fragbuilder import Peptide , G09_opt

2

3 pep = Peptide(sequence)

4 # The user can manipulate the structure here

5

6 opt = G09_opt(pep)

7 opt.set_method("B3LYP /6-31G(d)")

8 opt.write_com("pep.com")

If no method or basis set is specified, the file writer defaults to PM6 (Stewart,

2007) for geometry optimization. Other classes that interface to Gaussian 09 are the

fragbuilder.G09 NMR and fragbuilder.G09 energy classes, which are imported

and instantiated similarly.

CONCLUSION
We have implemented routines to generate peptide models, from either specific geometries

or efficient conformational sampling through the BASILISK library. We have furthermore

implemented necessary code to perform constrained geometry optimizations of the

peptide models, remove steric clashes and prepare the structure for use in a quantum
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chemistry program. In addition, the file writers accommodate nearly 100 file formats, and

are able to write input files for a number of chemistry programs through an interface to

Open Babel.

The Peptide class wraps functionality from Open Babel offered through its Python

interface. The molecular structure is stored as an Open Babel openbabel.OBMol object

in the Peptide.molecule class variable. This means that developers and users effectively

have access to all the tools present in Open Babel to further manipulate the structure, or

extend FragBuilder by wrapping and combining functionality from Open Babel.

FragBuilder is open source and published under the BSD 2-Clause license. Note that the

packaged BASILISK library is published under the GNU General Public License version

3. FragBuilder is freely available at https://github.com/jensengroup/fragbuilder/ where

additional examples and full documentation can be found.
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