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Abstract. Sea sandwort (Honckenya peploides) was one of

the first plants to successfully colonize and reproduce on the

volcanic island Surtsey, formed in 1963 off the southern coast

of Iceland. Using amplified fragment length polymorphic

(AFLP) markers, we examined levels of genetic variation and

differentiation among populations of H. peploides on Surt-

sey in relation to populations on the nearby island Heimaey

and from the southern coast of Iceland. Selected popula-

tions from Denmark and Greenland were used for compar-

ison. In addition, we tested whether the effects of isolation

by distance could be seen in the Surtsey populations. Using

two primer combinations, we obtained 173 AFLP markers

from a total of 347 plant samples. The resulting binary ma-

trix was then analysed statistically. The main results include

the following: (i) Surtsey had the highest proportion of poly-

morphic markers as well as a comparatively high genetic di-

versity (55.5 % proportion of polymorphic loci, PLP; 0.1974

HE) and Denmark the lowest (31.8 % PLP; 0.132 HE), in-

dicating rapid expansion during an early stage of popula-

tion establishment on Surtsey and/or multiple origins of im-

migrants; (ii) the total genetic differentiation (FST) among

Surtsey (0.0714) and Heimaey (0.055) populations was less

than half of that found among the mainland populations in

Iceland (0.1747), indicating substantial gene flow on the is-

lands; (iii) most of the genetic variation (79 %, p<0.001) was

found within localities, possibly due to the outcrossing and

subdioecious nature of the species; (iv) a significant genetic

distance was found within Surtsey, among sites, and this ap-

peared to correlate with the age of plant colonization; and

(v) the genetic structure analysis indicated multiple coloniza-

tion episodes on Surtsey, whereby H. peploides most likely

immigrated from the nearby island of Heimaey and directly

from the southern coast of Iceland.

1 Introduction

On the 14th of November 1963, just 30 km off the south-

ern coast of Iceland, the island of Surtsey was born. Surt-

sey surfaced from the North Atlantic Ocean during al-

most four years (1963–1967) of intermittent spewing of vol-

canic material from the Mid-Atlantic Ridge at 63◦18′22′′ N,

20◦36′5′′W, just 5 km south-west of Geirfuglasker, the

southernmost island in the Vestmannaeyjar archipelago

(Thórarinsson, 1966). During the first survey of the island

on 21 May 1964, plant seeds were already documented hav-

ing washed up on shore (Einarsson, 1965). It seems almost

certain that the first plants to arrive on the island grew from

seeds drifting with sea currents to the island, as seedlings of

the first colonizers, i.e. Cakile edentula, Leymus arenarius,

Honckenya peploides and Mertensia maritima, were found

growing at the high tide line (Einarsson, 1968; Fridriksson

and Johnsen, 1968; Fridriksson, 1970).

The recent geologic origin and meticulously well-

documented history of colonization on Surtsey provide an

unprecedented opportunity to study the birth, coming of

age and decline of a small, relatively isolated oceanic vol-

canic island ecosystem by natural means, devoid of all hu-

man influence. The study species, Honckenya peploides, was

first recorded on the island in 1967 with 26 individuals
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(Fridriksson and Johnsen, 1968). The plants survived the first

winter (Fridriksson, 1970) and by 1968 there were 103 indi-

viduals; by 1971 the number was reduced to 52, five of which

flowered, with one producing seed. In 1972, 71 plants were

recorded, then a major colonization event took place and in

the following summer a total of 548 H. peploides individ-

uals were recorded indicating the first episode of seedlings

produced on the island. The species has since grown on to

dominate the vegetation of most sandy habitats on the island

to this day (Magnússon et al., 2009 and 2014).

Isolated oceanic islands have long been thought of as

natural laboratories for the study of evolutionary processes

(MacArthur and Wilson, 1967). Making up only 5 % of the

earth’s land area, islands are estimated to include roughly

20 % of all known vascular plant species as well as 15 %

of all known mammal, bird and amphibian species (Brooks,

2006). Newly formed oceanic islands as well as areas re-

cently affected by cataclysmic events such as volcanic erup-

tions present scientists with the opportunity to collect data

and analyse evolutionary processes at spatial and temporal

scales not possible with ecosystems in higher successional

stages (Fridriksson and Magnússon, 1992; Whittaker et al.,

2008; Tsuyuzaki 2009). Due to the relative isolation and

novel ecological niches that such areas provide, coloniza-

tion by small populations often leads to rapid evolutionary

change, adaptive radiation and speciation (Cody and Over-

ton, 1996; Savolainen et al., 2006; Buerki et al., 2013). Such

radiations are thought to be a result of mutational spread un-

der different selection pressures as well as allele fixation and

differential survival of genotypes best suited for the particu-

lar environment (see e.g. Barton and Mallet, 1996).

Genetic variation is the cornerstone of evolution; without

it, adaptation and survival of the biota would cease to be

possible. The distribution and segregation of current vari-

ation is thought to be a reflection of the history of pop-

ulations through time. Reduced variation within a popula-

tion due to inbreeding and increased homozygosity can lead

to loss of fitness or evolutionary potential and in the most

extreme cases causing species depression and extinction

(Charlesworth and Charlesworth, 1987; Frankham, 1998;

Triantis et al., 2010; Alsos et al., 2012). Jaenike (1973) pro-

poses that isolation along with limited area should affect ge-

netic variation of populations on islands in a similar way

as it does species diversity (MacArthur and Wilson, 1967).

That is, as island distance from larger landmasses increases,

species number (or genetic diversity) decreases due to the

effect of distance on immigration. This diversity tends to de-

crease as island size decreases due to the heightened prob-

ability of extinction. Frankham (1997) supports this theory,

showing that many taxa on islands have significantly lower

genetic variation than the same mainland species, with the

effect increasing with decreasing island size. Diversity is not

only affected by island size and isolation, but also by is-

land age. According to the general dynamic model (GDM)

of oceanic island biogeography (Whittaker et al., 2008), a

loss of physical and topographic complexity together with an

increase in biotic interactions and competition can lead to a

decline in species richness or diversity as an island ages. In

this context the young island of Surtsey provides an ideal en-

vironment, both spatially and temporally, to test whether the

ecological opportunity provided by the vacant niche space on

the island can have a positive effect on the genetic diversity

of colonizing species. Most studies to date however, involve

old islands, which presumably are in the declining phase of

the diversity curve.

Studies on oceanic islands have shown that colonizing

plant species that experience founder effects and/or bottle-

necks tend to show reduced genetic diversity (e.g. Wester-

bergh and Saura, 1994; Affre et al., 1997; Yamada and Maki,

2012). However, reduction in genetic diversity following is-

land colonization is not always the case. Some plant invaders

show diversity gain, a potential influence of mating systems

(Sakai et al., 2001; Fernández-Mazuecos and Vargas, 2011).

Although in general there are significant losses of both allelic

richness and heterozygosity in introduced populations, and

large gains in diversity are rare, multiple introductions have

been shown to rescue the losses in diversity in a wide range

of plant, animal and fungal taxa (reviewed in Dlugosch and

Parker, 2008). Genetic diversity or allelic variation also ap-

pears to increase over long timescales, suggesting that gene

flow plays a role in augmenting diversity over the long-term

(e.g. Désamoré et al., 2012). Gene flow between formerly

differentiated populations, i.e. via hybridization, has been

shown to result in levels of diversity that exceed those in the

source populations (Novak and Mack, 1993; Ellstrand and

Schierenbeck, 2000). Numerous factors such as time, isola-

tion by distance, breeding systems, dispersal ability and poly-

ploidy all have a dynamic interplay, resulting in differences

in genetic behaviour and variation depending on the organ-

ism in question.

In the present study, amplified fragment length polymor-

phism (AFLP) data along with classical and Bayesian sta-

tistical methods were used to deduce the genetic structure

of Honckenya peploides colonizing Surtsey. Due to the fact

that plant colonization and succession have been thoroughly

studied there since its inception (Fridriksson and Johnsen,

1968; Fridriksson, 1970; Magnússon et al., 2009), and the

fact that H. peploides was one of the first and most prolific

colonizers of the island, Surtsey provides the perfect natu-

ral laboratory for a study of this type and H. peploides a

good model species. The objectives of this study were to as-

sess the genetic diversity and population genetic structure of

H. peploides on the island of Surtsey and to compare it to

the genetic structure on older, more established locations on

Heimaey Island, mainland Iceland, Denmark and Greenland.

Biogeosciences, 11, 6495–6507, 2014 www.biogeosciences.net/11/6495/2014/
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2 Materials and methods

2.1 Study species

Honckenya peploides (L.) Ehrh. (Caryophyllaceae) is a gyn-

odioecious, perennial, maritime dicot and can reproduce

both asexually using its rhizomatous system and sexually

with female (pistillate) and hermaphrodite (pollen produc-

ing morph) flowers (Malling, 1957). Asexual reproduc-

tion via rhizomes results in daughter clones which emerge

as shoots through the sand from the overwintering buds.

These shoots often remain attached to parent clones, with

connections sometimes running up to 2 m from the par-

ent plant (Sánchez-Vilas et al., 2010; Baillie, 2012). Seeds

of hermaphrodites develop into female and hermaphrodite

plants in an approximate 1 : 3 ratio, whereas seeds of fe-

male flowers produce about as many hermaphrodites as fe-

males (Malling, 1957). The sex determination system in

H. peploides is therefore considered heterogamous for the

hermaphrodite. Among most male heterogamous subdioe-

cious species, hermaphrodites rarely produce seeds and when

they do, the number and the fitness of seeds is very low com-

pared to female flowers, possibly indicating some level of

inbreeding depression (Tsukui and Sugawara, 1992; Keller

and Schwaegerle, 2006; Baillie, 2012).

The habitat of H. peploides is mainly limited to dunes, drift

lines, lakeshores and seashores. It has a circumpolar distribu-

tion extending from the Arctic to the temperate zone in west-

ern Europe, North America and north-eastern Russia down

to Japan (Hultén, 1968; Hultén and Fries, 1986). The plant is

an early colonizer, contributing to the anchorage of the soil

and was the first plant to set seed on Surtsey only a few years

after the island first appeared.

2.2 Marker choice

Amplified fragment length polymorphism (AFLP), a selec-

tively neutral, highly polymorphic technique, combines re-

striction digestion and polymerase chain reaction (PCR) to

produce Mendelian-inherited, multilocus, dominant markers

which are highly reproducible (Vos et al., 1995). The method

quickly generates large numbers of markers; prior knowledge

of the genomic sequence in question is not necessary; and

very little starting template is required and it can be used

for most organisms. AFLP fingerprinting is an established

molecular marker with broad applications in population ge-

netics, phylogenetics, linkage mapping and parentage analy-

ses (Powell et al., 1996; Meudt and Clarke, 2007; Foll et al.,

2010; Poczai et al., 2013). The technique has been used to

evaluate patterns of genetic variation and genetic structure in

a number of Arctic, subarctic and Antarctic plant species as

well as isolated island plant populations (Holderegger et al.,

2003; Schönswetter et al., 2005; Alsos et al., 2012; Eidesen

et al., 2013). AFLP has also been effectively used to detect

Figure 1. Bayesian inference clustering based on AFLP results us-

ing the admixture ancestral model in STRUCTURE software. For

the full AFLP data set, the model K = 2 produced the highest 1K

value, hence two groups assigned in red versus green. The two ge-

netic groups detected are represented as pie charts on the Google

Earth maps of the following: (a) all sampling locations, (b) Iceland,

(c) Surtsey and (d) Heimaey. An alignment based on proportion be-

tween the two genetic groups in each population (e) reveals two

clusters, I and II, whereby Denmark populations (DK & DS) pre-

dominate Cluster-I (green) and Greenland (GR) at the opposite end

in Cluster-II (red). Population names are abbreviated as in Table 1.

genetic structure in the species under study, Honckenya pe-

ploides (Sánchez-Vilas et al., 2010).

2.3 Plant material and collection locations

During July 2010 and May 2011, a total of 397 samples

were collected, from which 347 samples from 12 locations

in the North Atlantic region were analysed (Table 1, see also

Fig. 1). The five locations on Surtsey are as follows: SC –

located inside the western crater Surtungur at 70 m a.s.l.,

www.biogeosciences.net/11/6495/2014/ Biogeosciences, 11, 6495–6507, 2014
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Table 1. Sampling locations, GPS coordinates, collection dates, IDs and number of samples.

Locality GPS Coordinates Date Sample ID N

Surtsey 63◦18.24′ N, 20◦36.75′W 12–15 Jul 2010 SC 1-30 30

Surtsey 63◦18.50′ N, 20◦35.98′W 12–15 Jul 2010 SD 1-30 30

Surtsey 63◦18.19′ N, 20◦35.98′W 12–15 Jul 2010 SE 1-30 30

Surtsey 63◦17.94′ N, 20◦36.34′W 12–15 Jul 2010 SF 1-30 30

Surtsey 63◦18.416′ N, 20◦36′W 12–15 Jul 2010 SK 1-30 30

Heimaey 63◦24.50′ N, 20◦16.79′W 9 Jul 2010 HA(1-12) (16-30) 27

Heimaey 63◦26.91′ N, 20◦16.25′W 9 Jul 2010 HB 1-30 30

Gardur 63◦50.37′ N, 21◦04.63′W 17 Jul 2010 IG(1-12) (16-27) 24

Stokkseyri 64◦04.96′ N, 22◦41.54′W 17 Jul 2010 IS(1-6) (10-30) 27

Qeqertarsuaq 55◦58′ N, 11◦46′ E 25 Jul 2010 GR 1-29 29

Knarbo 55◦50′ N, 11◦22′ E 15 May 2011 DK 1-30 30

Skansehage 69◦15′ N, 53◦30′W 15 May 2011 DS 1-30 30

growing on volcanic cinder; SD – located on the northern

sand spit at 16 m, growing on volcanic sand; SE – located on

the eastern slope at 104 m, growing on volcanic cinder and

gravel; SF – located in the colonies of sea birds (mainly gulls)

on the southern lava at 25–45 m; and SK – located on the

steep east-facing slope of the old tephra crater Surtur lead-

ing to the northern sandbar at 36 m, growing on volcanic tuff

and gravel. The two locations on Heimaey, the largest of the

Vestmannaeyjar archipelago were as follows: HA – located

on the south side of the island, growing on volcanic sand and

gravel at 1–3 m; and HB – located on the northern side of the

island by the main harbour, growing on volcanic sand and

gravel at 1–2 m. The two locations on mainland Iceland were

as follows: Stokkseyri (IS) – located at the end of a fresh

water marsh in between two large glacial rivers at 1–3 m

on the southern coast, growing on glacial deposits and fine

sand; and Gardur (IG) – located at the western-most tip of the

Reykjanes peninsula at 1–3 m, growing on a rocky coast. The

two locations in Denmark were as follows: Skansehage (DS)

– located on the north-eastern tip of the island of Sjælland

at 1–3 m, growing above the high tide line on a limestone

sand beach; and Knarbo (DK) – also located on the island

of Sjælland in a very similar habitat at 1–3 m. The one lo-

cation in Greenland was Qeqertarsuaq (GR) – located on the

south coast of Disko Island on the west coast of Greenland at

1–3 m, growing on rocky seashore in glacial till.

Samples were collected by placing a marker in a random

location surrounded by clumps of H. peploides and sampling

clumps within a 20 m radius of the marker. At each locality

30 spatially segregated clumps were sampled, avoiding re-

sampling of clones as best as possible. Fresh leaf samples

were collected and stored in plastic bags with silica beads

until further laboratory analysis could be conducted.

Table 2. Primers used in the study (Applied Biosystems).

Primer Name Primer Sequence

EcoRI 5’-fam-GAC TGC GTA CCA ATT CAC T-3’

EcoRI 5’-joe- GAC TGC GTA CCA ATT CAG G-3’

MseI 5’-GAT GAG TCC TGA GTA ACT A-3’

MseI 5’-GAT GAG TCC TGA GTA ACT C-3’

2.4 DNA extraction

Genomic DNA was extracted from dehydrated leaf tissue in

a similar manner as conducted in Thórsson et al. (2010). The

extraction buffer (2 % CTAB, 1.4 M NaCl, 20 mM EDTA,

100 mM TrisHCl, pH 8, and 0.2 % 2-mercaptoethanol) was

pre-warmed to 65 ◦C. From each individual plant, approxi-

mately 15–20 mg of dried leaf tissue was placed in 1.5 mL

microtube and manually pulverized to a fine powder with

sterile plastic pestle in liquid nitrogen. Warm extraction

buffer (0.5 mL) was then added to the tube and mixed well;

this was then incubated at 65 ◦C in a water bath for 1 to

2 h and mixed occasionally by inversion. An equal volume

of chloroform : isoamyl alcohol (24 : 1) was then added and

mixed well before centrifugation at 1400 rpm for 10 min. The

aqueous phase was recovered and the DNA was ethanol-

precipitated, washed twice with wash buffer (76 % ethanol

and 10 mM ammonium acetate), and the air-dried DNA pellet

was resuspended in 200 µL of 1x TE buffer (10 mM TrisHCl

and 1 mM EDTA, pH 8). One µL of RNase (10 mg mL−1)

was added, the solution mixed well and incubated at 37 ◦C

for 30 min, after which 78 µL of 5M NaCl was added, the so-

lution mixed well by inversion. The DNA was then ethanol-

precipitated again, and the DNA pellet was resuspended in

100 µL of 1x TE buffer. Cleaned DNA samples were stored in

a −27 ◦C freezer until AFLP work could be done. The qual-

ity and concentration of DNA in all samples was measured

using a Thermo Scientific NanoDrop 1000 Spectrophotome-

ter at OD 260/280 nm.

Biogeosciences, 11, 6495–6507, 2014 www.biogeosciences.net/11/6495/2014/
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2.5 AFLP fingerprinting

The AFLP technique was performed with fluorescent dye la-

belling and detection technology, using all AFLP reagents,

adapters, primers, enzymes, size standards and fluorescent

dyes from Applied Biosystems®. Restriction and ligation re-

actions were carried out in accordance with the AFLP™

Plant Mapping Protocol (Applied Biosystems®) for average-

sized genomes. Fragment detection was performed on the

ABI Prism 3730 Genetic Analyzer (Applied Biosystems®),

an automated capillary electrophoresis device. Prior screen-

ing for primers suitable for use with H. peploides was

previously performed on plant individuals of both sexes

across multiple localities (Sánchez-Vilas et al., 2010). Two

primer pairs were chosen (MseI-CTA/EcoRI-ACT & MseI-

CTC/EcoRI-AGG), and selective amplification was carried

out on all samples (Table 2). Single PCRs were performed

for each primer combination, and the end products from two

primer pairs (with different dyes) were multiplexed for elec-

trophoresis. In all the reactions, only the EcoRI primers were

5’ labelled with a fluorescent dye.

A total of 250 ng of DNA was added to a diges-

tion–ligation mix in a final volume of 11 µL containing

digestion-ligation buffer (50 mM NaCl, 50 ng/µL BSA), 1 µL

of both MseI and EcoRI adapters, 1 unit of T4 DNA lig-

ase, 5 units of EcoRI and 1 unit of MseI and digested at

37 ◦C for 2 h. Following digestion-ligation, pre-amplification

PCR was performed with EcoRI-A/MseI-C primer pairs hav-

ing 1 selective nucleotide with 19 cycles of the following:

2 min at 72 ◦C, 1 s at 94 ◦C, 30 s at 56 ◦C, 2 min at 72 ◦C, fol-

lowed by a final extension for 30 min at 60 ◦C. Each 10 µL

of the reaction contained 2 µL of the restriction/ligation di-

lution (1:20), 7.5 µL of AFLP core mix from the Applied

Biosystems®Amplification Core Mix Module (buffer, nu-

cleotides, and AmpliTaq®DNA Polymerase) and 25 mM of

each primer pair. The PCR product was then diluted (1:20)

and used for the selective amplification with two primer

combinations containing three selective nucleotides (MseI-

CTA/EcoRI-ACT and MseI-CTC/EcoRI-AGG). The selec-

tive amplification PCR reaction entailed the following: 1 cy-

cle of 2 min at 94 ◦C, 30 s at 65 ◦C, 2 min at 72 ◦C; 8 cy-

cles of 1 s at 94 ◦C, 30 s at 64 ◦C and 2 min at 72 ◦C; 23

cycles of 1 s at 94 ◦C, 30 s at 56 ◦C, 2 min at 72 ◦C; fol-

lowed by a final extension for 30 min at 60 ◦C. Each 10 µL

of the reaction contained 1.5 µL of the pre-selective am-

plification dilution (1:20), 7.5 µL of the AFLP core mix,

0.5 µL EcoRI primer at 1 µM (fluorescently labelled) and

0.5 µL MseI primer at 5 µM. For analysis using capillary elec-

trophoresis, each 11 µL reaction contained 1 µL of each of the

two selective amplification products, 9.5 µL HiDiFormamid

and 0.5 µL Genescan-500 Rox-labelled internal size stan-

dard. After preparation, samples were denatured for 2 min at

94 ◦C and chilled on ice. Capillary electrophoresis was car-

ried out on the 3730 series DNA Analyzer using POP 7 cap-

illary polymer and ABI Prism 3730 electrophoresis buffer.

The capillaries were 47 cm in length with 50 µm in diameter.

Samples were injected electrokinetically for 5–20 s at 15 kV

and were run at 15 kV for 24 min at 60 ◦C.

2.6 Data analysis

2.6.1 Raw data

In the AFLP analysis, only amplified fragments in the

50–500 bp range that could be scored unambiguously were

included. Fragments outside this range could not be accu-

rately sized. The raw AFLP data were scored using the pro-

gram GeneMapper 3.7 (Applied Biosystems®) and the pres-

ence or absence of each fragment was scored for each indi-

vidual manually in GeneMarker® (Softgenetics). Analysis of

the AFLP data was based on the phenotypic frequency at a

particular locus (i.e. the proportion of individuals having a

band). We applied the band-based approach due to the poly-

ploidy nature of our study species and set the allele frequency

equal to band frequency.

2.6.2 Genetic relationships and isolation by distance

The relationship among populations and individuals was first

explored by using Nei’s genetic distances (Nei, 1973) among

populations estimated in AFLP-SURV 1.0 (Vekemans et

al., 2002) (available at http://www.ulb.ac.be/sciences/lagev/),

with distance matrices made with 10 000 bootstrap ordina-

tions. These matrices were then used to construct un-rooted

neighbour joining (NJ) trees with the NEIGHBOR and CON-

SENSUS programs in PHYLLIP version 3.65 (Felsenstein,

1989), and the trees were graphically displayed using MEGA

(Molecular Evolutionary Genetics Analysis) software ver-

sion 6.06 (Tamura et al., 2013). Nei’s pairwise genetic dis-

tance matrixes as well as pairwise FST matrices calculated

with AFLP-SURV 1.0 were also plotted against geographic

distances in order to test for the effects of isolation by dis-

tance. All locations in the full data set as well as selected re-

gions and locations were compared. Significance was tested

with a Mantel correlation test in R with the ade4 package

(Chessel et al., 2004). Multidimensional scaling (Kruskal,

1964) was also used to visualize patterns of relatedness

within the FST matrices.

2.6.3 Bayesian clustering

A Bayesian clustering approach, implemented in STRUC-

TURE 2.2 (Pritchard et al., 2000) was used to determine the

number of genetic clusters (K) in the data set without any

prior information on the sampling locations. To assume the

admixture model, the number of genetically distinct clusters

(K) was set to vary from 1 to 12 (total number of popula-

tions). Twenty independent simulations were run for each K

value with a burn-in length of 104 and a run length of 105

Markov chain Monte Carlo generations. The optimal value

of K was estimated by using the R script STRUCTURE-sum-
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2009, part of AFLPDAT (Ehrich, 2006), to summarize the

output files, calculate similarity coefficients between repli-

cate runs and to plot the means of the estimated log poste-

rior probability of the data over the replicate runs for each

K value or L(K) in order to determine the highest level of

hierarchical structure (Evanno et al., 2005). After detection

of genetic divergence among populations, the analysis was

repeated for each group to determine if any substructure ex-

isted below the highest hierarchical level. Graphical output

was generated using CLUMPP version 1.1.1 (Jakobsson and

Rosenberg, 2007) and DISTRUCT (Rosenberg, 2004) soft-

ware.

2.6.4 Genetic data analysis

Genetic differentiation among populations was calculated as

Wright’s FST (Wright, 1965; Lynch and Milligan, 1994) in

AFLP-SURV 1.0 (Vekemans et al., 2002) using 10 000 per-

mutations to test for significance. The percentage of poly-

morphic loci (PLP), total gene diversity (HT), expected het-

erozygosity (HE) and average gene diversity (HW) were also

estimated in AFLP-SURV. To test for significant difference in

PLP and HT between locations, a Wilcoxon rank test was

implemented in R. The relationship between PLP and HT

as well as between population size and PLP or HT was also

tested with a Spearman’s rank correlation test in R. Analy-

sis of molecular variance (AMOVA) was performed to assign

components of genetic variation to sets of populations de-

fined by location in Arlequin suite version 3.5 (Excoffier and

Lischer, 2010).

3 Results

3.1 Patterns of polymorphism and heterozygosity

Using two primer combinations (Table 2), 173 AFLP loci

were scored across all sampling locations. Of these, 65 were

polymorphic (37.6 %) and used in the analysis (Table 3). In

general, highly reproducible AFLP patterns were obtained.

An average error rate of 2.1 % was estimated across the

ten pilot samples for all primer pairs. This value fell below

the maximum (5 %) error rate percentage accepted for good

AFLP reproducibility (Pineiro et al., 2007). The proportion

of polymorphic loci per population (PLP) varied from 31.8 %

to 55.5 %. The total heterozygosity (HT) was 0.2118. The

expected heterozygosity (HE within populations varied from

0.1328 and 0.1397 in the Denmark locations to 0.2130 in the

SK Surtsey location which had the highest heterozygosity.

Heimaey south (HA) and Stokkseyri (IS) on the southern

coast of Iceland showed similar values, 0.1964 and 0.1972

respectively. The average genetic diversity within the popu-

lations (HW ) was 0.1746, but when looking at the regional

values, the Denmark populations had lower average genetic

diversity than all Icelandic regions.

Figure 2. Un-rooted neighbour joining (NJ) trees based on Nei’s

genetic distances for (a) the full data set and (b) Surtsey only. Boot-

strap values are shown at the nodes. Population names are abbrevi-

ated as in Table 1. The two colours, green and red, represent clusters

I and II in Fig. 1, respectively.

A significant difference was found between the Den-

mark and Surtsey populations (Table 3) for both the PLP

(31.8 % for both Denmark populations, 44.5 %–55.5 % for

Surtsey populations) and the total heterozygosity HT (Den-

mark= 0.1362, Surtsey= 0.1974), with p = 0.0243 and p =

0.0264 respectively. None of the other populations were

found to differ significantly although PLP and HT differed

slightly among all the populations. PLP and HT values were

also moderately correlated with each other (Spearman’s rank

correlation, R = 0.64, p<0.05) but were not correlated with

population size (R = 0.12 and R =−0.12, respectively,

p>0.05) over the whole geographic range.

3.2 Genetic differentiation and gene diversity

The total genetic differentiation among all 12 Honckenya

peploides sampling locations was moderate (FST = 0.1769,

Table 3) but highly significant (permutation test, P<0.001)

in all collection locations except Denmark (Table 4). The

FST value for Denmark was found to be non-significant

(p = 0.367). The total FST among the Surtsey populations

(0.0714) as well as the Heimaey populations (0.0550) were

less than half of that found among the mainland populations

(0.1747). As seen in Table 4, the largest FST values were

found when comparing any population with the Denmark

populations (DK and DS), especially Greenland (GR: FST

0.4314 and 0.4400), Gardur (IG: FST 0.3558 and 0.3667) and

location SC on Surtsey (FST 0.3475 and 0.3567).

3.3 Bayesian analysis of genetic structure

In the Bayesian cluster analysis obtained from STRUC-

TURE, the model with the highest 1K satisfactorily ex-

plained the data obtained from the AFLP analysis (Fig. 1). In

the estimated model based on the AFLP data set when K = 2,

most individuals in the Denmark (DK & DS), Stokkseyri

(IS), Surtsey E, Surtsey K and Surtsey F locations were as-

signed to Cluster-I; whereas most of the individuals in the

Greenland (GR), Gardur (IG) in Reykjanes peninsula, Surt-

sey C, Surtsey D and Vestmannaeyjar Heimaey north and
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Table 3. Genetic diversity in sampling locations of Honckenya peploides. Total values are for the species, whereas subtotal values are for

regions, i.e. Surtsey (SC – SK), Heimaey (HA and HB), mainland Iceland (IG and IS) and Denmark (DK and DS). PLP – percentage of

polymorphic loci, HE – expected heterozygosity, FST – Wright’s FST, HT - total gene diversity (total heterozygosity), HW – average gene

diversity within populations.

ID Polymorphic bands PLP HE FST HT HW

SC 83 48 0.1740

SD 83 48 0.1808

SE 81 46 0.1789

SF 77 44.5 0.1699

SK 96 55.5 0.2130 0.0714 0.1974 0.1833

HA 86 49.7 0.1964

HB 82 47.4 0.1696 0.0550 0.1938 0.1830

IG 78 45.1 0.1765

IS 89 51.4 0.1972 0.1747 0.2265 0.1869

DK 55 31.8 0.1397

DS 55 31.8 0.1328 −0.0003 0.1362 0.1362

GR 76 43.9 0.1663

Total 65 37.6 0.1769 0.2118 0.1746

Table 4. Nei’s genetic distances are displayed on the upper diagonal and FST values on lower diagonal (∗ non-significant values).

HA HB DK DS IG GR SC SD SE SF IS SK

HA 0.0132 0.0954 0.1018 0.0047 0.0194 0.0087 0.0061 0.0260 0.0176 0.0252 0.0368

HB 0.0557 0.1275 0.1249 0.0062 0.0249 0.0110 0.0182 0.0500 0.0473 0.0609 0.0667

DK 0.3121 0.3962 0.0000∗ 0.1091 0.1470 0.1039 0.0810 0.0587 0.0703 0.0533 0.0502

DS 0.3312 0.3981 0.0000∗ 0.1115 0.1482 0.1054 0.0847 0.0699 0.0825 0.0620 0.0622

IG 0.0205 0.0285 0.3558 0.3667 0.0188 0.0118 0.0182 0.0464 0.0400 0.0498 0.0580

GR 0.0804 0.1085 0.4314 0.4400 0.0828 0.0201 0.0302 0.0540 0.0452 0.0595 0.0644

SC 0.0370 0.0499 0.3475 0.3567 0.0522 0.0886 0.0044 0.0266 0.0238 0.0358 0.0390

SD 0.0256 0.0784 0.2906 0.3052 0.0768 0.1243 0.0199 0.0154 0.0115 0.0227 0.0282

SE 0.1004 0.1881 0.2322 0.2691 0.1737 0.2015 0.1094 0.0653 0.0037 0.0043 0.0077

SF 0.0728 0.1846 0.2712 0.3086 0.1579 0.1796 0.1018 0.0511 0.0171 0.0050 0.0138

IS 0.0923 0.2090 0.2059 0.2357 0.1750 0.2070 0.1341 0.0882 0.0183 0.0224 0.0022

SK 0.1234 0.2155 0.1891 0.2272 0.1899 0.2117 0.1384 0.1026 0.0314 0.0560 0.0088

south (HB and HA) locations were assigned to Cluster-II. No

substructures were detected within any cluster as a result of

further analysis (not shown here). Interestingly, the two clus-

ters appear to be geographically divided, with Cluster-I being

more eastern, with Denmark at the eastern end, and Cluster-II

more western, with Greenland at the western end. Within the

island Surtsey, the STRUCTURE analysis revealed a clear

genetic split between those on the north-west region (SC and

SD) and those on the east including the southern lava (SF)

and the eastern coast (SK and SE) populations. The same

east–west contrast could be seen between the two Icelandic

mainland populations.

3.4 Neighbour joining (NJ) trees

The east–west pattern revealed by the Bayesian analysis

(Fig. 1) was also apparent in the neighbour joining (NJ) trees

(Fig. 2) and this was supported by the multidimensional scal-

ing (MDS) analysis (results not shown). The NJ tree based

on genetic distances produced from the full data set (Fig. 2a)

showed a split into two clusters: the populations DK, DS,

SK, IS, SE and SF were grouped together in one cluster (the

eastern Cluster-I in Fig. 1) with bootstrap values above 88 %,

while populations GR, IG, HB, SC, HA and SD grouped to-

gether more weakly in another cluster with bootstrap values

above 53 % (the western Cluster-II in Fig. 1). Denmark pop-

ulations were furthest away from all other locations in the ge-

netic distance estimate. There was also a significant genetic

distance between the two sites on the island of Heimaey (HA
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Table 5. Analysis of molecular variance (AMOVA). Populations are arranged into five groups according to location: (1) Denmark (DK and

DS); (2) mainland Iceland (IG and IS); (3) Surtsey (SC, SD, SE, SF, SK); (4) Heimaey (HA and HB); and (5) Greenland (GR).

Source of Variation df Variance Variation (%) Fixation Index P

Among five geographic groups 4 3.2390 17.40 FCT= 0.1740 < 0.01

Among populations within group 7 1.0404 5.59 FSC= 0.0677 < 0.001

Within population 288 14.3332 77.01 FST= 0.2299 < 0.001

Total 299 18.6126 100

vs. HB) and between the two sites on the southern coast of

Iceland (IS vs. IG). The Greenland population fell within the

western cluster. The NJ tree based on genetic distances pro-

duced from the Surtsey data set (Fig. 2b) also showed a split

into two clusters, supported by bootstrap values over 98 %,

in which the populations on the north-west side of the island

(SC and SD) clustered together (Nei’s distance= 0.0044)

and were clearly separated (Nei’s distance= 0.0115) from

the populations located on the south in the gull colony (SF)

and the east side of the island (SE and SK).

3.5 Mantel test – isolation by distance

A mantel test on the full data set (not shown) revealed a pos-

itive and significant association between Nei’s genetic dis-

tance and geographic distance (r = 0.6331, p = 0.001) as

well as genetic differentiation (FST) and geographic distance

(r = 0.8083, p = 0.001). This indicated isolation by distance

(IBD) with geographic distance, explaining roughly 80 % of

the variation in genetic differentiation. This IBD effect was

statistically significant when comparing between Iceland and

Greenland (within a distance of 1500 km), between Denmark

and Iceland (within a distance of 2000 km) and between Den-

mark and Greenland.

However, when the populations within each Iceland region

were compared (Fig. 3), non-significant associations were

obtained between genetic distance (Nei’s) or genetic differ-

entiation (FST) and geographic distance. This indicated that

there is significant gene flow and a limited effect of isolation

by distance at the regional and local scale. Considering pop-

ulations on Surtsey, Heimaey and mainland Iceland together

(within a distance of 150 km or so), non-significant associ-

ations were obtained both between Nei’s genetic distance

and geographic distance (Fig. 3a: r = 0.1170, p = 0.279)

as well as between genetic differentiation (FST) and geo-

graphic distance (Fig. 3c: r = 0.1123, p = 0.249). Within the

island of Surtsey, there appeared to be a negative yet non-

significant correlation between geographic and genetic dis-

tances (Fig. 3b: r =−0.2766, p = 0.784) and between ge-

netic differentiation (FST) and geographic distance (Fig. 3d:

r =−0.2110, p = 0.694). Although not statistically signifi-

cant, this is of great interest as negative spatial correlations

could be indicative of a pattern of dissimilar values (geno-

types) appearing in close spatial association, a pattern also

seen in the STRUCTURE analysis (Fig. 1) as well as the NJ

tree (Fig. 2).

3.6 Analysis of molecular variance (AMOVA)

The AMOVA (Table 5) showed that variation within popula-

tions (sampling locations) accounted for most (77.01 %) of

the genetic variance. Variation among groups (areas or re-

gions) accounted for 17.40 % of the total genetic variance

and variation among populations (sampling locations) within

groups (areas or regions) accounted for only 5.59 %. Genetic

differentiation among groups was significant (p<0.01) and

highly significant among populations within groups as well

as within populations (p<0.001).

4 Discussion

4.1 Patterns of diversity on Surtsey versus

other sites

The highest genetic diversity found in the present study was

from Surtsey. Contrary to original expectations, genetic di-

versity (HE) was found to be significantly higher in the Surt-

sey and Iceland populations than in the Denmark popula-

tions. Furthermore, when compared within Iceland, genetic

diversity remained quite similar and was even increased in

some Surtsey populations. The greater population size, age

and wider geographic range of H. peploides in both Iceland

and Denmark was expected to lead to higher genetic vari-

ation in those areas (according to Nei et al., 1975). How-

ever, the findings of this study contradict this and cast some

doubt on the long-held view that genetic diversity is gen-

erally lower in island populations (Wright, 1940; Husband

and Barrett, 1991; Franks, 2010). The present study revealed

the same trend as in the earlier study of H. peploides by Ei-

thun (2003), where multilocus genotypes (MLG) based on

isozyme data were found to be more frequent in Greenland

(66 MLG) and Svalbard (73 MLG) than in plants collected on

the mainland in southern Norway (4 MLG). Furthermore, the

present results, in parallel with a growing number of studies,

find either similar (Su et al., 2010) or greater (Fernández-

Mazuecos and Vargas, 2011; Désamoré et al., 2012) genetic

diversity in oceanic island species when comparing them to

their mainland counterparts. We therefore postulate that the
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Figure 3. Isolation by distance: plots of pairwise estimates of Nei’s genetic distance (top row: a and b) and FST (bottom row: c and d)

versus geographic distance in km between individual plant samples of Honckenya peploides from; (a and c) Mainland Iceland, Surtsey and

Heimaey, and (b and d) Surtsey only. Statistical significance was assessed using a Mantel test.

resulting genetic structure on Surtsey and overall patterns of

genetic diversity during colonization of oceanic islands for

that matter, are more complex than previously thought and

are likely driven by a dynamic interaction between multiple

spatial, temporal and life history variables. Philipp and Ad-

sersen (2014) describe how ecological conditions for H. pe-

ploides have changed during its colonization on Surtsey, and

how the changes may affect selective forces.

Facilitated by the species long-distance dispersal capabili-

ties, in this case seed dispersal by sea currents, the coloniza-

tion of H. peploides on Surtsey started with a few individu-

als but increased rather quickly to cover most of the empty

niches on the island (Sigurdsson and Magnusson, 2010).

This development fits the general dynamic model (GDM) of

oceanic island biogeography relatively well regarding young

and small islands (Whittaker et al., 2008). The distance from

mainland Iceland or any other islands in the archipelago

(< 35 km) is probably not a barrier to dispersal for this plant.

Furthermore, seeds of H. peploides are not prone to desic-

cation by salt water as the plant is a beach dune halophyte.

As a consequence, sufficient gene flow among populations

is likely to negate the effects of isolation by distance at the

regional scale. At the local scale populations remain signif-

icantly differentiated despite their close proximity on both

Surtsey and Heimaey, mostly due to short pollen and seed

dispersal distances (Philipp and Adsersen, 2014).

The significant genetic distance and differentiation found

among the Surtsey populations indicated that the influx of

genetic material was likely attributable to multiple introduc-

tions from various source locations. Multiple introductions

increase both the effective population size and the popula-

tion growth rate, and have been shown to lead to an increase

in gene diversity in newly colonized populations (Dlugosch

and Parker, 2008). Therefore, it seems probable that long

distance dispersal from multiple locations is a key driver of

the current genetic structure on Surtsey. The negative genetic

consequences associated with colonization (e.g. founder ef-

fects or genetic drift) are likely reduced through the constant

influx of new genetic material (Nei et al., 1975; Genton et al.,

2005; Stuessy et al., 2012). The maintenance and/or expan-

sion of populations with high gene diversity on the island

is then most likely fostered by the following: (a) the vast
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empty niche space available on the island (Fridriksson and

Johnsen, 1968); (b) the sea barrier inhibiting establishment of

other (probably competing) dispersal groups; (c) the subdioe-

cious breeding system of the plant itself causing poor seed set

after self-fertilization (Tsukui and Sugawara, 1992; Eithun,

2003); (d) the ecological conditions during the successional

changes of the environment and formation of communities

(Phillip and Adsersen, 2014); and (e) the polyploid nature

of the study species providing fixed heterozygosity (Soltis

and Soltis, 2000). Over its circumpolar distribution range the

species is most commonly known as tetraploid with chro-

mosome number of 2n= 4x= 68 (Löve and Löve, 1975),

and Icelandic material was found to be tetraploid as expected

(S. H. Árnason, unpublished result).

4.2 Genetic differentiation among populations and

regions

At the level of intra-island genetic diversity, genetic dif-

ferentiation (FST) on both the island of Surtsey and on

Heimaey was only moderate but highly significant. This in-

dicated some population genetic structure with strong gene

flow likely preventing further divergence within the islands

(see Franks, 2010). On the other hand, genetic differentia-

tion on mainland Iceland was great, twice as much as the

FST values of the islands. This indicated a genetic struc-

turing which limited gene flow between the two mainland

populations. This strong differentiation is likely due to envi-

ronmental heterogeneity and differential selection pressures

(Pannell and Fields, 2014) as sampling locations on mainland

Iceland are much older and separated by a large distance of

roughly 85 km. In contrast, sampling locations within Surt-

sey and Heimaey are quite proximal (∼ 1 and 5 km apart re-

spectively), with limited topography separating them, and in

the case of Surtsey, very recently colonized.

Mantel tests of the full data set revealed a positive

and highly significant correlation between genetic dis-

tance/differentiation and physical distance. This finding is,

however, not genetically or phylogeographically informative

as the physical distance between regions, especially Iceland

vs. Denmark, is too large. However, similar to the migrant

model of Slatkins (1987), the non-significant Mantel tests of

selected regions and locations indicated that there was sig-

nificant gene flow between all locations except Denmark.

One possible explanation for long distance gene flow be-

tween Iceland and Greenland could be seed dispersal via

hitchhiking on or in migrating birds. The most likely candi-

date for this is the light-bellied Brent goose (Branta bernicla

subsp. hrota), a shorebird feeding mainly on shore vegeta-

tion. This bird winters in Ireland, breeds in the east Cana-

dian High Arctic and undertakes one of the longest migra-

tions of any western Palaearctic goose population, crossing

the Greenland Ice Cap, staging at sites in Greenland and Ice-

land before crossing the North Atlantic to Ireland (Robin-

son et al., 2004). Light-bellied Brent geese visit Iceland both

in spring and autumn, mainly on the west coast but also on

the south-western coast including sites investigated in the

present study (http://www.ni.is/dyralif/fuglar/). Furthermore,

the Light-bellied Brent goose is reported to pass Qeqertar-

suaq Island in the autumn and spring having staging sites

north of our study locality (Robinson et al., 2004). The geese

may consequently disperse seeds of H. peploides along their

route, including over our sampling site on the south coast of

Qeqertarsuaq.

Using only data from Surtsey, Mantel tests (Fig. 3) re-

vealed a negative and non-significant correlation between ge-

netic distance/differentiation and physical distance. This may

suggest that at such a small scale, dissimilar genotypes are

occurring in close spatial association to one another, similar

to that found in other studies (Matesanz et al., 2011; Diniz-

Filho et al., 2013). The breeding system and outcrossing na-

ture of the plant might be keeping inbreeding depression in

check via reduced fitness of self-fertilized embryos. In accor-

dance with this, the analysis of molecular variance indicated

that despite the clonal capabilities of H. peploides, most of

the genetic variance was within populations (sampling loca-

tions). These results parallel similar studies on H. peploides

conducted in Spain and Portugal (Sánchez-Vilas et al., 2010).

We therefore postulate that the success of dispersal at the re-

gional scale maintains population cohesion and negates the

effect of isolation by distance. The outcrossing nature of the

plant then acts as a buffer to maintain moderate genetic dif-

ferentiation at the local scale.

4.3 Phylogeography of H. peploides in the Iceland

regions

The Surtsey NJ tree (Fig. 2) revealed two distinct clusters

which indicated significant genetic structure on the small is-

land. This is likely explained by the relatively young age of

the island itself and by multiple colonization events combin-

ing genotypes of differentiated populations from the source

regions. The original report of plant colonization on the is-

land shows that H. peploides initially colonized the north-

eastern shore (Fridriksson, 1970), including SD and SK sites

in the present study. During the summer of 1968 at location

SK (F15 in report) there were three plants which had one,

four and five branches with 16, 29 and 34 leaves respectively.

Likewise, at outermost site SD (B13 in report) there were two

plants having only one stem with few leaves each, meaning

that they were younger. This indicates different colonization

events, possibly at differing times as none of the plants had

produced seed yet. A further explanation for the significant

genetic distance and differentiation found between sites on

the island is that the plants originally colonizing Surtsey were

of diverse genetic origin (populations) and that the colonizers

that gradually established on the eastern and western part of

the island were therefore from different populations in Ice-

land or from Vestmannaeyjar islands.
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The Bayesian inference clustering (Fig. 1) revealed a clear

east–west split in the Surtsey populations. The eastern part of

the island was colonized earlier than the western part, around

the large crater. The main pathway was from the northern

sandy shores up to the eastern lava and then onto the south-

ern part of the island. Another pathway, though minor, was

up the gully between the two palagonite hills, where seeds

of plants were probably gradually blown and moved along.

Two sampling locations on the north-west side of the island

of Surtsey (SC and SD), which clustered together genetically,

are separated by a distance of up to 800 m and a 100 m high

volcanic crater. The total area of the island as of 2002 was

merely 1.4 km2 (Jakobsson and Gudmundsson, 2003). These

sampling locations were colonized at different times: the SD

location was colonized first in 1968 and the SC location (I8

in report) was not colonized until after 1978 (Fridriksson,

1982). The genetic similarity of SC and SD could possi-

bly indicate that seed movement and spread of H. peploides

within the island of Surtsey is being facilitated by wind. Surt-

sey is a very windy environment and therefore movement of

surface sand and seeds occur regularly.

Bayesian analysis of the whole data set was well supported

by both the un-rooted NJ trees as well as the MDS anal-

ysis. Once again, this, along with the moderate differentia-

tion found, indicated multiple colonization events on Surtsey

from several sources as well as a clear genetic split between

the Iceland/Greenland and Denmark locations. For the Ice-

land regions, populations from Gardur (IG), Heimaey (HA

and HB) and the western region of Surtsey (SC and SD)

were clearly differentiated from the eastern group which in-

cluded populations from Stokkseyri (ST) and the locations

on the eastern side of Surtsey (SK, SE and SF). As revealed

here by the genetic structure analysis, the colonization of H.

peploides on Surtsey likely took place from several source

locations including Heimaey, and the southern coast of Ice-

land. Our study indicates that the populations closer to the

Reykjanes peninsula (probably more south-eastern coastal

sites) and from Heimaey are the most likely source of genetic

material for the populations on the western side of Surtsey.

The southern shore of mainland Iceland is the most probable

source of colonists for the eastern side and the northern sand

spit on the island.
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