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Abstract

Peptides are attracting increasing interest as protease inhibitors. Here, we

demonstrate a new inhibitory mechanism and a new type of exosite interactions for

a phage-displayed peptide library-derived competitive inhibitor, mupain-1

(CPAYSRYLDC), of the serine protease murine urokinase-type plasminogen

activator (uPA). We used X-ray crystal structure analysis, site-directed

mutagenesis, liquid state NMR, surface plasmon resonance analysis, and

isothermal titration calorimetry and wild type and engineered variants of murine and

human uPA. We demonstrate that Arg6 inserts into the S1 specificity pocket, its

carbonyl group aligning improperly relative to Ser195 and the oxyanion hole,

explaining why the peptide is an inhibitor rather than a substrate. Substitution of the

P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures

led to an increased affinity, depending on changes in both P1 - S1 and exosite

interactions. Site-directed mutagenesis showed that exosite interactions, while still

supporting high affinity binding, differed substantially between different uPA

variants. Surprisingly, high affinity binding was facilitated by Ala-substitution of Asp9

of the peptide, in spite of a less favorable binding entropy and loss of a polar

interaction. We conclude that increased flexibility of the peptide allows more

favorable exosite interactions, which, in combination with the use of novel Arg

analogues as P1 residues, can be used to manipulate the affinity and specificity of
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this peptidic inhibitor, a concept different from conventional attempts at improving

inhibitor affinity by reducing the entropic burden.

Introduction

Peptides are of considerable interest as drug candidates. Peptides binding to

specific protein targets can be selected from phage-displayed peptide libraries with

a diversity of up to 106 different sequences. The primary structure of the peptides

in the libraries can be modified by introduction of disulfide bonds [1] or by

chemical cross-linking [2]. Peptides directly selected from phage-displayed

peptide libraries usually bind their targets with KD values in the mM range, but the

affinities can be improved by construction of focused libraries or chemical

modification, like introduction of unnatural amino acids. Peptides have

predictable absorption, distribution, metabolism, and excretion properties, can be

delivered in vivo by new formulation methods, and stabilized against proteolytic

degradation by various means [3].

Serine proteases of the trypsin family (clan SA) have many physiological and

pathophysiological functions [4–6]. There is therefore extensive interest in

generating specific inhibitors for pharmacological intervention with their

enzymatic activity. Moreover, serine proteases are classical subjects for studies of

catalytic and inhibitory mechanisms [7]. One interesting member of the trypsin

family of serine proteases is urokinase-type plasminogen activator (uPA), which

catalyses the conversion of the zymogen plasminogen into the active protease

plasmin through cleavage of plasminogen’s Arg15–Val16 bond (using the

chymotrypsin numbering [8]). Plasmin generated by uPA participates in the

turnover of extracellular matrix proteins in physiological and pathophysiological

tissue remodeling [9, 10]. Abnormal expression of uPA is responsible for tissue

damage in several pathological conditions, including rheumatoid arthritis, allergic

vasculitis, and xeroderma pigmentosum, and in particular, is a key factor for the

invasive capacity of malignant tumors [11]. uPA is therefore a potential

therapeutic target.

From a phage-displayed peptide library, we previously isolated a serum-stable,

disulfide bond-constrained peptide, CPAYSRYLDC, termed mupain-1, which

competitively inhibits murine uPA (muPA). As based on site-directed mutagen-

esis, mupain-1 gains high specificity for its target by having an extended

interaction surface with the target protease, involving a number of exosite

interactions. Its affinity for the target is moderate, the Ki value for inhibition of

muPA being around 0.5 mM [12]. Substituting the P1 Arg residue with different

non-natural amino acids in a mupain-1 background improved the affinity. Two

variants of mupain-1, with the unnatural amino acids L-4-guanidino-phenyla-

lanine or L-3-(N-amidino-4-piperidyl)alanine (Fig. 1) as P1 residues instead of

the original Arg, have a 2- to 10-fold improved affinities [13].
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In this study, we aimed at understanding the inhibitory mechanism and

binding mechanism of mupain-1 and its derivatives. Why are these peptides

protease inhibitors and not protease substrates? Which are the molecular events

during the binding of peptides to serine proteases? Why do P1 substitutions

increase the affinity? Is the specificity of the peptides among different serine

proteases determined by the fit of the P1 residue into the specificity pocket, the

exosite interactions, or the solution structures?

To answer these questions, we used X-ray crystal structure analysis, site-

directed mutagenesis, surface plasmon resonance (SPR), isothermal titration

calorimetry (ITC), and NMR spectroscopy to study the interaction of mupain-1

and derivatives with recombinant wild type (wt) muPA and engineered variants of

muPA and human uPA (huPA). Several recent papers on peptidic protease

inhibitors describe how binding affinity can be increased by a more favorable

binding entropy following introduction of a more rigid peptide structure by

bicyclisation [2, 14, 15]. Here, we go in another direction and show how increased

flexibility can lead to an increased affinity.

Materials and Methods

Peptides

Chemicals for peptide synthesis were purchased from Sigma-Aldrich, Iris Biotech

GmbH, or Rapp Polymere GmbH, and used without further purification. Fmoc-

L-4-guanidino-phenylalanine(N, N9-di-Boc)-OH and Fmoc-L-Ala-4-

piperidyl(Alloc)-OH were commercially available. Analytical HPLC was per-

formed on a Dionex UltiMate 3000, using a Phenomenex Gemini 110 Å C18

column (3 mm, 4.6650 mm) with a flow rate of 1.0 ml per min and a linear

gradient going from 95% H2O, 5% acetonitrile with 0.1% HCOOH to 100%

acetonitrile with 0.1% HCOOH over 10 min. Preparative HPLC was performed

using a Dionex UltiMate 3000, equipped with a Phenomenex Gemini-NX C18

110 Å column, running at a flow rate of 10.0 ml/min and a linear gradient going

from 95% H2O/5% acetonitrile with 0.1% TFA to 100% acetonitrile with 0.1%

TFA over 30 min. High resolution mass spectra were obtained on a Micromass

Fig. 1. The structures of the P1 amino acids being studied here.

doi:10.1371/journal.pone.0115872.g001
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LCT high resolution time-of-flight instrument by direct injection. Ionization was

performed in positive electrospray mode.

Solid-phase peptide synthesis was performed using Na-Fmoc-protected amino

acids, a HBTU-HOBt activation protocol, and a Tentagel resin with Rink amide

linker (0.23 mmol/g); HBTU (3.8 eq.), HOBt-HOAt (4:1, 4 eq.), Fmoc-AA-OH (4

eq.), DIPEA (7.2 eq.) in NMP. Manual peptide synthesiswas performed with

preactivation for 5 min and single couplings for 90 min. Fmoc deprotections were

performed using piperidine/NMP (1:4) for 2+15 min.

Automated peptide synthesis was performed on a Biotage SyroWave. Standard

Fmoc-amino acids were coupled in parallel mode 120 min: Fmoc-AA-OH (s5.2

eq.), HBTU (5 eq.), HOBt/HOAt (4:1, 5 eq.), DIPEA (9.8 eq.). Arginine mimics

were coupled at 75 C̊ for 10 min: Fmoc-AA-OH (2 eq.), HBTU (1.9 eq.), HOBt/

HOAt (4:1, 2 eq.), DIPEA (3.6 eq.). Fmoc deprotections were performed using

piperidine/NMP (2:3) for 3 followed by piperidine/NMP (1:4) for 15 min.

Peptides with Alloc protected amino acids were deprotected to a free amine by

treating the fully protected and N-acetylated peptides with a mixture of Pd(PPh3)4

(0.05 eq.) and Me2NH?BH3 (0.2 eq.) in degassed CH2Cl2 (30 min) and washed

with NMP (5 x). The peptides were then treated with N, N’-di-Boc-1H-pyrazole-

1-carboxamidine (5 eq.) in NMP overnight. Following peptide assembly, the

resins were washed extensively with NMP and CH2Cl2, before peptide release with

TFA/H2O/triethylsilane (95:2.5:2.5). Peptide release proceeded for 2 h before the

TFA-peptide mixture was collected by filtration. The resin was additionally

washed with TFA (2x) and the TFA mixtures were pooled. TFA was removed

under a stream of nitrogen and the peptide was precipitated with diethyl ether.

The peptides were dissolved in a minimum amount of H2O/acetonitrile (2:1)

before being purified by preparative HPLC. The purified peptides were dissolved

in H2O/acetonitrile (2:1) to a final concentration of 1 mM. The solution was

brought to pH 7.5–8 with NH3 in methanol. The peptides were oxidized to form

disulfide bridges by addition of 1.2 eq. of H2O2 (30–60 min). The oxidization was

stopped with the addition of acetic acid (0.1 ml) followed by evaporation and

HPLC purification. Mass spectrometry: Mupain-1-12 D9A [M+H]+ 1224,4

[M+2H]2+ 613,1; mupain-1-16 D9A [M+H]+ 1234,5 [M+2H]2+ 617,7.

The concentrations of the peptide variants were determined by measurements

of OD280 and the use of sequence-derived extinction coefficients provided by the

Protparam tool on the Expasy server (located at http://www.expasy.org).

Proteases

cDNA encoding full length muPA, full length huPA and site directed mutants

were cloned into the pTT5 or pCDNA3.1 vectors. All variants contained a C-

terminal hexa-His tag. The cDNAs were transfected into human embryonic

kidney 293 (HEK293) 6E suspension cells, which were cultured in a humidified

5% CO2 incubator at 37 C̊. The medium used was F17 medium (Invitrogen)

supplemented with 0.1% Pluronic F-68, a nonionic detergent (Invitrogen), 4 mM

L-Gln (Lonza), and 25 mg/ml of the selective agent for eukaryotic cells G418
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(Invitrogen). Mr,25,000 linear polyethylenimine (400 mg) (Polysciences) was

preincubated with cDNA (200 mg) for 15 min and added to 200 mL cells with a

density of 16106 cells/mL. Twenty-four hours post-transfection, Tryptone N1

(Organotechnie SAS) was added to a final concentration of 0.5% (w/v).

Conditioned medium was collected 96 h post-transfection, and the recombinant

proteins were purified using immobilised metal ion affinity chromatography

followed by benzamidine-Sepharose affinity chromatography. The purified

proteins were at least 95% pure, as judged by Coomassie Blue-stained SDS-PAGE

gels. To ensure that the uPAs purified from the conditioned media were

completely in the two-chain form, they were treated with plasmin for 2 hours in a

1:100 ratio.

The cloning, production, and purification of recombinant uPA catalytic

domain (residues 159–411), harbouring a H99Y mutation, to be used for

crystallisation and isothermal titration calorimetry (ITC), was largely as described

previously [16]. Basically, the recombinant catalytic domain of huPA-H99Y was

secreted from a stable Pichia pastoris strain (X-33) after induction by methanol

and captured by a cation exchange column. The protein was further purified on a

gel filtration column (Superdex 75 HR 10/30 column from GE Health Care)

equilibrated with 20 mM sodium phosphate, pH 6.5, 150 mM NaCl. The protein

was eluted as a single peak under these conditions, with a retention time of

approximately 13.6 ml. The recombinant uPA catalytic domain expressed in this

way is an active protease with an activity comparable to full-length two-chain uPA

[16]. The protein was dialysed in 20 mM potassium phosphate, pH 6.5 overnight

and concentrated to 10 mg/ml, using stirred ultrafiltration cells (Millipore and

Amicon Bioseparations, Model-5124), prior to protein crystallization. The

recombinant catalytic domain of huPA-H99Y to be used for ITC assays was

further purified with benzamidine-Sepharose affinity chromatography.

Crystallization and data collection of uPA or uPA H99Y in complex

with mupain-1 variants

The crystallization trials were carried out with the sitting-drop vapour-diffusion

method. The crystals of the catalytic domain of huPA-H99Y were obtained by

equilibrating huPA-H99Y protein against a reservoir solution containing 2.0 M

ammonium sulfate, 50 mM sodium citrate, pH 4.6, and 5% polyethylene glycol

(PEG) 400 at room temperature. The crystals appeared in about 3 days. The

crystals of huPA-H99Y were then soaked for 2 weeks in new soaking buffer (40%

PEG 4000, 0.1 M Tris-HCl, pH 7.4), containing 1 mM mupain-1 variants. A

solution of 20% PEG 4000, 0.1 M Tris-HCl, pH 7.4 and 20% (v/v) glycerol was

used as cryoprotectant for X-ray diffraction data of the crystals at the BL17U

beamline, Shanghai Synchrotron Radiation Facility and 3W1A beamline, Beijing

Synchrotron Radiation Facility (BSRF). The diffraction data was indexed and

integrated by HKL2000 program package [17].

A Cyclic Peptidic Serine Protease Inhibitor
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Crystal structure determination and refinement

The crystal structures of the different complexes were solved by molecular

replacement [18], using the uPA structure (PDB code: 2NWN) [16] as the search

model. The electron density for the peptide was clearly visible in the uPA active

sites and was modelled based on the Fo–Fc difference map. The structures was

refined (ccp4 program package)[18] and manually adjusted (by the molecular

graphics program COOT) [19] iteratively until the convergence of the refinement.

Solvent molecules were added using a Fo–Fc Fourier difference map at 2.5 s in the

final refinement step. Statistics of data collection and final model refinement are

summarized in Supporting Table S1. The final structure was analysed by software

Pymol [20].

Model of mouse uPA

The sequence of the catalytic domain of muPA (positions 16–243) (Uniprot

P06869, EC: 3.4.21.73) was homology modeled onto the X-ray crystal structure of

huPA-H99Y, using Molecular Operating Environment [21]. The sequence identity

is 71% between muPA and huPA-H99Y (S1 Fig.). The generated molecular model

was refined by CNS program package [22].

Determination of KM values

To determine the KM values for hydrolysis of S-2444 (pyro-Glu-Gly-Arg-p-

nitroanilide) by the different uPA variants used in the present study, a 200 mL 2-

fold dilution series of the substrate (4 - 0 mM for huPA variants, 24 – 0 mM for

muPA variants) in a buffer of 10 mM HEPES, pH 7.4, 140 mM NaCl (HEPES-

buffered saline, HBS), with 0.1% bovine serum albumin (BSA), was incubated

2 min at 37 C̊, prior to the addition of a fixed concentration of each protease

(approximaterly 2 nM final concentration). The initial reaction velocities (Vi),

monitored as the changes in absorbance at 405 nm, were plotted against the initial

substrate concentration ([S]) and non-linear regression analysis was used to

determine the KM according to equation 1:

Vi~
Vmax½S�

(½S�zKM)
ð1Þ

The KM values for hydrolysis of S-2444 by the uPA variants employed in the

present study are listed in S2 Table.

Determination of Ki values

For routine determination of Ki values for the inhibition of the various enzymes

under steady state inhibition conditions, a fixed concentration of purified enzyme

or conditioned media from transfected cells (approximately 2 nM enzyme as the

A Cyclic Peptidic Serine Protease Inhibitor
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final concentration) was pre-incubated in a total volume of 200 mL HBS with

0.1% BSA at 37 C̊, with various concentrations of mupain-1 variants for 15 min

prior to the addition of the chromogenic substrate in concentrations

approximately equal to the KM value for each particular variant. The initial

reaction velocities were monitored at an absorbance of 405 nm. The inhibition

constants (Ki) were subsequently determined from the non-linear regression

analyses of plots for Vi/Vo versus [I]0, using Equation 2, derived under

assumption of competitive inhibition:

Vi

V0
~

Ki|(KMz½S�0)

(Ki|½S�0)z(KM|(Kiz½I�0))
ð2Þ

where Vi and V0 are the reaction velocities in the presence and absence of

inhibitor, respectively; [S]0 and [I]0 are the substrate and inhibitor concentrations,

respectively; KM is KM for substrate hydrolysis by each protease. In Equation 2, it

is assumed that [S]free < [S]0 and [I]free < [I]0. These conditions were fulfilled, as

less than 10% of the substrate was converted to product in the assays and as the

assay typically contained a final concentration of each protease of 2 nM and

inhibitor concentrations in the mM range.

In cases, in which we observed no measurable inhibition (i.e., ,10%) at the

maximal inhibitor concentration used, i.e., 400 mM, the accuracy of the assay

allowed us to conclude that the Ki value was more than 1000 mM (indicated as

‘‘.1000 mM’’ in the tables).

The validity of performing the Ki determinations with uPA-containing

conditioned media from transfected cells was verified by controls in which the

determinations were performed with conditioned media as well as with purified

preparations. These controls were performed with murine uPA wt and human

uPA wt, obtaining indistinguishable values with the two types of samples [13].

Surface plasmon resonance (SPR) analysis

To determine the equilibrium binding constants (KD), the association rate

constants (kon) and dissociation rate constants (koff) for peptide binding to uPA,

surface plasmon resonance analysis was performed on a Biacore T200 instrument

(Biacore, Uppsala, Sweden). A CM5 chip was coupled with the uPA variant

(muPA or huPAH99Y) to be analysed, by injecting a concentration of 30 mg/mL

uPA in immobilization buffer (10 mM sodium acetate, pH 5.0), aiming for an

immobilised level of approximately 500 response units (RU). Immobilisation was

followed by surface blocking with ethanolamine. A reference cell was prepared in

the same way, without coupling of uPA. Mupain-1 variants in HBS with 0.1%

BSA, in a dilution series, were injected at a flow rate of 30 mL per min during 60 s

at 25 C̊. Subsequently, the dissociation was monitored during 600 s. Kinetic

constants (kon and koff) were calculated with the Biacore Evaluation Software,

using the 1:1 kinetic fit. The KD values were calculated as koff/kon.

A Cyclic Peptidic Serine Protease Inhibitor
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ITC

For these experiments, we used the catalytic domain of huPA-H99Y expressed in

and purified from Pichia pastoris strain X-33 (see above). The protein was

dissolved in and dialysed against a buffer of 20 mM sodium phosphate, pH 7.4,

140 mM NaCl. The protein concentration was determined by absorbance at

280 nm, using an extinction coefficient of 43810 M21cm21. The peptides were

dissolved in the above-mentioned buffer. All isothermal titration calorimetry

experiments were performed with a MicroCalTM ITC200 instrument equilibrated

to a temperature of 25 C̊ (298oK). The concentration of uPA-H99Y catalytic

domain used in the 200 ml sample cell was 5–50 mM, depending on the affinity of

the ligand. Titrations were performed by injecting 2 ml of the ligand until the total

syringe volume of 40 ml was spent. Titration of ligand into buffer was performed

to obtain buffer correction. The equilibrium association constant KA and the

reaction enthalpy DH were calculated by fitting the integrated titration peaks

using a one-binding-site model in the ITC ORIGIN7 programme package. The

following formulas for Gibbs free energy DG were used to analyse the measured

energies

DG~{RT ln KA ð3Þ

DG~DH{DS ð4Þ

where R is the gas constant and T the absolute temperature. DS, the entropic

change during the reaction, was calculated using equations 3 and 4 and the

measured KA and DH values.

NMR spectroscopy

Peptide samples were dissolved in a buffer of 10 mM sodium phosphate, 140 mM

NaCl in D2O/H2O (7:93, v/v). The pH was adjusted to 7.4. For chemical-shift

reference and to increase the long-term stability of the samples, 2,2-dimethyl-2-

silapentane-5-sulfonic acid (10 mM) and NaN3 (150 mM) were added. The

peptide concentrations were 5.0 and 6.7 mM for mupain-1 and mupain-1-16,

respectively. NMR experiments were acquired with a Bruker Avance III 500

spectrometer (500.13 MHz; Bruker Biospin, Rheinstetten) equipped with a

standard inverse triple-resonance TXI 5 mm probe. Two-dimensional TOCSY

data (80 ms mixing time), NOESY data (200 ms mixing time) and natural

abundant 13C HSQC data were acquired for both peptides. The experiments were

acquired at 5 C̊ to slow down peptide tumbling, favour lowest-energy

conformations, and obtain the highest signal in the NOESY spectra for

assignment. Assignments were obtained by standard methods with CCPN

software [23]. Visualisation of spectra and integration of NOE peaks were

performed in SPARKY [24]. Random coil shifts were calculated by using values

A Cyclic Peptidic Serine Protease Inhibitor
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provided by Kjærgaard et al. [25] and corrected by subtraction of correction

values from Schwarzinger [26] which contains values for oxidised Cys and for cis-

Pro. These correction values were obtained by subtracting Schwartzinger’s values

for Cysred from Cysox and trans-Pro from cis-Pro for all the different proton types

in these residues. The order parameter (S2) was calculated according to the

method of Berjanskii and Wishart [27] as implemented within TALOS+ [28].

Results

Inhibitory mechanism and binding mode studied by X-ray crystal

structure analysis

While being unable to generate crystals of muPA, we did manage to crystallise

huPA-H99Y, a murinised version of human uPA which, in contrast to human

uPA wt, is able to bind mupain-1, although with a somewhat lower affinity than

muPA [12, 13]. We determined the structures huPA-H99Y in complex with

mupain-1 (CPAYSRYLDC) itself as well as with either of two other inhibitory

peptides, namely mupain-1-12 (CPAYS[4-guanidinophenylalanine]YLDC) and

mupain-1-16 (CPAYS[L-3-(N-amidino-4-piperidyl)alanine]YLDC). Mupain-1-

12 and mupain-1-16 have around 10-fold higher affinities to huPA-H99Y than

mupain-1 [13]. X-ray data collection and model refinement statistics are shown in

S1 Table. Important features of the structures are illustrated in Fig. 2. The contact

distances between the residues of the peptides and residues of huPA-H99Y are

shown in S3-S5 Tables. The B-factors are listed in S7 Table.

The analysis showed very similar conformations of the three peptides when

bound to huPA-H99Y (Fig. 2A). The RMSD values among these peptides are

quite small (0.32–0.35 Å). In the complexes, the inhibitory peptides adopt cyclic

conformations with an overall V shape. The disulfide bonds are the main

structural restraint responsible for this conformation. Beginning from the N-

terminus, the cyclic peptides approach the active site of huPA-H99Y from the 99-

loop, insert residue 6 into the S1 pocket, and exit the active site towards the 37-

loop (Fig. 2A). In each of the structures, the amino acid in position 6 of the

peptide, i.e., Arg, 4-guanidinophenylalanine, or L-3-(N-amidino-4-piperidyl)ala-

nine, forms polar interactions to Asp189, Ser190, and Gly218 in the S1 pocket

(Fig. 1B). In addition, the X-ray crystal structure analysis showed that the huPA-

H99Y residues Arg35, Val41, Leu97b, Tyr99, Gln192, Trp215, and Arg217 have the

largest contact surface area to the peptides (S3-S5 Tables). In particular, Arg35

forms polar interactions with peptide residues Tyr7 and Asp9 (Fig. 2C) and Tyr99

forms polar interactions with peptide residue Ser4 (Fig. 2D). In the enzyme-

peptide structures, the peptides are constrained by two type I tight b-turns (Pro2-

Ala3-Tyr4-Ser5 and Tyr7-Leu8-Asp9-Cys10) and three intra-peptide H-bonds (Pro2

O – Ser5 N; Seri5 Oc - Tyr7 N; Ser5 Oc - Arg6 N; S2 Fig.). The tight b-turns are

likely to play an important role in maintaining the conformation and stability of

the bound peptide. On the enzyme side, there are no major changes in the

conformation of surface loops of the enzyme following peptide binding based on

A Cyclic Peptidic Serine Protease Inhibitor
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Fig. 2. X-ray crystal structure analysis of huPA-H99Y in complex with peptidic inhibitors. (A) Overall
structure of the complexes between huPA-H99Y and mupain-1 (cyan), mupain-1-12 (salmon), mupain-1-16
(grey), and mupain-1-16-D9A (red). (B) A zoom on interactions of mupain-1’s Arg6 in the S1 pocket; polar
interactions are indicated by stippled lines. (C) A zoom on the polar interactions (stippled lines) between
huPA-H99Y residue Arg35 and mupain-1 residues Tyr7 and Asp9. (D) A zoom on the polar interaction (stippled
lines) between huPA-H99Y residue Tyr99 and mupain-1 residue Ser5. (E) An overlay of the active site areas of
the huPA-H99Y – mupain-1 complex and the huPA S195A – PAI-1 Michaëlis complex (pdb entry 3pb1; [29]);
the P2, P1, and P19 residues are indicated, those of PAI-1 in salmon. (F) A zoom on the Lys143 – Gln192 area
of the huPA-H99Y – mupain-1 complex; distances, in Å, between different residues are indicated. In all parts
of the figure, huPA-H99Y are shown in wheat cartoon presentation. In Fig. 1E, huPA S195A is shown in grey
cartoon presentation. The peptides are shown in stick representation. huPA-H99Y residues are labelled with
black letters, peptide residues with dark red letters.

doi:10.1371/journal.pone.0115872.g002
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the comparison of the structure of the enzyme in the absence or the presence of

peptide.

The inhibitory mechanism of these peptides and the reason that they are

inhibitors and not substrates readily become evident from the structural analysis.

The overall conformation of the peptide backbone on the enzyme surface is quite

similar to that of the reactive centre loop of plasminogen activator inhibitor-1

(PAI-1) in its Michaëlis complex with uPA S195A, aligning into the active site in a

substrate-like manner (Fig. 2E; [29]). However, compared to PAI-1 in its

Michaëlis complex with uPA S195A, the scissile bond of mupain-1 in its complex

with uPA-H99Y is shifted approximately 0.5 Å away from residue 195. The

distance from the Ser195 Oc to the carbonyl group of the P1 residue of mupain-1

and derivatives is too large (approximately 3.9 Å) to allow the nucleophilic attack

associated with catalysis (Fig. 2E). Moreover, the distance from the oxygen atom

of the carbonyl group of the P1 residue to the amido group of the Ser195 is too

large (approximately 4 Å) for formation of a polar interaction, implying that

oxyanion stabilisation cannot take place (Fig. 2E).

In spite of the X-ray crystal structure analysis having a good resolution, no

differences could be detected between the complexes of huPA-H99Y with each of

the peptides mupain-1, mupain-1-12, and mupain-1-16, the Ki values of which

differ around 10-fold. A 10-fold difference in Ki corresponds to a D(DG) for

binding of approximately 6 kJ/mol, about the same energy as that of an average

hydrogen bond. In this case, it is therefore possible that small differences in

hydrophobic interactions and in the length and angles of polar interactions, at the

detection limit by the structural analysis, may account for the differences in Ki

values. Alternatively, and more likely, the peptide-enzyme complexes, in solution,

may sample a number of similar conformations of which only the most stable one

is selected during crystallisation.

Analysis of peptide-huPA-H99Y exosite interactions by site-

directed mutagenesis

We determined the Ki values for inhibition of variants of huPA-H99Y by variants

of mupain-1, mupain-1-12, and mupain-1-16. The Ala-substituted residues of the

peptide and of huPA-H99Y are those deemed to be important for binding from

the X-ray crystal structure analysis (Table 1). In good agreement with the

structural analysis, Ala-substitution of mupain-1 residues Pro2, Tyr4, Ser5, and

Arg6 led to strong reductions in affinity, Ala-substitution of Tyr7 to a moderate

reduction in affinity, and Ala-substitution of Leu8 to a very small change in

affinity. The observed effect of Ala-substituting the peptide’s Ser5 is in good

agreement with the fact that the binding of mupain-1 to huPA is dependent on

the substitution of its His99 with Tyr [12], shown here to be able to form a

hydrogen bond with Ser5 (Fig. 2D). Surprisingly, Ala-substitution of Asp9 of

mupain-1, mupain-1-12, and mupain-1-16 led to a 3–10-fold increased affinity to

huPA-H99Y. This observation is in contrast to the expectancies from the X-ray

A Cyclic Peptidic Serine Protease Inhibitor
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crystal structure analysis, which predicts a polar interaction between Asp9 of

mupain-1 and Arg35 of huPA-H99Y (Fig. 2C; S3-S5 Tables).

Ala-substitution of huPA-H99Y residues Arg35, Val41, Lys143, and Gln192 led to

2–4 fold reductions in affinity to mupain-1, but smaller if any reductions in the

affinity to mupain-1-D9A, mupain-1-12, mupain-1-16, mupain-1-12-D9A, and

mupain-1-16-D9A. The effects of the R35A and Q192A mutations are in good

agreement with the predictions of polar interactions from the X-ray crystal

structure analysis (Fig. 2C, Fig. 2F). The V41A mutation may result in loss of

hydrophobic interactions. From the X-ray crystal structure analysis, Lys143 is not

predicted to make any direct contacts to the peptides, but the observed effect of

the K143A mutation may be caused by an indirect effect through a polar

interaction between Lys 143 and Gln192 (Fig. 2F). The observed changes

following the Ala substitutions in the enzyme were in all cases small, in agreement

with the fact that the predicted polar interactions are surface exposed. In general,

there was less dependence on the exosite interactions with the peptides with the

unnatural P1 residues and the peptides with an D9A substitution. This

observation suggests that the effects of the exosite mutations and the D9A

substitution is influenced by interactions in the S1 pocket.

The Ki determinations were supported by determinations of KD values with

SPR (Table 2; S3 Fig.) and ITC (Table 3). The KD values determined by SPR and

ITC agreed well with the Ki values, in particular when considering that KD values

were routinely determined at 25 C̊ and the Ki values at 37 C̊; separate control

experiments showed that the Ki values were 2–3 fold lower at 25 C̊ than at 37 C̊

Table 1. Inhibition of huPA-H99Y and huPA-H99Y exosite mutants by mupain-1 variants.

Peptide name Sequence huPA-H99Y
huPA-H99Y-
R35A huPA-H99Y-V41A huPA-H99Y-K143A

huPA-H99Y-
Q192A

Mupain-1 CPAYSRYLDC 15.3¡2.0 (3)* 39.5¡2.9 (3) 32.4¡5.3 (3) 56.6¡8.0 (3) 33.2¡4.2 (3)

Mupain-1 P2A CAAYSRYLDC .1000 nd nd nd nd

Mupain-1 Y4A CPAASRYLDC .1000 nd nd nd nd

Mupain-1 S5A CPAYARYLDC .1000 nd nd nd nd

Mupain-1 R6A CPAYSAYLDC .1000 nd nd nd nd

Mupain-1 Y7A CPAYSRALDC 44.0¡3.0 (3) nd nd nd nd

Mupain-1 L8A CPAYSRYLDC 19.1¡1.1 (3) nd nd nd nd

Mupain-1 D9A CPAYSRYLAC 5.99¡0.43 (3) 2.68¡0.29 (3) 7.20¡1.44 (3) 8.74¡0.64 (3) 4.85¡0.32 (3)

Mupain-1-12 CPAYS[4-guanidino-phenyl-
alanine]YLDC

1.86¡0.74 (3)* 3.26¡1.04 (3) 1.60¡0.54 (3) 2.14¡0.78 (3) 2.35¡0.74 (3)

Mupain-1-12
D9A

CPAYS[4-guanidino-phenyl-
alanine]YLAC

0.186¡0.036 (3) 0.231¡0.078 (3) 0.478¡0.137 (3) 0.402¡0.146 (1) 0.438¡0.079 (3)

Mupain-1-16 CPAYS[L-3-(N-amidino-4-
piperidyl)alanine]YLDC

2.48¡0.07 (3)* 2.50¡0.29 (3) 1.95¡0.30 (3) 1.13¡0.32 (3) 2.71¡0.28 (3)

Mupain-1-16
D9A

CPAYS[L-3-(N-amidino-4-
piperidyl)alanine]YLAC

0.309¡0.013 (3) 0.174¡0.059 (3) 0.480¡0.158 (3) 0.188¡0.057 (3) 0.438¡0.072 (4)

The Ki values (in mM) for inhibition of the indicated enzymes by the indicated peptides at 37˚C are shown as means ¡ S.D; the numbers of determinations
are indicated in parentheses. *These values are reproduced from previous publications [Andersen et al., 2008; Hosseini et al., 2011] and shown here to
facilitate comparison.

doi:10.1371/journal.pone.0115872.t001
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(data not shown). The SPR measurements showed that the 9–12-fold increased

affinities to huPA-H99Y following the D9A substitution were associated with 3–4-

fold increased kon values as well as 2–3-fold decreased koff values (Table 2). The

ITC measurements showed that the increased affinity of the Ala9 peptides to

huPA-H99Y, as compared to the original Asp9 peptides, was associated with a

binding entropy penalty but mainly accounted for by a more favourable binding

enthalpy (except with mupain-1 and mupain-1 D9A, in which case the differences

were not statistically significant; Table 3). The most ready molecular interpreta-

tion of the SPR and ITC data, taken together, is that the D9A substitution renders

the peptide more flexible in solution, thereby making the binding entropy less

Table 2. Surface plasmon resonance analysis of the binding of peptides to muPA or huPA-H99Y.

huPA-H99Y muPA

Peptide
name Sequence

kon (M-1s-1),
610-5 koff (s

-1), 6102 KD (mM)
kon (M21s21),
61025

koff (s
21),

6102 KD (mM)

Mupain-1 CPAYSRYLDC 0.569¡0.103 (4) 80.2¡7.6 (4) 14.1¡2.4 (4) 0.914¡0.250 (6) 3.64¡1.03 (6) 0.398¡0.046
(6)

Mupain-1
D9A

CPAYSRYLAC 2.60¡0.20 (3) 36.6¡0.21 (3) 1.41¡0.11 (3) 0.985¡0.169 (3) 4.01¡0.31 (3) 0.417¡0.091
(3)

Mupain-1-12 CPAYS[4-guanidino-phenyl-
alanine]YLDC

2.06¡0.15 (4) 24.6¡1.2 (4) 1.21¡0.13 (4) 1.56¡0.95 (4) 1.92¡0.63 (4) 0.138¡0.034
(4)

Mupain-1-12
D9A

CPAYS[4-guanidino-phenyl-
alanine]YLAC

5.93¡0.33 (3) 7.94¡0.39 (3) 0.134¡0.002 (3) 2.42¡1.01 (3) 3.94¡0.30 (3) 0.177¡0.051
(3)

Mupain-1-16 CPAYS[L-3-(N-amidino-4-
piperidyl)alanine]YLDC

1.07¡0.15 (4) 8.93¡0.46 (4) 0.844¡0.132 (4) 0.898¡0.545 (3) 0.671¡0.119
(3)

0.0894¡0.0376
(3)

Mupain-1-16
D9A

CPAYS[L-3-(N-amidino-4-
piperidyl)alanine]YLAC

4.65¡0.27 (4) 3.33¡0.13 (4) 0.0718¡0.006
(4)

5.79¡0.82 (3) 1.22¡0.06 (3) 0.0213¡0.0024
(3)

The table shows the rate constants and the KD values for the binding of the indicated peptides to muPA or huPA-H99Y at 25˚C, pH 7.4. Means, standard
deviations, and numbers of determinations are indicated. Examples of sensorgrams are shown in S3 Fig.

doi:10.1371/journal.pone.0115872.t002

Table 3. Isothermal titration calorimetry for binding of peptides to huPA-H99Y.

Peptide name Peptide sequence N KD (mM) DG (kJ/mole) DH (kJ/mole)
TDS
(kJ/mole)

Mupain-1 CPAYSRYLDC 1.09¡0.15 (4) 5.04¡1.61 (4) 230.4¡0.7 (4) 236.5¡3.2 (4) 26.1¡2.6 (4)

Mupain-1 D9A CPAYSRYLAC 1.03¡0.09 (6) 1.17¡0.30 (6)1 233.9¡0.7 (6)1 237.9¡2.4 (6) 24.0¡2.9 (6)

Mupain-1-12 CPAYS
[4-guanidino-phenylalanine]YLDC

0.85¡0.08 (4) 0.400¡0.016 (4) 236.5¡0.1 (4) 243.8¡5.5 (4) 27.6¡5.6 (4)

Mupain-1-12
D9A

CPAYS
[4-guanidino-phenylalanine]YLAC

0.88¡0.01 (3) 0.138¡0.047 (3)1 239.2¡0.8 (3)1 260.1¡5.4 (3)1 218.9¡5.1 (3)1

Mupain-1-16 CPAYS
[L-3-(N-amidino-4-piperidyl)alanine]YLDC

0.87¡0.09 (4) 0.380¡0.065 (4) 236.7¡0.4 (4) 233.2¡4.2 (4) 3.5¡1.0 (4)

Mupain-1-16
D9A

CPAYS
[L-3-(N-amidino-4-piperidyl)alanine]YLAC

0.88¡0.11 (5) 0.134¡0.061 (5)1 239.5¡1.1 (5)1 246.6¡2.9 (5)1 26.2¡2.7 (5)1

1The value for the D9A peptide is significantly different from the value for the unmodified peptide (p,0.01).
The table shows thermodynamic parameters for the binding of the indicated peptides to huPA-H99Y at 25˚C, pH 7.4. Means, standard deviations, and
numbers of determinations are indicated.

doi:10.1371/journal.pone.0115872.t003
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favourable, the association activation energy lower, and the kon higher, and allows

a more favorable binding enthalpy and a more stable bound state, thereby

increasing the dissociation activation energy and decreasing the koff.

Considering the unexpected effect of the D9A substitution, we also crystallised

mupain-1-16 D9A in complex with huPA-H99Y (S1 and S6 Tables), but in spite

of the much higher affinity of the D9A peptides, the structures of the mupain-1-16

and the mupain-1-16-D9A complex were indistinguishable (Fig. 2A). Noticeably,

however, the relative B-factor for mupain-1-16 D9A was higher than that for

mupain-1-16 (1.39 versus 1.24; S7 Table).

In summary, while most interactions between the peptides and huPA-H99Y

predicted by X-ray crystal structure analysis were largely in agreement with the

results of the site-directed mutagenesis, the increased affinity following the D9A

substitution in mupain-1 was unexpected and could not be correlated with any

structural differences observable by X-ray rystal structuyre analysis. However, the

SPR and ITC analyses indicated a more stable complex following the D9A

substitution, in spite of a binding entropy penalty.

Analysis of peptide-muPA exosite interactions by site-directed

mutagenesis

Next, we analysed the Ki values for inhibition of several muPA variants by

mupain-1, mupain-1-12, and mupain-1-16, Ala substituting residues of the

peptide and the enzyme in positions implicated in peptide-enzyme interaction by

the X-ray crystal structure analysis of the huPA-H99Y-peptide complex (see S1

Fig. for alignment of the amino acid sequences of the catalytic domains of huPA

and muPA). Previously, we showed that Ala-substitution of mupain-1 residues

Pro2, Tyr4, Ser5, Arg6, and Tyr7 leads to substantial loss of affinity to muPA, while

Leu8 and Asp9 could be Ala-substituted with minimal consequences [12]. Thus,

the effect of the D9A substitution is different with muPA and huPA-H99Y. Now,

we found that Ala-substitutions of muPA residues Lys41, Tyr99 and Lys143 increase

the Ki values 5–50-fold (Table 4). However, in contrast to observations with

huPA-H99Y, there were no effects of Ala substitutions of muPA residues in the

37-loop. From a model of muPA in complex with mupain-1, it seems that Lys41 is

able to make polar interactions with Tyr7 (2.3 Å) and Asp9 (2.8 Å) of mupain-1

(Fig. 3C), explaining the effect of substitution of this muPA residue. From the

model, Lys143 is predicted to be more than 6 Å away from the closest part of the

peptide and more than 6 Å away from Lys192 (Fig. 3B), leading to the notion that

the peptide and/or residue 192 have different conformations in the huPA-H99Y-

mupain-1 complex and the muPA-mupain-1 complex. Thus, the observed

importance of mupain-1 residues Pro2, Tyr4, Ser5 and Arg6 and muPA residue

Tyr99 suggests that the CCPAYSR stretch of peptides occupies a position on muPA

similar to that inferred from the X-ray crystal structure analysis of the peptide-

huPA-H99Y complexes, while the stretch YLD of mupain-1 makes different

interactions in the two complexes.
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Interestingly, the D9A substitution, while having no effects on the affinities of

the peptides to muPA wt, muPA-Y99A, and muPA-K143A, strongly increased the

affinity to muPA-K41A (Table 2). Thus, the Ki values for inhibition of muPA by

the Ala9 peptides depend differently on exosite mutations than those for the

original Asp9 peptides. This observation shows than the interactions between the

Ala9 peptides and muPA differ from the interactions between the Asp9 peptides

and muPA. Importantly, the D9A substitution in all cases reduced the difference

in Ki between huPA-H99Y and muPA (Tables 1 and 4): For the Asp9 peptides, the

Ki value for inhibition of huPA-H99Y were 28, 7, and 55-fold higher than those

for inhibition of muPA, while the corresponding values for the Ala9 peptides were

only 7, 1, and 4-fold higher.

The Ki values were in good agreement with the KD values determined by SPR

(Table 2).

Analysis of S1-P1 interactions by site-directed mutagenesis

In order to characterise the mechanism of the increase in affinity following

substitution of the P1 Arg with either of the two unnatural P1 residues, we

introduced mutations in the S1 pocket of muPA, i.e., S190A and V213T (Table 5).

The X-ray crystal structure analysis of the peptide-huPA-H99Y complexes

implicated Ser190 in hydrogen bonding to the P1 residues (Fig. 2B; S3–S5 Tables);

many serine proteases, including tissue-type plasminogen activator (tPA), have an

Ala in this position. Val213 forms a hydrophobic patch at the entrance to the S1

pocket (Fig. 3D); we substituted the Val with a Thr, as some serine proteases,

including plasma kallikrein, has a Thr in this position. The S190A substitution

resulted in a decreased affinity for all the peptides, while the V213T mutation

resulted in an increased affinity for all the peptides (Table 5).

In order to visualise the effects of the S1 pocket mutations, the Ki values for the

inhibition of the muPA mutants by each of the 6 peptides were plotted

logarithmically versus the Ki values for inhibition of muPA wt by the same

Table 4. Inhibition of muPA wt and muPA exosite mutants by mupain-1 variants.

Peptide name Sequence muPA-wt muPA-K41A muPA-Y99A muPA-K143A

Mupain-1 CPAYSRYLDC 0.550¡0.080 (8)* 4.29¡0.15 (3) 26.0¡5.8 (3) 4.88¡0.35 (3)

Mupain-1 D9A CPAYSRYLAC 0.890¡0.020 (4)* 0.270¡0.029 (3) 27.2¡3.3 (3) 4.34¡0.64 (3)

Mupain-1-12 CPAYS[4-guanidino-phenyl-alanine]YLDC 0.280¡0.020 (5)* 1.72¡0.24 (3) 5.20¡0.06 (3) 1.00¡0.04 (3)

Mupain-1-12 D9A CPAYS[4-guanidino-phenyl-alanine]YLAC 0.190¡0.010 (3) 0.091¡0.007 (3) 5.89¡1.31 (3) 1.00¡0.03 (3)

Mupain-1-16 CPAYS[L-3-(N-amidino-4-piperidyl)alanine]YLDC 0.045¡0.010 (4)* 0.30¡0.05 (3) 1.24¡0.44 (3) 0.13¡0.02 (3)

Mupain-1-16 D9A CPAYS[L-3-(N-amidino-4-piperidyl)alanine]YLAC 0.076¡0.003 (3) 0.014¡0.002 (3) 1.36¡0.33 (3) 0.10¡0.02 (3)

The Ki values (in mM) for inhibition of the indicated enzymes by the indicated peptides are shown as means ¡ S.D; the numbers of determinations are
indicated in parentheses. *These values are reproduced from previous publications [Andersen et al., 2008; Hosseini et al., 2011] and shown here to facilitate
comparison.
Besides the muPA mutants reported in the table, we found no significant change in Ki values after the following substitutions: Q35A; N37A; K37aA; G37cA;
S37dA; P37eA; P38A; Q60aA; E146A; Y149A. For unknown reasons, muPA K192A could not be expressed.

doi:10.1371/journal.pone.0115872.t004
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peptides (Fig. 4). For data points above the y5x line, the mutations increase the

Ki value or decrease the affinity; for points above the y5x line, the mutations

decrease the Ki value or increase the affinity. The slopes of the lines defined by the

data points (which may be referred to as an ‘‘interdependence factor’’) were 0.68

in the case of the S190A mutation and 1.27 in the case of the V213T mutation.

The slopes being different from 1 shows that the effects of the S1 pocket mutations

vary with the P1 residue: Following the S190A mutation, the Ki value increases

Fig. 3. Structural model of mupain-1 in complex with muPA. (A) Overall model of the complex between
muPA (teal ribbon presentation) and mupain-1 (red stick representation). The enzyme is shown in teal cartoon
presentation. (B) A zoom on the Lys143 area of the model, showing distances from Lys143 to the closest atoms
in the peptide. (C) A zoom on the Lys41 area of the model, showing the distances between Lys41 and peptide
residues Tyr7and Asp9. (D) A zoom on the entrance to the S1 pocket of the model, with Val213 at the entrance
indicated; the enzyme is represented as teal surface. huPA-H99Y residues are labelled with black letters,
peptide residues with dark red letters.

doi:10.1371/journal.pone.0115872.g003
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Table 5. Inhibition of muPA wt and muPA S1 pocket mutants by mupain-1 variants.

Peptide name Sequence muPA wt muPA-S190A muPA-V213T

Mupain-1 CPAYSRYLDC 0.550¡0.080 (8)* 1.60¡0.53 (3) 0.246¡0.044 (3)

Mupain-1 D9A CPAYSRYLAC 0.890¡0.020 (4)* 3.02¡0.33 (3) 0.373¡0.055 (3)

Mupain-1-12 CPAYS[4-guanidino-phenyl-alanine]YLDC 0.280¡0.020 (5)* 2.30¡0.46 (3) 0.086¡0.030 (3)

Mupain-1-12 D9A CPAYS[4-guanidino-phenyl-alanine]YLAC 0.190¡0.010 (3) 3.52¡0.50 (3) 0.166¡0.075 (4)

Mupain-1-16 CPAYS[L-3-(N-amidino-4-piperidyl)alanine]YLDC 0.045¡0.010 (4)* 0.352¡0.040 (3) 0.013¡0.003 (3)

Mupain-1-16 D9A CPAYS[L-3-(N-amidino-4-piperidyl)alanine]YLAC 0.076¡0.003 (3) 0.529¡0.052 (3) 0.014¡0.004 (3)

The Ki values (in mM) for inhibition of the indicated enzymes by the indicated peptides are shown as means ¡ S.D; the numbers of determinations are
indicated in parentheses. *These values are reproduced from previous publications [Andersen et al., 2008; Hosseini et al., 2011] and shown here to facilitate
comparison.

doi:10.1371/journal.pone.0115872.t005

Fig. 4. The relationship between the Ki values for inhibition of muPA S1 mutants and the Ki values for
inhibition of muPA wt. The figure is based on the Ki values presented in Table 6. The x-axis shows the Ki

values for inhibition of muPA wt by the indicated peptides. The y-axis shows the corresponding Ki values for
inhibition of muPA S190A (filled dots) or muPA V213T (open dots). The lines resulted from simple linear
regression analysis. The slopes of the lines are 0.68 (muPA-S190A) and 1.27 (V123T). The stippled line is the
one which would have resulted if the Ki values for inhibition of the muPA S1 mutants had been identical to
those for inhibition of muPA wt (y5x).

doi:10.1371/journal.pone.0115872.g004
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more with mupain-1-12 and mupain-1-16 variants than with the Arg variants,

while following the V213T mutation, the Ki value decreases more with the

mupain-1-12 and mupain-1-16 variants than with the mupain-1 Arg variants. For

instance, the V213T mutation increases the affinity for the mupain-1 Arg variants

around 2.5-fold, but increases the affinity for the L-3-(N-amidino-4-piperidy-

l)alanine] variants around 5-fold. These findings are compatible with the notion

that each of the three P1 residues fit differently into the S1 pocket.

To further visualise the importance of the P1 residues of mupain-1, the Ki

values for inhibition of the muPA exosite mutants K41A, Y99A, and K143A by

mupain-1, mupain-1-12, and mupain-1-16 and their D9A variants were plotted

logarithmically versus the corresponding Ki values for the wt enzymes (Fig. 5).

The above-mentioned difference between the Asp9 and the Ala9 peptides with

respect to inhibition of muPA K41A was obvious in the plot, the data points in an

Ala9 group falling below the y5x line and the data points for the Aap9 group

falling above the y5x line. There was no such split with the other muPA mutants.

With the K41A and the Y99A mutants, the slopes of the lines defined by the data

pairs were relatively close to 1. However, with the K143A mutant, the slopes were

around 1.4. This slope corresponds to a 9-fold increase in Ki for mupain-1

following the K143A mutation and an only 2.9-fold increase in Ki for mupain-1-

16 following the K143A mutation and similar differences when comparing the

other peptides. This observation shows that the identity of the amino acid in

position 143 influences the effect of a P1 substitution and vice versa.

The effects of substituting the P1 residue were also analysed by SPR (Table 2).

The increased affinities associated with the unnatural P1 residues were found to be

accounted for almost exclusively by lower off-rates.

Taken together, these observations are in agreement with the conclusion that

the increased affinity with the two unnatural P1 residues is caused by changes in

the binding in the S1 pocket. Interestingly, there seems to be a cross-talk between

interactions of the peptide in the S1 pocket and interactions with Lys143.

Analysis of the importance of the P1 residue by NMR

For a further characterization of the importance of the P1 residue, mupain-1 and

mupain-1-16 were subjected to 1H liquid-state NMR analysis. Analysis of the

backbone amide and a-proton region of a TOCSY spectrum revealed a doubling

of the expected number of peaks of mupain-1 and mupain-1-16. Following

standard procedures for analysis of TOCSY and NOESY spectra [30], the NMR

data could be assigned to two markedly different resonance forms, as illustrated by

two parallel ‘‘backbone walks’’ connecting sequential residues (Fig. 6). Based on

analysis of 13C chemical shifts assigned by natural abundance 13C-HSQC

(difference between Cb and Cc chemical shifts) (S8 Table) [31], the two sets of

resonances were inferred to be due to cis-trans isomerization around the Cys1-

Pro2 peptide bond. By integration of isolated peaks in the TOCSY spectrum, the

steady state ratio between the two forms was found to be 1:3 in favor of the trans

conformation. Since no exchange cross peaks were observed between the two
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Fig. 5. The relationship between the Ki values for inhibition of muPA exosite mutants and the Ki value
for inhibition of muPA wt. The figure is based on the Ki values presented in Table 5. The x-axes show the Ki

values for inhibition of muPA wt by the indicated peptides. The y-axes shows the corresponding Ki values for
inhibition of muPA K41A, Y99A, or K143A. The lines resulted from simple linear regression analysis. The
slope of the lines are 1.04 (muPA K41A with Asp9 peptides); 1.15 (muPA K41A with Ala9 peptides); 1.15
(muPAY99A); 1.40 (muPA K143A). The stippled line shows the line which would have resulted if the Ki values
for exosite mutants and muPA wt had been identical (y5x).

doi:10.1371/journal.pone.0115872.g005
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distinct resonance sets corresponding to the two conformers in the time frame of

a 200 ms NOESY experiment, the interconversion between the two conformations

was estimated to be slower than 1 s21 for both mupain-1 and mupain-1-16. The

assigned chemical shifts were close to the random coil values, indicating that the

peptides are flexible in solution. Both the proton and carbon chemical shifts for

the two isomeric forms were substantially different for most of the residues,

suggesting that the average conformations for the cis and trans isomers are

different. It is notable that the spectral differences due to the cis-trans isomerism

propagated throughout the entire peptide chain and not just to the adjacent

residues, indicating that the structures are not completely disordered.

Furthermore, the chemical shifts for trans-mupain-1 and cis-mupain-1 are very

similar to those of trans-mupain-1-16 and cis-mupain-1-16, respectively (as

illustrated, e.g., by Ha in S4 Fig.). This similarity strongly suggests that the

structures or average conformations of each of the isomers of each of the two

peptides are very similar. Also the similarity in steady state ratio of the cis- and

trans-conformations of the two peptides is in agreement with the notion that the

two peptides have the same overall structural and dynamic trends.

Importantly, the presence of the peptides in both a trans- and a cis-

conformation in solution should be contrasted with the fact that only the trans-

conformation was observed in the crystal structures of the peptide-enzyme

complexes.

Fig. 6. TOCSY (orange) and NOESY (green) of mupain-1-16. Assignments of the two isomeric forms is
illustrated by connecting TOCSY Ha(i)-HN(i) and NOESY Ha(i)-HN(i+1) cross peaks with lines representing a
shared reference commonly referred to as ‘‘backbone walks’’.

doi:10.1371/journal.pone.0115872.g006
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The flexibility of the peptides was probed by deriving a predicted order

parameter, S2, based on the chemical shifts, using random coil index implemented

within TALOS+ (Fig. 7). Depending on movements on the picosecond to

nanosecond time scale, an S2 value of 0 corresponds to a completely disordered

peptide and an S2 value of 1 to a completely rigid one. The predicted order

parameter was found to be relatively low, as also observed from the TALOS+
classification, in which most of the residues fall in the dynamic category.

In summary, the NMR analysis of the peptides in solution did not reveal

differences in solution structures between mupain-1 and mupain-1-16.

Discussion

In this report, we describe studies of the inhibition mechanism and the binding

mechanism of derivatives of the serine protease inhibitor mupain-1, which was

originally selected from a phage-displayed peptide library for binding to muPA

[12]. Besides muPA, we used huPA-H99Y as a model enzyme, because it bound

mupain-1 with a reasonable affinity and could, in contrast to muPA, easily be

crystallised in complex with the peptides.

Our analyses showed that mupain-1 and derivatives thereof make P1–S1

interactions as well as several exosite interactions with their target proteases. The

X-ray crystal structure analysis seemed to yield reliable information about the

overall arrangement of the peptide at the enzyme surface and about the inhibitory

mechanism of the peptides. There is a good agreement between the X-ray crystal

structure analysis and the site-directed mutagenesis analysis as far as the CCPAYS

stretch of the peptide is concerned. However, when it comes to the RYLD part of

the peptide, it is striking that the effects on the Ki values of substitution of the P1

residues and of Asp9 are not correlated with corresponding changes in the crystal

structures. The most likely explanation for this apparent discrepancy is that the

peptide is able to sample a number of conformations while bound to the enzyme

but that only one is selected during crystallization. It thus seems that site-directed

mutagenesis yield information about the details of peptide-enzyme interactions in

solution which is not available from X-ray crystal structure analysis. Anyway, the

overall arrangement of peptides in the enzyme surface seem to be largely the same

in all cases. The Ki changes observed following site-directed mutagenesis and the

differences in Ki between muPA and huPA-H99Y must reflect relatively small local

conformational variations.

The reason for the peptides being inhibitors and not substrates readily became

evident from the X-ray crystal structure analysis of the peptide-huPA-H99Y

complexes. The distance from the Ser195 Oc to the carbonyl group of the P1

residue of the peptides was found to be too large (.3 Å) to allow the nucleophilic

attack associated with catalysis. Moreover, the oxygen atom of the carbonyl group

fails to align properly into the oxyanion hole. The conformations of the mupain-1

peptides on the enzyme surface are perpendicular to the previously reported

conformation of the peptide upain-1 (CSWRGLENHRMC), a competitive
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inhibitor of huPA ([20]). In the upain-1 – huPA complex, Glu7 of the peptide

blocks the oxyanion hole [15, 16, 32]. Thus, the inhibitory mechanism of mupain-

1 is different from that of upain-1. An inhibitory mechanism similar to that for

upain-1 was observed for two bicyclic peptidic inhibitors of huPA, also with an

acidic residue blocking the oxyanion hole [14, 33]. We were unable to crystallise

muPA, but the binding mechanism of the peptides to this enzyme was worked out

by site-directed mutagenesis. We concluded that the exosite interactions of the

CCPAYSR stretch of the peptides are largely the same in their complexes with

muPA and huPA-H99Y, respectively, while the exosite contacts made by the YLD

stretch of the peptides to each of these two enzymes are likely to differ from those

observed by the X-ray crystal structure analysis.

Substituting the P1 Arg of mupain-1 with L-4-guanidinophenylalanine or L-3-

(N-amidino-4-piperidyl)alanine resulted in a general increase in affinity to muPA

and huPA-H99Y as well as several chimeras between muPA and huPA [13]. A

priori, the explanation for changes in affinity following the P1 substitution could

be sought in an energically less favorable solution state or an energically more

favorable bound state. We here did a number of observations allowing a

distinction between these two possibilities. Firstly, the NMR analysis showed an

absence of major differences in the solution structures of mupain-1 and mupain-

Fig. 7. Predicted order parameter S2 (top) calculated by TALOS+. The dots (bottom) represent
classification of the residue from TALOS+, as based on the mobility of the backbone, the certainty of the
angles of the reference triplets and whether the angles fall into allowed regions in the Ramachandran plot [34].
The colour codes represent good (green), dynamic (yellow), ambiguous (red), and no prediction (blue) for the
two different peptides in cis and trans conformations.

doi:10.1371/journal.pone.0115872.g007
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1-16. The NMR analysis showed that both mupain-1 and mupain-1-16 have a cis-

trans isomerization around the Cys1-Pro2 peptide bond. In both cases, the bound

forms of the peptides had the Cys1-Pro2 peptide bond in the trans conformation,

showing that the binding involves a shift in the equilibrium between the

conformations towards the trans-form. The peptides are quite flexible in solution,

so the binding renders the peptides more rigid. These observations argue against a

decisive contribution from a difference in solution states of peptides with different

P1 residues. Secondly, our mutational analysis showed that a different fit of the

side chains of the three different P1 residues into the S1 pockets of the enzymes

contributes to the changed affinities. Thirdly, the affinities are also affected by

cross-talk between P1-S1 interactions and exosite interactions in mupain-1,

involving in particular Lys143. It can therefore be concluded that the explanation

for the increased affinity of the mupain-1 variants with the unnatural P1 residues

is an energetically more favorable bound state rather than an energetically less

favorable solution state.

The D9A mutation, unexpectedly, increased the affinity of all tested mupain-1

variants to all tested variants of huPA-H99Y, while there was no effect of the D9A

mutation on the affinity to the muPA variants except K41A. In fact, the D9A

mutation reduced the difference in affinity of the peptides to huPA-H99Y and

muPA wt strongly. It thus seems that the D9A substitution allows mupain-1 to

assume more favourable interactions with targets other than the one, against

which it was selected. Of particular interest is the fact that the D9A substitution

strongly increased the affinity of the peptides to muPA K41A without having any

effect on the affinity to the other variants. In fact, the D9A peptides even bound

stronger to muPA K41A than to muPA wt. The most ready explanation of this

observation is that Lys41 of muPA restricts the conformation of the D9A peptide

and keeps it from assuming the binding conformation with the lowest energy.

Although less striking, the exosite interactions in huPA-H99Y also influenced the

effects of the D9A substitution. These observations are in agreement with the

notion that the D9A substitution leads to changes in the relative energetic

contributions from different exosite interactions. This conclusion is also in

agreement with the differential effect of the D9A substitution in muPA and huPA-

H99Y, respectively. The D9A mutation makes it easier for the peptide to adopt to

the different local environments of muPA and huPA-H99Y in the region around

the 37-loop.

The increased affinity following the D9A substitution occurred in spite of an

entropy penalty, which was overcome by a more favourable binding enthalpy. The

SPR measurements showed that the increased affinity following the D9A

substitution was associated with an increased kon as well as a decreased koff. The

most ready interpretation of these observations, taken together, is that the Ala9

peptides more readily adopt themselves to contacts on the surface of the enzymes

than the Asp9 peptides. The Ala9 peptides may be able to sample a larger

conformational space and visit conformations with peptide-enzyme interactions

which are inaccessible to the Asp9 peptides. Such a larger flexibility of the enzyme-

bound Ala9 peptides, as compared to the Asp9 peptides, is in good agreement with
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the entropy penalty associated with the D9A substitution, assuming that the

entropy increase associated with the increased flexibility is larger in the solution

state than in the bound state. Also, the relative B-factor in the huPA H99Y

complexes was higher for mupain-1-16 D9A than for mupain-1-16, in agreement

with the idea of the D9A peptides being more flexible in the complexs.

Our results show that mupain-1 is an unusual peptidic serine protease inhibitor.

Usually, attempts at improving affinity of enzyme inhibitors implicate reduction of

the entropic burden associated with binding. This approach is also being pursued

with peptidic protease inhibitors [2, 15]. In the present work, another principle was

demonstrated. The observation of a strongly increased affinity in spite of an entropy

penalty represents a concept going against conventional attempts at improving

inhibitor affinity by reducing the entropic burden. Our finding suggests that the

D9A versions of mupain-1 may be engineered to target other serine proteases with

high affinity. When combined with suitable unnatural amino acids as P1 residues

and other measures to assure specificity, the flexibility achieved by the D9A

substitution allows it to assume different conformations and make different exosite

interactions, resulting in high affinity towards different enzymes. This principle is a

new way of engineering inhibitor specificity and affinity.
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