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Abstract: We illustrate how physical constraints of a biomechanical sys-
tem can be taken into account when registering functional data from jug-
gling trials. We define an idealized model of juggling, based on a periodic
joint movement in a low-dimensional space and a periodic position vector
(from an undefined joint to the finger tip) of approximately constant length
along the observed trajectory. Our registration procedure first warps the
cycles in the trial to each other and computes a periodic average, and then
estimates the joint movement and the position vector of the abovemen-
tioned model.

Keywords and phrases: Biomechanical constraints, decomposition, func-
tional data analysis, juggling trajectories, periodic average, registration,
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1. Introduction

Functional data are often unsynchronized in their raw form, either due to the
sampling process or due to random phase variation (or both). This makes analy-
sis on the raw data problematic since, for example, cross-sectional sample statis-
tics can be misleading. Registration is the process of mapping unsynchronized
curves into a synchronized class of functions, with the purpose of effectively
filtering out noise before subsequent statistical analyses [1].

At best, registration should use any knowledge of the data generating system,
in particular the shape of the underlying signal as well as the nature of possible
pertubations. In this paper we discuss registration for functional data from
juggling, taking into account simple biomechanical considerations.

Ideally, biomechanics of juggling may be described mathematically by nonlin-
ear dynamical systems, but feedback and feedforward motor control mechanisms
are necessary to overrule any disturbed dynamics and thereby impose desired
movements or dynamics. We consider data from juggling cycles within in trial
as pertubated versions of an idealized periodic movement. The periodic curve
represents the average dynamics of the juggling process, whereas the deviations
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between the observed data and the idealized signal reflect the complex feedback
mechanism between the brain and the motor control system [4].

In conceptualizing an appropriate idealized mathematical model of human
juggling, we consider the creation of an electromechanical juggling robot. How
would we build and program such a robot? As a minimum, we would construct a
rotating finger or hand limb and attach it with a joint to a fixed bar (representing
an arm). We could conveniently label the two ends of the hand limb as ‘finger
tip’ and ‘joint’.

As a first attempt, we keep the position of the joint fixed and let the position
vector from joint to finger tip be periodic. Regarded from a fixed external coor-
dinate frame the position of the finger tip of the robot would trace a trajectory
described by

f(t) = f0(t) + c0

where c0 ∈ R
3 corresponds to the fixed position of the joint and f0 : I → R

3 is
the periodic position vector function. Assuming that the robot is a rigid body
introduces the geometric constraint that f0 has constant length, d, such that
|f0(t)| = d for all t ∈ I.

The juggling robot can be improved by allowing the position of the joint to
follow a periodic curve. This gives a decomposition of the form

f(t) = f0(t) + c0(t), (1)

where c0 : I → R
3 is the trajectory of the joint, while f0 still describes the

vector from joint to finger tip and satisfies |f0(t)| = d for all t ∈ I for some d.
For identification purposes we assume that c0 has a simple structure meaning
that it belongs to a lower dimensional function space.

In this paper, decompositions of the type (1) will be regarded as idealized
juggling signals, and we will demonstrate how to register the observed data
towards such idealized signals, i.e. demonstrate that is it is possible to warp and
filter the juggling trials such that the resulting curves allow a decomposition of
the form (1).

Sections 2 and 3 give a complete description of the registration procedure and
details about implementation. In Section 4 we display the results of applying
the procedure to the ten trials from the juggling data. Finally, in Section 5
we evaluate the perspectives of combining phase registration and biomechanical
constraints.

2. Data and registration procedure

The pre-processed data [2] (lightly smoothed, centered, rotated and trimmed)
is the starting point of our analysis, and is referred to as “observed data” or
“raw data” in the remainder of the paper. The data indicate the position of the
right index finger during juggling and is thus composed of three coordinates. We
write f(t) = (f1(t), f2(t), f3(t)), and let n denote the number of cycles. There
are 10 signals/trials, all collected from the same person. The number of cycles
per trial varies from 11 to 13.
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The suggested registration procedure is applied to each trial separately, but
on all three dimensions and all cycles simultaneously. The implementation de-
tails are described in Section 3, but, in short, the complete procedure is split
into three steps:

1. Warping The observed signal consisting of several cycles is converted
into a warped version f ◦ h, where cycles are warped towards each other
using a periodic average function as target for the registration procedure.

2. Averaging Based on the warped signal, f ◦ h, a periodic average, de-
noted by Pf , is computed as a projection onto the (high-dimensional)
space of periodic functions.

3. Decomposition The periodic average Pf is decomposed into two peri-
odic terms: a joint movement J belonging to a low-dimensional space, V ,
and a remainder Pf − J f with approximately constant length along the
trajectory.

The complete procedure involves estimation of a warping function h, a peri-
odic average, and a joint movement J f . Notice that Pf and J f are periodic
per construction, and thus have no between-cycle variation. In particular, we
only need to plot the curves on the interval corresponding to one cycle. On the
other hand, the warped, but not averaged, curve f ◦ h may potentially show
amplitude variation between cycles, but presumably only little phase variation,
since that has been diminished by warping.

The second step involves projection onto a space of periodic three-dimensional
functions. If this projection is denoted by Qper, then Pf = Qper(f ◦ h). If ‖ · ‖
is the standard L2-norm and g is a three-dimensional curve, then

‖Qperg‖

‖g‖
=

√

‖g‖2 − ‖g −Qperg‖2

‖g‖2
=

√

1−
‖g −Qperg‖2

‖g‖2
(2)

takes values in [0, 1] and is a natural measure of the degree of periodicity in g.
When data from different cycles are warped against each other as in step 1, we
would expect a larger degree of periodicity compared to the raw data. Hence,

comparison of
‖Qperf‖

‖f‖ and
‖Qper(f◦h)‖

‖(f◦h)‖ can be used to quantify the effect of

warping on periodicity (see Section 4).

3. Implementation

This section describes technical details of the implementation of our registra-
tion procedure. The emphasis is on the decomposition step, since warping and
averaging rely on existing techniques and software.

Let f denote a signal consisting of n complete juggling cycles. The duration
of each cycle within a trial is rescaled to [0, 1], then the same implementation
can be used for all trials, even though the number of cycles are different.

Warping First, we expressed f in terms of 201 Fourier basis functions, and
computed the orthogonal projection fper on the space of periodic functions
Lper,n containing n replications of the same signal. Due to the Fourier basis
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representation this amounts to keeping coefficients corresponding to harmonics
of order n, 2n, 3n, . . . ,Kn (where K is the largest K such that Kn ≤ 100).
Second, a time warping function h maximizing the coherence between f ◦h and
fper was estimated. We used the minimal eigenvalue of a cross-product matrix
with a roughness penalty on curvature of h as estimation criterion, see [3, Section
7.6]. In order to ensure a sufficient degree of smoothness of the warped signal
f◦h we restricted h to the space spanned by 101 B-splines of order 5 with equally
spaced break points. The roughness of the warping functions were controlled by
penalizing the squared integral of second order derivatives. The robostness to
the value of the penalty parameter λ was examined and for the results presented
below we used λ = 10−11 based on visual inspection.

Averaging The warped function f ◦ h was projected onto Lper,n (see the
paragraph on the warping step above). Hence, we obtain a periodic average of
f ◦ h, denoted Pf and spanned by periodic harmonics.

Decomposition To implement the estimation of J f in step 3 it was conve-
nient to expand all functions in terms of orthogonal complex exponentials. De-
noting by ak and bk, k = 1, 2, 3, the three coordinate functions of the periodic av-
eragePf (known) and joint movement J f (to be estimated), we have expansions

ak(t) =

m
∑

j=−m

ak,j exp(iωjt), bk(t) =

l
∑

j=−l

bk,j exp(iωjt)

and hence

a′k(t) =

m
∑

j=−m

iωjak,j exp(iωjt), b′k(t) =

l
∑

j=−l

iωjbk,j exp(iωjt).

Here ω = 2πn where n is the number of cycles.

We emphasize that Pf has already been expressed in a finite Fourier basis,
thus m and ak,j are all fixed and known at this point of the analysis, whereas
the coefficients bk should be estimated. For l < m fixed, we collect the unknown
parameters in θ:

θ = {bk,j|k = 1, 2, 3, j = −l, . . . , l}

Some comments on the choice of l: The regularization assumption l < m is
necessary for identification, i.e., for the decomposition (1) to be unique since
otherwise we could just let J f = Pf − c0 with c0 ∈ R

3 any fixed vector. For
l < m the joint movement J f belongs to a subspace of lower dimension than
Pf , and the idea is to choose a small l, such that the joint movement is simple.

Recall that we aim at finding J f such that Pf − J f has approximately
constant length; hence we want the derivative of the squared length to be ap-
proximately zero for all t:

D|Pf(t)− J f(t)|2 ≈ 0.

This leads to the following criterion function to be minimized:
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C(θ) =

∫ 1

0

[

D|Pf(t)− J f(t)|2
]2

dt (3)

=

∫ 1

0

[

D

3
∑

k=1

(ak(t)− bk(t))
2

]2

dt

= 4

∫ 1

0

[

3
∑

k=1

D(ak(t)− bk(t)) · (ak(t)− bk(t))

]2

dt.

If we introduce the notation ek,j = ak,j − bk,j (with bk,j = 0, |k| > l) for
the Fourier coefficients of the difference Pf − J f , and furthermore cj1,j2 =

{
∑3

k=1 j2ek,j1ek,j2} and let j ∈ Is if j, s− j ∈ {−m, . . . ,m}, then

C(θ) =

∫ 1

0





2m
∑

s=−2m

iω
∑

j∈Is

cs−j,j exp(iωst)





2

dt.

Finally, if we let ds =
∑

j∈Is
cs−j,j and use that d−s = −ds (complex conjugate),

then we end up with the following simple formula for the criterion function

C(θ) = −4ω2
2m
∑

s=−2m

dsd−s = 4ω2

{

|d0|
2 + 2

2m
∑

s=1

|ds|
2

}

. (4)

The representation (4) makes it feasible to compute numerically the value and
the gradient of the objective function as a function of θ to be used for the
minimization algorithm. Since we are looking for a real valued estimate of the
joint movement J f , we found it convenient to reparameterize the problem in
terms of a basis of sines and cosines. For the results below we used l = 1
corresponding to the joint movement being expressed in terms of first order
harmonics only.

4. Results

We applied the registration procedure described above to each of the ten juggling
trials. We will use trial 8 for detailed illustration, because the effect of the
warping step was largest for this trial.

Warping and averaging Figure 1 shows the effect of steps 1 and 2 (warping
and averaging) on trial 8. The vertical coordinate (z)of the raw data (dashed) is
shown together with vertical coordinate of the periodic signal Pf (solid). The
raw signal does not exhibit much misalignment but the signal is indeed warped
slightly. Notice how the warping is more pronounced towards the ends of the
trial. The average curve Pf for trial 8 is shown for each coordinate separately
in the left part of Figure 2, and as a 3d-curve in the right part of the figure
(solid curve).

For the raw data the degree of periodicity, cf. definition (2), was 88.0%,
whereas for the warped data this number increased to 98.6%. All other trials
had degrees of periodicity of 94.3% to 97.2% before warping and between 97.5%
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Fig 1. Warping and averaging for trial 8. The dashed curve shows the z coordinate of the
observed data, while the solid curve shows the z coordinate of Pf .
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Fig 2. Left: The three directions of the warped and averaged curve Pf for trial 8. Right:
3d-illustration of the decomposition for trial 8. The solid curve shows the average Pf , the
dashed curve shows the estimated joint movement curve J f , and the dotted lines illustrate
the trajectory of the difference Pf−J f (each dotted line correspond to a specific time point.)

and 99.2% after warping. Hence, in general, only a limited amount of warping
towards the periodic template was necessary. Visually, the raw and averaged
trials were almost indistinguishable, except for trial 8 (see Figure 1).

The upper left, upper right and lower left plots of Figure 3 show the three
coordinates of the warped curves f ◦ h for all ten trials, split into cycles and
rescaled to the unit interval. The curves are coloured according to trial (but note
that curves from different trials have not been aligned). In general, cycles within
a trial are well aligned. Therefore the projection onto Lper,n is a good repre-
sentation of a trial. Note that the projections are similar across trials (-see the
lower right part of Figure 3). The warping criterion gives less weight to coordi-
nates with lower amplitude variation. This may explain why most misalignment
is present in the y direction.
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Fig 3. Upper left, upper right and lower left: The three coordinates of the warped curves f ◦h
cut into individual cycles for each trial. For a trial with n cyc les, the complete curve was
simply divided into n pieces of the same length, which was then rescaled to the unit interval.
Cycles of the same colour and line type stem from the same trial. Lower right: 3d-scatterplot
of the periodic average Pf for all trials.

Decomposition The estimated joint movement J f for trial 8 is shown as a
dashed curve in the right part of Figure 2. Recall that the estimation procedure
seeks the curve J f such that the vector Pf − J f has approximately constant
length over the trajectory. This vector is illustrated by the dotted lines between
the two curves, and its length varies from 0.179 m to 0.182 m for trial 8.

The decompositions for all curves are illustrated in Figure 4. The left part
shows the length |Pf − J f | over the trajectories (scaled to the unit interval),
and the right part shows the joint movements J f . We make the following im-
mediate observations from Figure 4: First, for all ten trials it was possible to
obtain a function J f ∈ V such that the distance |Pf − J f | is approximately
constant over time. This indicates that our simplistic biomechanical consider-
ations leading to equation (1) characterizes some of the main features of the
data generating mechanism. Second, the estimated length varies from 0.077 m
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Fig 4. Left: Estimated trajectory of distances, |Pf − J f |, for all 10 trials. Right: Estimated
joint movement, J f , for all ten trials. In both plots the estimate correponding to trial 8 is
shown as a solid curve.

.

to 0.181 m across the ten trials. This is somewhat disappointing as we had
hoped for an interpretation of this length as the length of a part of the hand or
arm of the juggler. Third, the variation between the estimated joint movement
curves is substantial. The decomposition restricts J f to be spanned by first
order harmonics in all three directions. Allthough the curves are approximately
elliptic they are different regarding angle and position.

5. Discussion

The purpose of the paper was to illustrate how the physical nature of a biome-
chanical system could be taken into account when removing phase variation of
functional data from juggling. We have demonstrated that it is possible to warp
all ten juggling trials such that the resulting structural mean over all cycles
allows a decomposition as in (1).

The most striking observation is that the estimated distance from finger tip
to joint, which should be an internal constant of the body anatomy, varies
substantially across the ten trials. This complicates the physical interpretation
of the estimated decomposition. Looking more carefully at the curves in the left
part of Figure 4, there seems to be some common patterns in the deviations
from constancy. Curves with low values of d seem to have peaks and valleys at
the same time points (for example around 0.38 and 0.82), i.e. at the same time
points of the juggling cycle. This indicates that our simple model might not
have captured all features in the data.

A possible extension of the model would be to allow for more flexibility in
the space V for the joint movement, i.e. by introducing harmonics of higher
order in the basis for J f . However, it seems more likely that adjustments from
the idealized set-up given by (1) is taking place around the finger tip (far from
the corpus) rather than at joints closer to the corpus. This suggest to relax the
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focus on constant length of Pf − J f . For example, the criterion function C(θ)
in the decomposition step, see (3) and (4), could be adjusted to have a time-
varying penalty on deviations from constancy. This would, however, complicate
the optimization problem substantially.

In this connection, it should be mentioned that the numerical optimization
problem for estimating the decomposition was more challenging than expected.
The algorithm we used produced reliable estimates but was slow. This part of
the implementation could be improved.

It is important to realize that amplitude and phase variation are bound to be
intertwined, as an adjustment via a change in speed (phase) will most likely also
change the amplitude. In relation to this, the complicated interplay between
the estimation the warping function (step 1) and the estimation of the joint
movement (step 3) should also be noticed. In particular, the space V for the
joint movement is not invariant to warping (i.e. g ∈ V does not imply that
g ◦ h ∈ V for a warping function h). Too much warping of f may destroy the
interpretation of the decomposition. This could be avoided by simultaneously
estimating the warping function and the decomposition, i.e. to incorporate the
warping (and averaging) step into the decomposition step.

Apart from the suggestions mentioned above, it would be interesting to exam-
ine the robustness of the registration. Simulations could clarify the importance of
the explicit form of the underlying signal on the performance of the registration
procedure. Moreover, it would be interesting to fit a common joint movement
curve to all s, and see the effect on the corresponding position vectors Pf −J f

and their lengths.
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