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This article addresses the additional challenges being faced when biological models are
used as a basis for decision support in livestock herds. The challenges include dealing with
uncertain information, observation costs, herd dynamics and methodological issues in rela-
tion to the computational methods applied particularly in the dynamic case. The desired
key property of information included in models is that it can be used as the basis for unbi-
ased prediction of the future performance of the animals. Often there will be a tradeoff
between uncertainty and costs in the sense that the level of uncertainty can be reduced
(for instance through additional tests) at some cost. Thus, the decision about which (and
how many) tests to perform can be seen as an optimization problem in itself. Another way
of expressing the tradeoff is to talk about the value of information which can sometimes
be assessed by modeling different approaches and levels of detail in data collection. Var-
ious optimization methods of relevance to herd health management are discussed with
the main emphasis on decision graphs in the static case and Markov decision processes
(dynamic programming) in a dynamic context.
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1. Introduction

In their textbook Kristensen et al. (2010a, Chapter 2) dis-
cuss the role of models in a herd context. They emphasize
that the reason for building models is to become able to
provide better decisions than human experts. They men-
tion that the main advantages of model based decision
support are, in the ideal situation, the ability to take herd
and animal specific conditions into account, provision of
a concise framework for combination of information from
different sources, direct representation of uncertainty and
efficient search algorithms for determination of optimal
decisions. Models may further contribute with extensive
sensitivity analyses concerning optimal decisions, deviat-
ing conditions and parameter values.

* Tel.: +45 3533 3091,
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The above perspective is from a decision making point of
view, but as discussed by Kristensen et al. (2010b, Chapter
14), another purpose of particularly simulation models is
to improve the understanding of a system by combining
research results from different areas in order to obtain a
comprehensive description of the system. If the system
being modeled is a biological system (for instance a herd or
a larger population of animals) it is natural to refer to the
model as a biological model.

Biological models in the context of preventive veteri-
nary medicine are typically defined either at animal level
(for instance dairy cow replacement models), herd level
(for instance herd simulation models) or population level
(disease spread models) even though some models com-
prise two levels (herd and animal or population and herd).

A biological model is first of all a model. The adjective
biological only indicates that the model describes biologi-
cal phenomena. A biological model does not represent the
“biological truth”, but it describes our understanding of a
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Fig. 1. A simple biological model of a dairy cow over two time stages.

biological system. It is important to emphasize that this
understanding can be more or less detailed, precise, biased
or wrong. It is therefore desirable that the model inter-
acts with actual observations (data) so that we can test the
validity of the model.

Having built a biological model with the initial purpose
of system comprehension, a natural next step is to consider
whether the model could also be used for decision support.
The aim of this article is to address the additional challenges
being faced when biological models are extended and used
for decision support in a livestock herd. The challenges
include dealing with uncertain information, observation
costs, herd dynamics and methodological issues in relation
to the computational methods applied particularly in the
dynamic case.

This article is organized as follows: after a short def-
inition of the concept of a biological model a graphical
language for describing such models is introduced and later
extended to include utility and decisions. The graphical lan-
guage is used throughout the article initially for the static
case where decision graphs are applied and later for the
dynamic case where the optimization technique is based
on Markov decision processes.

2. A graphical language for models
2.1. Biological models

Usually, the description of a model is in mathemati-
cal and statistical terms, but in this article we will use
a graphical modeling language known as directed acyclic
graphs (DAGs).Itis the graphical language used for Bayesian
networks and decision graph. For a more thorough intro-
duction to the concepts, reference is made to Jensen and
Nielsen (2007) or Cowell et al. (1999).

The first step in using the graphical language for bio-
logical models is to identify the variables. Assuming an
animal level model, the variables represent different traits
of the animal (for instance the milk yield or the disease
state). In the graphical language, the variables are simply
shown as circles as in Fig. 1. The next step is to identify

the relations between the variables. Relations are shown
as directed edges between pairs of variables. The direction
of an edge is given by causality. In other words, A — B indi-
cates that the value of A influences the value of B. The causal
influeihce may be in terms of consequences of certain states,
risk factors or repeatability over time.

Fig. 1 shows an example of a very simple biological
model with two time stages. As it is seen, two variables are
considered at each stage: mastitis (“Mast") and milk yield
(“Milk"). The edge from “Mast” to “Milk” at both stages sug-
gests that the mastitis state influences the milk yield. The
edge from “Mast” at time ¢ to “Mast” at time t+ 1 expresses
that a previous mastitis case is a risk factor for a new case.
The edge from “Milk” at time ¢ to “Milk” at time t+1 has
a similar meaning in the sense that it corresponds to the
repeatability of milk yield in a dairy cow.

Edges give important information about the model and
the biological assumptions behind it, but it is important to
understand that the absence of an edge gives just as impor-
tant information. In the figure, a dashed edged has been
added from *Milk” at time t to “Mast” at time t + 1. The pur-
pose of the dashes is only to discuss whether or not the
edge should be there. If it is omitted, the biological under-
standing is that “Milk” at time t is conditionally independent
of “Mast” attime t + 1 given “Mast” at time t. For anin-depth
discussion of the concept of conditional independence, ref-
erence is made to Jensen and Nielsen (2007). If, on the other
hand, the edge is added it implies, that even if the value of
“Mast” at time t is known, additional information of the
milk yield at time t will alter the probability distribution of
“Mast” at time t+ 1.

In Fig. 1 there is no edge from “Mast” at time ¢ to “Milk”
at time t+ 1. The biological assumption behind the missing
edge is that mastitis only indirectly influences the future
milk yield through the increased risk of new mastitis cases.
If, on the other hand, the biological understanding is that
mastitis directly influences also the future milk yield, an
edge should be added.

Thus, the DAG of Fig. 1 provides a consistent framework
for logical testing of the model against the biological under-
standing of the system being modeled. It is natural to refer
to the DAG as the structure of the model. Before it can be
used it is, of course, also necessary to define the numer-
ical properties of the model. In the example, it would be
natural to let “Mast” be a categorical variable with states
{“Yes", “No"}, or if more details are needed the states could
be {"Gram Pos”, “Gram Neg", “"Other”, “No"} or similar. The
numerical specification for time t would simply be a prob-
ability distribution over the state space.

The natural understanding of the “Milk"” variable is that
it is continuous, but in model implementations it will often
be handled as a discrete variable with a number of states
each corresponding to an interval of milk yield. The num-
ber of discrete intervals to use depends on the desired
accuracy of the model, and often the number is a trade-
off between accuracy and computational complexity. For
a discussion of principles for discretization of continuous
variables, reference is made to Nielsen et al. (2010). The
numerical specification at time t would be a conditional
probability distribution over the (continuous or) discrete
state space. If “Mast” is modeled as just “Yes" or “No", we
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Fig. 2. The biological model from Fig. 1 extended with a decision variable
and two utility variables. The model is now a decision graph.

might for instance use a normal distribution for the “Yes”
case and another normal distribution for the “No” mastitis
case.

The numerical specification of the variables at time ¢ + 1
is slightly more complicated. For the “Mast” variable we
need a set of conditional probability distributions for each
combination of the parent variables “Mast" and "Milk” at
time t, and for the "Milk” variable we need conditional
probability distributions given previous milk yield and
present mastitis state. All conditional (and unconditional)
probability distributions should be estimated from data.

If the milk yield variables are modeled as discrete and
the probability distributions have actually been estimated,
we have a full working model which is an example of
a Bayesian Network as described by Jensen and Nielsen
(2007). The model would, for instance, be able to forecast
the variables at time t+ 1 given observations at time t. Alter-
natively, it might also estimate the probability that there
had been a mastitis case at time t given observations at time
t+1.

2.2. Optimization models

An obvious decision to consider in relation to the model
shown in Fig. 1 is treatment in case of mastitis. It would
therefore be natural to add a decision variable to the DAG.
Treatment is not free, so in addition to the decision variable
there should be a utility variable capturing the costs. The
benefit of a treatment at time t would be that it decreases
the probability of mastitis at time t + 1. This may potentially
lead to increased milk yield at time t+ 1. We therefore need
another utility variable to capture the value of the milk at
time t+ 1, The decision to treat will be based on a tradeoff
between the cost of treatment and the expected higher milk
yield if treated. Thus, we have an economic optimization
problem.

Adding a decision variable “Treat”, a utility variable
“Cost” and a utility variable “Value" result in the DAG
shown in Fig. 2 where decision and utility variables are

shown in colors deviating from the biological variables.
The DAG is now referred to as a decision graph and, if
implemented numerically, algorithms are available for
optimization of decisions. One of them is known as single
policy updating and was originally described by Lauritzen
and Nilsson (2001). They also used the term limited memory
influence diagram (LIMID) for decision graphs being solved
by single policy updating. The algorithm has been imple-
mented in the Esthauge LIMID Software System.!

The interpretation of edges into decision and utility vari-
ables deviates a little from edges into biological variables.
Thus, an edge into a decision variable means that the value
of the parent is known when the decision is made. In other
words, if V; and V;, are parents of the decision D, it means
that an optimal decision strategy for D will depend on V;
and V; so that for each combination of values of V; and
V> there will be an optimal decision. Therefore, edges into
decision variables are also called information edges. An edge
into a utility variable simply means that the utility value
depends on the value of the parent. Edges out of a utility
variable are not allowed.

3. The static case
3.1. Static versus dynamic

The term “static” implies that time does not play a major
role in the model. There may, as in Figs. 1 and 2 be two (or
more) time stages involved, but they are modeled explic-
itly with limited time horizon. In the static case, a decision
graph is an obvious tool for economic optimization. In the
examples of this section the Esthauge Limid Software Sys-
tem will be used for optimization in the decision graphs.

The opposite of “static” is “dynamic” where time plays
an important role, and where we often face along and even
undefined (“infinite”) time horizon. The optimization tech-
niques applied to dynamic models are different and will be
dealt with in a later section.

3.2. The two-cow problem

For the static case, a “two-cow problem" will be used
and extended step by step throughout the section. It is
heavily inspired by the “two-sow problem" described by
Kristensen et al. (2010b, Example 6.1).

First, a verbal description of the decision problem is
given:

Problem description: A smallholder dairy farmer has only
housing capacity for one cow. Recently his cow
died. He has no heifer, so he wants to buy a new
cow. His neighbor has two pregnant 1st lactation
cows for sale: Cow A and Cow B. Both of them will
calve two weeks from now. The price is the same.

Decision problem: Should the smallholder buy Cow A or
Cow B from his neighbor?

T http://www.esthauge.dk
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Table 1
Optimal decision strategies and expected utilities for the four observation
strategies.

Cows obs. Optimal strategy Exp.util  Value of inf.
None Choose Cow A or Cow B 8407 0
Cow A Choose Cow A if Yy, >7500° 8546 139
Cow B Choose Cow A if Yy < 7500° 8546 139
Both Choose Cow A if Y14 > Yy’ 8600 193

2 Otherwise choose Cow B.

The biological model behind this problem is a model of
milk yield in a dairy cow. Let Y4 and Yy, be the nth lactation
milk yield of Cow A and Cow B, respectively. We assume
that the mean milk yield of a first parity cow is 7500kg
and 8400 kg for a second lactation cow. The standard devi-
ation (between cows, within herd) is for both parities
assumed to be 10% of the mean. Finally, the repeatability
of milk yield from first to second lactation is assumed to be
0.45.

Before continuing with a solution to the decision prob-
lem it is worth noticing that according to usual partial
budgeting principles (see Dijkhuizen et al., 1995, for a dis-
cussion) everything that does not depend on the decision
can be ignored in the optimization. In this case we can
therefore ignore the price of the new cow and the value
of the calf. The only relevant variable to consider is there-
fore the value of the milk. A decision graph implementation
of the two-cow problem in the Esthauge LIMID Software
System is shown in Fig. 3(a).

3.3. Observation scenarios and value of information

In Fig. 3 four alternative observation scenarios are
shown. The four scenarios are

1. Observe nothing (Fig. 3(a)).

2. Observe first lactation milk yield of Cow A (Fig. 3(b)).

3. Observe first lactation milk yield of Cow B (Fig. 3(c)).

4. Observe first lactation milk yield of Cow A and Cow B
(Fig. 3(d)).

In the software system, the different scenarios are sim-
ply defined by adding the relevant information edges as
seen in the figure. In each case, the Single Policy Updating
algorithm is able to provide:

1. The optimal decision strategy.
2. The expected utility under the optimal strategy.

Running an optimization for each of the four scenarios
produces the results shown in Table 1.

If neither of the first lactation milk yields are observed,
it does not matter whether the smallholder dairy farmer
buys Cow A or Cow B. In both cases the expected utility
(measured as amount of milk) is simply 8407 correspond-
ing to the mean milk yield of an arbitrarily selected second
parity cow (it is because of the inaccuracies introduced by
the discretization of the milk yield variables that the result
is not exactly 8400).

If first lactation milk yield of one of the cows is observed,
it does not matter whether it is Cow A or Cow B. In both

cases the expected utility increases to 8546 or 139 more
than the no observation scenario. In both cases the strategy
is to choose the observed cow if its first lactation milk yield
is higher than average for a first lactation cow. If it is lower
than average the other cow is chosen.

Finally, if both first lactation milk yields are observed,
the optimal strategy is, of course, to choose the cow having
the highest first lactation milk yield. In this scenario the
expected utility is 8600 or 193 higher than the no observa-
tion scenario.

The results of Table 1 illustrate several important char-
acteristics of observations and decisions:

e Observations have a value because they enable the
decision maker to make better (i.e. more informed) inter-
vening decisions. This value is known as the value of
information.

The value of information is found as the expected util-
ity with information minus the expected utility without
information.

The value of information shows diminishing returns to
scale. Thus, the value of observing both cows is less than
twice the value of observing both cows. This result is
generally true in cases like this where the amount of
information is measured as the number of condition-
ally independent observations (Kihlstrom, 1974). Under
other conditions it is not necessarily true (Chade and
Schlee, 2002).

3.4. Observation costs and observation strategy

In the previous subsection it was implicitly assumed
that there were no observation costs, and in that case the
optimal observation strategy would be to observe both first
lactation milk yields. The assumption mentioned in Sec-
tion 3.2 was, however, that the two cows had their first
lactations in the herd of the neighbor. Thus, the smallholder
farmer does not have direct access to those observations.
In principle, they are available in the neighbor’s herd, but
perhaps the neighbor will not supply this information for
free.

Assume that the price for getting the information is x
per cow. Depending on x it may be optimal to completely
abstain from observations, to buy information about one
cow at the price of x or to buy the information for both
cows at the price of 2x. Jensen and Nielsen (2007, p312)
describe how to include the decision to observe directly in
a decision graph. The trick in this example is to include two
additional variables corresponding to the observed milk
yields of first lactation as seen in Fig. 4. If it is decided, for
instance, to observe Cow A, the value of the observation
variable 044 will be equal to Yi,. If, on the other hand, it
is decided not to observe, the value of 04 will simply be
“Unobserved”. For the correctness of the model it is impor-
tant to remember, that the second lactation milk yield of
the selected cow depends on the actual first lactation milk
yield (not the observed).

While Fig. 4 provides a general framework for optimiza-
tion of the observation strategy, the example in this case is
so simple that it is easily seen (without using the decision
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(a) Observe nothing

(b) Observe Cow A

(c) Observe Cow B

(d) Observe both cows

Fig. 3. The two-cow problem with four different observation scenarios implemented in the Esthauge LIMID Software System. The variables Y_1A and Y.1B
are first lactation milk yield of Cow A and Cow B, respectively, and Y_2 is the second lactation milk yield of the chosen cow. “Choose” is the decision (either

Cow A or Cow B), and “Milk” is the value of the milk.

graph) from Table 1 that the optimal observation strategy
depends on the cost x as follows:

® Observe both cows if 2x <193.
e Observe one cow, if 2x> 193, but x <139.
e Abstain from observation if x> 139.

From this example we conclude that for a given obser-
vation cost there is an optimal observation strategy. Thus,
the decision to observe should also be based on economic
optimization.

3.5. Observation precision

Very often in practise observations are not precise.
Diagnostic tests, for instance, are characterized by their
sensitivity and specificity, and many measurements of con-
tinuous variables are associated with a measurement error.
In both cases, the solution in terms of modeling is to dis-
tinguish the observed value from the true (unobservable)
value in the same way as for milk yield in Fig. 4. Now,

however, if the variable is observed, 04 will not hold the
same value as Yq4, but instead we might have a relation
like

014 =Yia+e, e~MO,0?), (1)

where e is the observation error. The assumption behind
Eq.(1)is that the observation is unbiased with the precision
102,

The value of this, less precise, information will of course
be less than in the case with perfect information. Just like
in Section 3.3 there are four observation scenarios, and one
of them (observing Cow A) is shown in Fig. 5.

Running an optimization (Single Policy Updating) for all
four scenarios assuming very imprecise measurement of
milk yield with o =300 reveals that the value of observing
one cow is 128 and the value of observing both cows is
179. Comparing with Table 1 we see that the value is less
than under perfect information, but actually only slightly.
Therefore, if the imprecise information is cheaper than the
exact, it may very well be profitable only to buy the less
precise information.
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Fig.4. The two-cow problem with observation as a decision involving a cost. The variables 0.1A and O.1B are the observed first lactation milk yields of Cow
A and Cow B, respectively, “Observe?” is the observation decision and “Cost” is the observation costs. Other variables are explained in Fig. 3. If a cow is not
observed, the corresponding observation variable will be in state “Unobserved”. Otherwise it takes the same numerical value as the actual first lactation

milk yield.

Thus, we can conclude that the value of information
depends on the precision, and if high precision also has
a higher cost it may be beneficial only to aim at the lower
precision.

3.6. Decision graphs for economic optimization

In the static case, a decision graph is an almost perfect
tool for economic optimization. The technique enables us to
handle unobservable traits and thus distinguish observed

Fig. 5. The two-cow problem with observation errors. The variables are
explained in Figs. 3 and 4. The observed milk yields are influenced by an
unbiased observation error. Here, it is assumed that Cow A is observed.

values from true underlying latent values. Typically, how-
ever, software implementations require that continuous
variables are transformed to discrete variables with a finite
number of states with some loss of accuracy as a conse-
quence.

4. The dynamic case
4.1. The combinatorial explosion

When moving from the static case to the dynamic case,
the first challenge faced is the combinatorial explosion as
illustrated in Fig. 6. The present cow is a Parity five cow. If it
is kept, it will turn into a Parity six cow. If replaced, the next
lactation will be a first parity cow. Continuing only three

Fig. 6. The combinatorial explosion of the replacement problem in dairy
cows. The numbers refer to parities.
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lactations forward, there will be eight possible scenarios.
If also other properties were considered, there would soon
be prohibitively many scenarios.

A very efficient method for handling the combinato-
rial explosion is a Markov decision process (also known
as dynamic programming). Numerous applications of the
method in livestock production have been published. Some
recent examples (Nielsen et al., 2010; Demeter et al., 2011)
focus on production and reproduction traits whereas other
(Bar et al., 2008a,b; Cha et al., 2010, 2011, 2014a) focus on
health traits. All the models mentioned have been imple-
mented by use of the MLHMP software system” developed
by Kristensen (2003). Recently, Nielsen and Kristensen
(2014) gave a comprehensive review of the applications
of the technique.

Even though decision graphs are not able to solve
Markov decision processes with undefined time horizon,
the DAG language will also be used in this section to visu-
alize the models.

4.2. Markov decision processes

An example of a Markov decision process with focus on
mastitis is shown in Fig. 7. The example is heavily inspired
by models presented by Bar et al. (2008b,a) and Cha et al.
(2011, 2014a). The model shown considers three proper-
ties (age, milk yield and mastitis) of a dairy cow at regular
time intervals called stages. The stage may be a lactation, a
month or a week depending on the level of detail. Each of
the three properties is shown as a separate state variable at
each time stage.

The age is typically measured as parity (often supple-
mented by month of lactation), the milk yield as a number
of discrete levels, and the mastitis variable may simply have
the states “Yes” and “No” like in Bar et al. (2008a), or it
may be modeled at a more detailed level. Thus, Cha et al.
(2011) considered the Gram type of the mastitis infection
and Cha et al. (2014a) even considered the bacteria caus-
ing the infection. The combined values of all three state
variables is referred to as the state of the Markov decision
process.

Based on the current state a decision is made as shown
in the figure. In the example the decision options could for
instance be “Treat”, “Inseminate” or “Replace” (and per-
haps combinations of these). Having observed the state
and made a decision, a reward is received. Typically, the
reward would be the gross margin for a cow given state
and decision. The rewards are shown as utility variables in
Fig. 7.

Unlike a decision graph, a Markov decision process does
not necessarily have a well-defined planning horizon. In
Fig. 7 this is illustrated by the dots at the right-hand side.
Often the time horizon is considered as infinite. If, on the
other hand, a Markov decision process actually has a well
defined planning horizon with a finite number of stages,
it is just a special case of a decision graph and, accord-
ingly, Single Policy Updating as described by Lauritzen and

2 htep://www.prodstyr.ihh.kvl.dk/software/mlhmp.html

Nilsson (2001) can be used for optimization even though it
is seldom done.

Dynamic programming as a method for dealing with
sequential decision problems was described by Bellman
(1957), but later the term Markov decision process was
introduced by Howard (1960) who also described the clas-
sical optimization techniques known as policy iteration for
the infinite stage case and value iteration for the finite stage
case. Because of its simplicity, value iteration has often
been used as an approximate optimization technique also
for the infinite case.

The first example known to the author of application of
Markov decision processes in dairy cows was presented by
Jenkins and Halter (1963), but a far more comprehensive
early application was published by Giaever (1966).

4.3. Challenges when modeling with Markov decision
processes

Even though Markov decision processes have been
applied in numerous dairy cow replacement, insemination
and treatment models in literature, the modeler faces some
challenges when using the technique. In this section three
major (and mutually related) challenges are discussed.

4.3.1. The Markov property

The Markov property is essential for the correctness of
the model and this is probably where the biggest pitfalls
are for the modeler. The Markov property states that the
present state and decision contain all relevant information
for predicting the future. What has happened before (i.e.
previous states and decisions) is of no relevance for the
future.

A very simple illustration of the Markov property, what
it means and how to compensate in case of violations is
given in Fig. 8 where (for simplicity) only one property,
“Milk yield” is considered over four stages. The graphical
modeling language in the form of DAGs is very well suited
for such an illustration.

In Fig. 8(a) the model says that future milk yields only
depends on present milk yield. Historical observations of
milk yield are of no relevance given that the present milk
yield is known. If that is true (also from a biological point of
view), the Markov property is satisfied and the model will
be valid.

If, on the other hand, biological knowledge implies that
future milk yield is influenced not only by present milk
yield, but also by previous milk yield as illustrated in
Fig. 8(b), then the Markov property is violated. Even though
the model shown makes sense it is not a Markov process.

If what is seen in Fig. 8(b) corresponds to our biologi-
cal understanding of the system (a dairy cow), we face a
dilemma. A straightforward modeling as in Fig. 8(a) will be
directly erroneous, but the model shown in Fig. 8(b) is not
a Markov process and cannot be solved as such. The tra-
ditional approach for compensation for such a violation of
the Markov property is to include one or more memory vari-
ables in the state space as shownin Fig. 8(c) where the state
space has been redefined to include a state variable sim-
ply remembering the milk yield of the previous stage. Thus
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Time t Time t+1 Time t+2 Time t+3

Replace
Treat
Keep
Gross
margin

Fig. 7. A Markov decision process with three state variables.

(a) Markov property satisfied

S

(b) Violation of Markov property

(c) Compensation by memory variable

& o0
& Fr B &

(d) Compensation by Bayesian updating

Fig. 8. Illustration of the Markov property and how to compensate for violations.
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the state is defined as the combined values of present and
previous milk yield, and the Markov property is satisfied.

The approach with memory variables has been used in
numerous models published in literature. For milk yield is
has for instance been done exactly as described in mod-
els by van Arendonk (1985), van Arendonk and Dijkhuizen
(1985) and Kristensen (1987, 1989). A similar approach for
number of mastitis cases was used by Houben et al. (1994).
Fora more complete overview, reference is made to Nielsen
and Kristensen (2014).

A weakness of the approach with memory variables is
that it is not always obvious how many to include. Is it, for
instance, sufficient to include state variables for present
and previous milk yield or should also memory variables
for even older milk yield observations be included? A more
general approach is, therefore, to use Bayesian updating
as illustrated in Fig. 8(d). The idea, which was simulta-
neously (but independently) introduced by Kennedy and
Stott (1993) and Kristensen (1993), is to see the observa-
tions of milk yield over time as influenced by a latent milk
production potential (MPP) of the cow. This potential can
then be estimated sequentially as observations are done so
that we at each stage have an estimated milk production
potential (eMPP) as illustrated in the figure. The technique
was further generalized by Nielsen et al. (2011) and it has
already been applied in several models for milk yield mod-
eling (e.g. Nielsen et al., 2010; Demeter et al., 2011),

If the same principles were to be applied on disease
data then actual disease cases should be seen as results
of an underlying latent disease risk which is re-estimated
by Bayesian updating each time a new case is seen or not
seen. Only very few attempts have been done to imple-
ment such a framework even though Ge et al. (2010, 2014)
implemented a population level model for foot and mouth
disease control with a latent disease risk sequentially esti-
mated by Bayesian updating.

4.3.2. Full observability of state space

In the static case imperfect observations were discussed
in Section 3.5. It was assumed that only an imperfect
observation of milk yield was available. The scenario was
illustrated in Fig. 5 where it is seen that the decision is based
onthe imperfect observation, whereas itis the true first lac-
tation milk yield that influences the second lactation milk
yield.

In a decision graph this is not really a problem, but in
a sequential decision problem solved by Markov decision
programming it is not possible to handle such a case cor-
rectly. It is a precondition for the method that the state is
fully observable, because otherwise the future milk yield is
influenced by something that is not observed. This is a vio-
lation of the Markov property because the decision is not
based on all relevant information.

In the model shown in Fig. 7 mastitis is one of the prop-
erties considered. As mentioned, mastitis can be handled
at different levels of detail. Cha et al. (2014a) modeled the
disease at a very detailed pathogen specific level. Such an
information level allows for pathogen specific effects on
milk yield, conception, mortality, treatment cost, and risk of
new cases, but those advantages must be weighed against
increased culture costs to determine the pathogen.

Pathogen
specific

Gram

type

Generic
(Yes/No)

Fig.9. Three possible observation scenarios for mastitis. FO: full observa-
tion at pathogen level (solid information edge); PO1: partial observation
at Gram type level (dashed information edge); PO2: partial observation
at generic level (dotted information edge). Only full observation satisfies
the Markov property.

Instead of observing mastitis cases at pathogen level it
is worth considering whether a cheaper test method only
determining the Gram type should be applied instead as
assumed in Cha et al. (2011) or even completely without
testing the type of mastitis as assumed by Bar et al. (2008a).

Based on these considerations three observation scenar-
ios can be defined as illustrated in Fig. 9:

1. Observe mastitis at pathogen level (full observation, FO)
illustrated by the solid information edge.

2. Observe mastitis at Gram type level (partial observation,
PO1) illustrated by the dashed information edge.

3. Observe mastitis at generic level (partial observation,
PO2) illustrated by the dotted information edge.

It should be noted that the edges from “FO" to “PO1"
and further to “PO2" correspond to going from detailed to
less detailed knowledge. A certain pathogen in “FO" will, for
instance, always be in one of the classes defined for “PO1"
and, accordingly, the conditional probability distributions
behind the edges are trivial.

The problem in Fig. 9 is that if the pathogen specific
model reflects our biological understanding of the dis-
ease dynamics of a dairy cow, the Markov property will
only be satisfied if the decision is based on full observa-
tion. If instead only a partial observation is done (“PO1" or
“PO2") it means that the future depends on aspects that
are not known when the decision is made. Thus, one of the
fundamental assumptions in a Markov decision process is
violated.

Nevertheless, it is also in the dynamic case relevant to
ask about the value of information. Full observation will
increase the possibilities for targeting the treatment to the
pathogen, but the culture costs are higher. Unlike in the
static case, the question cannot be answered exactly, so
approximate methods must be used.

One option used in an ongoing study by Cha et al.
(2014b) is to combine optimization of the model with
full observability with simulation of simplified strate-
gies where the same decision is made for all pathogens
in for instance the group of Gram positive bacteria. In
that way an approximate value of information can be
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estimated. Another option, which has not been tested in
practice, would be to use a technique based on combina-
tion of Markov decision processes and decision graphs as
described by Jorgensen et al. (2014).

4.3.3. The curse of dimensionality

When several state variables (cow traits) are considered
at a realistic number of levels, the state space grows to
prohibitive dimensions so dairy cow replacement models
published in literature often have millions of state com-
binations. Therefore, a direct optimization is not always
possible.

A solution is to decompose the state space according
to time and build a hierarchical model as originally pro-
posed by Kristensen (1988) and later further extended by
Kristensen and Jergensen (2000). Such a decomposition has
a tremendous effect on computational performance and
even models with millions of state combinations can be
solved. The technique has been used in numerous dairy
cow replacement models as well as for other decision prob-
lems. For an overview of applications reference is made to
Nielsen and Kristensen (2014). A special software system
(MLHMP) is available for implementation of hierarchical
models (Kristensen, 2003).

Directly inspired by a dairy cow replacement model
developed by Demeter et al. (2011) a hierarchical Markov
decision process with three levels is illustrated in Fig. 10.
The idea of the technique is to decompose the state space
according to time horizon so moving from the founder level
to the child level and the grandchild level the time horizon
is decreased and the stage lengths are accordingly shorter.
Conversely, the level of detail increases when moving from
founder level to child and grandchild levels.

In the example of Fig. 10 the founder level is shown at
the top, the child level in the middle and the grandchild
level at the bottom. Each level corresponds to separate
Markov decision processes with their own stages, states
and decisions as follows:

Founder level: The process at the founder level has an
infinite horizon and models a chain of cows suc-
cessively replacing each other.

Stage: A stage is defined as the lifetime of the present
cow in the herd.

State:  Only one state variable, the breeding index at first
calving, is defined.

Decision: No decisions are made at this level.

Childlevel: The processatthe childlevel hasalimited time
horizon corresponding to the maximum number
of lactations considered for a cow.

Stage: Astageisdefined asthe duration of a full lactation
cycle (including dry period).

State:  Only one state variable, the estimated permanent
milk yield potential of the cow, is considered.

Decision: No decisions are made at this level.

Grandchild level: The process has a limited time horizon
corresponding to the maximum duration of a lac-
tation cycle.

Stage: A stage is defined as a fixed time interval (e.g. a
month, a week or a day). Demeter et al. (2011)
assumed monthly stages.

State:  Two state variables are considered: the estimated
permanent milk yield potential of the cow and
the estimated temporary potential — see Demeter
et al. (2011) for details.

Decision: “Keep and inseminate”, “Keep”, “Replace”.

It should be noticed that, unlike the ordinary Markov
decision process in Fig. 10, age is not included as a state
variable in the hierarchical model described above. The age
of the cow will simply be known from the stage numbers
at the child and grandchild level.

Due to the different time horizons (infinite in the
founder process and finite in the child and grandchild
processes), an optimization technique combining policy
iteration in the founder process and value iteration in the
child and grandchild processes is applied as described by
Kristensen and Jergensen (2000).

5. Discussion

In this article the optimization problem in relation to
biological modeling has been discussed for the static case
as well as for the dynamic case. A common graphical lan-
guage in the form of DAGs has been used to visualize the
models and important characteristics and challenges have
been described and discussed. Even though all examples
have referred to dairy cows, the principles discussed apply
to modeling of livestock production in general.

The desired key property of information included in
models is that it can be used as the basis for unbi-
ased prediction of the future performance of the animals.
Straightforward representation of observed data is sel-
dom desirable because it often leads to computationally
intractable models (the use of memory variables in Markov
decision processes is an obvious example of this). Instead
emphasis should be put on sequential Bayesian updating
of latent variables given data.

In the static case, Bayesian updating is straightforward,
and the decision graph framework is very well suited for
such an approach with latent, unobservable, properties.
In the dynamic case, this is more complicated because
of the underlying assumption of full observability of the
state space. Nevertheless, the use of Bayesian updating in
a dynamic context is now quite well described and under-
stood when it comes to normally distributed data, where
Nielsenetal.(2011) presented a framework. When it comes
to categorical variables, however, the concept has not been
described very well even though Ge et al. (2010, 2014)
applies a Bayesian updating technique to a variable follow-
ing a Poisson distribution. Bayesian updating for categorical
variables in Markov decision processes is certainly an area
where more research is desirable.

All the examples presented in this article have, for sim-
plicity, been at animal level. A few examples in literature
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Fig.10. A hierarchical Markov decision process with three levels: cow level, lactation level and lactation stage level. The four variables to the right (after the
vertical line) correspond to the next cow. The variables are BI: breeding index; ePP: estimated permanent potential; eTP; estimated temporary potential.

have applied Markov decision processes also at population
level (e.g. Ge et al,, 2010, 2014; Viet et al., 2012) for disease
control decisions, but the main application area remains
the animal level.

A problem, which has not been discussed in this arti-
cle, is the interaction between herd and animal level in the
dynamic case. It is obvious that such interactions are very
relevant if contagious diseases are modeled, but also herd
constraints of various kinds (limited supply of heifers, milk
quota, etc.) will create interactions between animals. No
good optimization techniques are available to link herd and
animal level, even though a few attempts are reported in
literature (Ben-Ari and Gal, 1986; Kristensen, 1992). This is
also an area where more research is needed.

6. Conclusions

Based on the previous sections the following conclu-
sions are made for observations and their value:

e Observations have a value because they enable the
decision maker to make better (i.e. more informed) inter-
vening decisions. This value is known as the value of
information.

e The value of information is found as the expected util-
ity with information minus the expected utility without
information.

e The value of information shows diminishing returns to
scale,

* The decision to observe should be based on economic
optimization.

* The value of observation depends on the precision.

¢ The value of information is often more difficult to esti-
mate in a dynamic framework.

Methodologically it is concluded that decision graphs
are very well suited for static decision problems whereas
Markov decision processes is the preferred tool for dynamic
decision problems.
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