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METHOD Open Access

Bayesian transcriptome assembly
Lasse Maretty†, Jonas Andreas Sibbesen† and Anders Krogh*

Abstract

RNA sequencing allows for simultaneous transcript discovery and quantification, but reconstructing complete
transcripts from such data remains difficult. Here, we introduce Bayesembler, a novel probabilistic method for
transcriptome assembly built on a Bayesian model of the RNA sequencing process. Under this model, samples from
the posterior distribution over transcripts and their abundance values are obtained using Gibbs sampling. By using
the frequency at which transcripts are observed during sampling to select the final assembly, we demonstrate marked
improvements in sensitivity and precision over state-of-the-art assemblers on both simulated and real data.
Bayesembler is available at https://github.com/bioinformatics-centre/bayesembler.

Background
The massive throughput of second-generation sequenc-
ing technologies is rapidly changing our ability to explore
complex transcriptomic landscapes as it can reveal both
sample-specific transcript variants and their abundances
(i.e. expression levels). However, due to the combination
of alternative splicing and the short sequencing fragments
characteristic of these methods, it is often not possible
to determine directly which exons are linked in splice
variants over longer sequence distances. Instead, due to
variation in abundance between alternative splice vari-
ants, read coverage along exons and splice junctions can
be used to infer the most likely exon combinations.

We define transcriptome assembly as the problem of
determining the set of expressed transcripts and their
abundance levels in a sample from a set of RNA sequenc-
ing (RNA-seq) reads. Current assembly algorithms gener-
ally proceed by first extracting exon boundary and splice
junction information from the RNA-seq reads, which is
then used to build a set of splice graphs representing all
possible splice variants [1]. This problem can generally be
solved efficiently using either a reference-based strategy,
where a reference genome is used as a scaffold in splice
graph assembly, or by de novo construction. Given a graph,
the challenge is then to determine which combination of
transcripts – represented by paths in the graph – and
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associated abundances best explains the data. However, as
shorter sequencing fragments give rise to larger numbers
of putative transcripts, we know a priori that we should
generally search for solutions that are sparse relative to the
total number of paths in the graph. The inference objec-
tive is thus to find solutions sufficiently rich to explain
both the graph and its read coverage without overfitting
by predicting too many transcripts.

The widely used Cufflinks [2] method estimates splice
variants and their abundances sequentially and solves
the former problem by searching for the smallest set
of transcripts that can explain the graph guided by
splice junction coverage information. However, the use
of only local coverage information makes it susceptible
to noise and the search for the minimal set of tran-
scripts lacks a biological foundation as more complex
solutions may better explain the full graph coverage. More
recent assemblers like IsoLasso [3], SLIDE [4], CEM [5]
and iReckon [6] co-estimate splice variants and abun-
dances using regularisation-based methods. But these
approaches achieve sparsity by effectively thresholding
transcript abundances and thus implicitly penalise lowly
abundant transcripts. The Mitie [7] assembler avoids the
thresholding approach to regularisation by using a greedy
variant of mixed-integer programming, which, however,
comes at the risk of only finding suboptimal solutions.
Similarly, the Traph [8] assembler pursues the simplest
possible transcript solution also using a greedy graph-
optimisation algorithm. More generally, most assemblers
rely on a number of hard-to-tune hyperparameters and
heuristic thresholds, which suggests that the methods
may not generalise well across, for example, species and
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RNA-seq protocols. Finally, even under sparse estimation
conditions, model identifiability issues and noise may still
give rise to uncertainty about the correct combination of
expressed transcripts, thus motivating a fully probabilistic
approach to the assembly problem.

Here, we present a novel probabilistic approach to tran-
scriptome assembly based on an efficient Gibbs sampling
method for inference in a Bayesian model of the RNA
sequencing process. By modelling a subset of paths in
the graph – or transcript candidates – as having point-
zero abundance, the Bayesian formulation allows us to
model the prior expectation of the number of expressed
transcripts (sparsity) without penalising lowly expressed
ones. The frequency at which transcript candidates are
observed to have positive abundance in a set of Gibbs
samples then serves as a confidence metric for each tran-
script. These confidence estimates are in turn used to
determine the final assembly and further provide a means
for prioritising assembled transcripts for downstream val-
idation. Our method is implemented in C++ as a com-
plete transcriptome assembly package under the name
Bayesembler.

Results
We first present an informal overview of our model and
inference method; a formal description is provided under
Materials and methods. We then compare the perfor-
mance of our assembler with a panel of state-of-the-art
transcriptome assembly methods on a number of different
datasets.

The Bayesembler
The algorithm first constructs a set of splice graphs from
a TopHat2 [9] map of the RNA-seq reads using the graph
construction routine in the CEM [5] assembly package
(Figure 1(1)). Next, for each splice graph, a set of candidate
transcripts is constructed by iteratively traversing paths
in the graph and pruning the edges with lowest coverage
until the total number of candidates does not exceed 100
(Figure 1(2)). Provided with a set of transcript candidates,
we use Bayesian inference to determine the most likely
combination of candidates and corresponding abundance
levels.

Our inference method is built on a generative model of
the RNA sequencing process. In the model, each candi-
date is associated with a binary random variable, which
models whether the candidate is expressed (i.e. has non-
zero abundance); this construct allows us to model our
prior expectation of sparsity in the number of expressed
candidates. Each expressed transcript is further associ-
ated with a real-valued random variable, which models
its relative abundance. Finally, we assume that the binary
variables share a Bernoulli prior distribution, which con-
trols the number of expressed candidates, and further

assume a symmetric Dirichlet prior distribution on the
abundances of the expressed transcripts. Intuitively, this
construct decouples the distribution of candidate expres-
sion from the distribution over abundance levels and
hereby contrasts with most current approaches by not
penalising lowly abundant transcripts. To specify a com-
plete generative model of the RNA sequencing process,
we assume that for each transcript a binary variable is first
drawn from the Bernoulli distribution, followed by a draw
of abundance values from the Dirichlet distribution for
the expressed transcripts. For each paired-end read to be
generated, a transcript is then drawn from the categorical
distribution specified by the relative abundances, followed
by sampling of a paired-end read from the transcript,
essentially as described by Pachter [10].

A Gibbs sampling method was derived to infer the joint
posterior distribution over expressed candidates, their
abundances and assignments of reads to candidate tran-
scripts, where the latter represents a latent variable in our
model (Figure 1(3–5)). The Gibbs sampler is initialised
by randomly sampling a candidate assignment for each
read and proceeds as follows (Figure 1(3)). First, candidate
expression values (i.e. binary values indicating whether
a transcript has non-zero abundance) are sampled con-
ditioned on an assignment of reads (Figure 1(4a)). Next,
abundance values are sampled conditioned on the set of
expressed transcripts and read assignments (Figure 1(4b)).
Finally, each read is assigned to a candidate conditioned
on the expression and abundance values of all candi-
dates, and the probabilities of observing the read given
each of the candidates (Figure 1(4c)). The number of
iterations of these three steps needed to explore the pos-
terior distribution sufficiently is then calculated as an
affine function of the number of candidates. The main
output of the algorithm is the fraction of iterations in
which a candidate transcript is expressed (our confidence
metric) and a posterior mean abundance estimate for
each candidate (Figure 1(5a,b)). Candidates with a con-
fidence above 0.5 and at least 12 expected paired-end
read counts are included in the final assembly; the lat-
ter threshold is enforced to filter out putative transcript
fragments (Figure 1(6)). The hyperparameter that controls
the prior distribution over the number of expressed tran-
scripts was estimated using a greedy minimum set cover
method.

Performance evaluation
The performance of our method was compared with state-
of-the-art assemblers on both simulated data and data
from the human K562 erythroleukaemia and H1 embry-
onic stem cell lines [11] as well as mouse dendritic cells
[12]. We sought to compare against all assemblers that do
not require a genome annotation and that are capable of
handling paired-end data. Furthermore, we required that
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Figure 1 Outline of the Bayesembler algorithm. (1) A splice graph is first constructed from the RNA-seq data. (2) Transcript candidates are
subsequently enumerated by exhaustively searching paths in the graph. (3–5) Gibbs sampling is then used to infer the posterior distribution over
expressed candidates, their abundances and assignments of reads to candidates. (3) The sampler is initialised by randomly sampling a candidate
assignment for each paired-end read and proceeds as follows. (4a) First, candidate expression values (i.e. binary values indicating whether the
candidate has non-zero abundance) are sampled conditioned on an assignment of reads. (4b) Next, abundance values are sampled conditioned on
the expressions and read assignments. (4c) Finally, read-to-candidate assignments are sampled conditioned on the transcript expression and
abundance values, and the conditional probabilities of observing the reads given the candidates. (5a,b) The fraction of iterations a candidate
transcript is expressed during sampling and its mean abundance level across expressed iterations are then used to estimate candidate confidence
and abundance levels, respectively. (6) The final assembly is produced by selecting the transcript candidates with highest confidence.
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assemblers were stable and efficient enough to complete
assembly on at least two of the employed datasets within
a week of computation on a server with 40 CPUs. The
Cufflinks, IsoLasso, CEM and Traph assemblers were
selected based on these criteria. To retain a fair ground
for comparison, a single set of optimal Bayesembler hyper-
parameters was estimated across datasets using parti-
tions of the simulated, K562 and mouse dendritic cell
data reserved for this purpose. Hence, the presented per-
formance estimates for Bayesembler were obtained on
hold-out partitions of these datasets together with the
complete H1 dataset, which was reserved solely for testing
purposes.

Simulated data
For the simulation study, a dataset of approximately 80
million paired-end strand-specific RNA-seq reads were
simulated from the UCSC Known Genes annotation [13]

using the Flux Simulator [14]. The main measures of
performance were sensitivity, defined as the fraction of
simulated transcripts that were assembled correctly, and
precision, defined as the fraction of assembled transcripts
found in the set of simulated transcripts.

Our method exhibited both higher sensitivity and
precision than all other methods (Figure 2a,b). More
specifically, Bayesembler assembled 3,528 more correct
transcripts, while producing 9,427 less incorrect ones on
the data simulated from 40,496 annotated transcripts than
the runner-up assembler, IsoLasso. Importantly, both sen-
sitivity and precision remained higher for Bayesembler
relative to the other assemblers independent of transcript
abundance levels (Figure 2c,d). Moreover, the length dis-
tribution of transcripts predicted by Bayesembler resem-
bled the length distribution of the simulated transcripts
in contrast with the other assemblers, which tended
to produce shorter transcripts (Figure 2e). Furthermore,
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Figure 2 Assembler performance on simulated RNA-seq data. (a) Overall sensitivity, defined as the fraction of simulated transcripts that were
predicted correctly. (b) Overall precision, defined as the fraction of predicted transcripts found in the set of simulated transcripts. (c, d) Sensitivity and
precision as functions of simulated and predicted abundance, respectively. (e) Transcript length distributions of predicted and simulated transcripts
(logarithmic binning). (f) Mean absolute difference between the number of predicted and the number of simulated splice variants for each predicted
gene. (g) Spearman’s rank correlation between predicted and simulated abundances for transcripts predicted correctly by all five assemblers.
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Bayesembler was better at estimating the number of
expressed splice variants for each predicted gene than
the other assemblers, which may partially explain the
observed improvements in assembly accuracy (Figure 2f,
Figure S1 in Additional file 1). Finally, we assessed the
accuracy of the transcript abundance estimates produced
by the assemblers (Figure 2g, Figure S2 in Additional
file 1). Here, the estimates produced by Bayesembler
exhibited marginally better agreement with the simulated
values compared with all other assemblers.

Real data
To assess performance on real data, the assemblers were
tested on paired-end strand-specific RNA-seq data from
two biological replicates from the K562 and H1 cell lines,
and a single replicate of mouse dendritic cells. Impor-
tantly, these datasets represent different species, tissues,
library construction protocols and sequencing depths.
Of note, it was not possible to run the Traph assem-
bler on the K562 and H1 data due to instability of the
program. As there is no gold standard transcriptome ref-
erence for real data, we combined three complementary
validation strategies to assess performance of the different
assemblers.

We first evaluated assembler performance by estimating
the number of predicted transcripts that could be con-
firmed using the UCSC Known Genes annotation against
the total number of predicted transcripts. To adjust for
any abundance bias in the annotation and between assem-
blers, we calculated the number of confirmed transcript
predictions across a sequence of thresholds on abundance
and plotted it against the corresponding number of pre-
dicted transcripts. Hence, the final performance metric

is a curve, where the height and slope represent sensi-
tivity and precision, respectively. For both the K562 and
H1 data, the Bayesembler curve extended higher and
ascended more steeply for both replicates than any of
the other assemblers thus indicating both better sensi-
tivity and precision of our method (Figure 3a,b, Figure
S3a,b in Additional file 1). Importantly, similar results
were observed for data from mouse dendritic cells, which
in turn suggests that the results are robust across species,
tissues and library construction protocols (Figure 3c).
Interestingly, we also observed that the transcript lengths
produced by Bayesembler were closer to the length distri-
bution of annotated transcripts than the other assemblers,
which again tended to produce shorter transcripts (Figure
S4a–e in Additional file 1).

Next, we evaluated both replicate assemblies of the
H1 transcriptome using data from a recent study by
Au et al. [15]. In this study, RNA from the same cell
line was sequenced on the Pacific Biosciences (PacBio)
platform (Pacific Biosciences, California, USA), which
produces significantly longer reads than standard second-
generation sequencing platforms at the expense of lower
throughput. As sampling bias implies that lowly abun-
dant transcripts have a lower probability of being verified
by a PacBio read, we again used the curve-based metric
introduced above to adjust for transcript abundance bias
between assemblers. Hence, we computed the number of
transcript predictions that could be verified by a PacBio
read against the corresponding full number of predictions
across a sequence of thresholds on abundance (Figure 4a,
Figure S5 in Additional file 1). In agreement with the
annotation-based results, Bayesembler found more veri-
fied transcripts both in absolute numbers and relative to
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Figure 3 Assembler performance estimates for real RNA-seq data using an annotation-based measure. The number of assembled
transcripts from (a) K562 (replicate 1), (b) H1 (replicate 1) and (c) mouse dendritic cells that were confirmed using the UCSC Known Genes
annotation plotted against the corresponding number of predicted transcripts across a sequence of abundance thresholds (decreasing abundance
threshold from left to right).
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Figure 4 Assembler performance estimates for real RNA-seq data using PacBio and replicate stability-based measures. (a) The number of
assembled transcripts from H1 (replicate 1) that were verified by a PacBio read against the corresponding number of predicted transcripts across a
sequence of abundance thresholds (decreasing abundance threshold from left to right). The number of stable transcripts (i.e. predicted
multi-exonic transcripts that were identical between replicates) from (b) K562 and (c) H1 plotted against the corresponding number of predicted
transcripts across a sequence of thresholds on transcript rank, where the ranks were obtained by sorting transcripts in each replicate in decreasing
order of abundance (decreasing rank threshold from left to right).

the total number of predicted transcripts for each thresh-
old, thus demonstrating better sensitivity and precision,
respectively.

Finally, we leveraged the large degree of overlap
expected between the transcriptomes of biological repli-
cates to evaluate the different assemblers. We defined
stable transcripts as multi-exonic transcripts that were
present in both replicate assemblies. Again, we used a
curve-based metric to correct for abundance bias between
assemblers as lowly abundant transcripts are expected to
be less stable. More specifically, for each pair of K562
and H1 replicates, assembled transcripts were ranked
according to abundance for each of the replicates and
the number of stable transcripts above a certain rank
was plotted against the corresponding number of pre-
dicted transcripts to produce a curve with a point for each
rank (Figure 4b,c). As seen in the figure, transcripts pre-
dicted by Bayesembler were generally more stable across
replicates than those of any of the other assemblers,
suggesting improved performance. We further used the
replicate assemblies to evaluate the impact of noise on
transcript abundance estimation by comparing the esti-
mates across replicates (Figures S6 and S7 in Additional
file 1). Only minor differences in replicate abundance cor-
relations were observed between the different assemblers,
with Bayesembler performing best for the K562 data and
Cufflinks performing best for the H1 data.

Discussion
We have devised a new probabilistic approach to tran-
scriptome assembly. Our primary result is the derivation
of a Bayesian model of the RNA sequencing process,

which uses a novel prior distribution over transcript abun-
dances to model the number of expressed transcripts for
each gene. The model thus provides a statistically consis-
tent way of combining a priori knowledge about sparsity
in the number of expressed transcripts with information
from the sequencing data. Importantly, in the model, only
the read distribution along transcript sequences – and not
transcript abundance levels – influences which transcripts
are inferred as expressed. This contrasts with most cur-
rent assemblers, which use abundance – either implicitly
through regularisation or explicitly by truncating assem-
blies at an abundance cut-off – as a proxy for transcript
confidence. This is despite the fact that abundance con-
tains only limited information about whether a transcript
is expressed in a sample.

The main advantage of our fully probabilistic approach
is the ability to quantify our degree of confidence in a
transcript given the data. To our knowledge, all previ-
ously published assemblers output assembly point esti-
mates and thus provide no means of prioritising newly
discovered variants for downstream validation. In con-
trast, Bayesembler provides both a confidence and an
abundance estimate for each transcript. To evaluate our
confidence metric, we used a simple threshold on confi-
dence – and expected read count – to determine the most
likely assembly from one simulated and five real datasets
and compared our performance with those of state-of-
the-art assemblers. Measuring the accuracy of transcrip-
tome assembly algorithms without extensive experimental
validation is difficult. More specifically, simulated data
provides a known ground truth at the cost of less
realistic splicing and noise patterns, whereas real-data
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benchmarks suffer from the lack of a ground truth refer-
ence. We therefore used a combination of simulations and
three complementary metrics applied across different real
datasets to gauge performance.

For simulated data, Bayesembler markedly outper-
formed all other assemblers on both sensitivity and preci-
sion, with IsoLasso coming in as runner-up. Interestingly,
Bayesembler was markedly better at estimating the num-
ber of expressed transcripts for each gene, thus lending
confidence to our sparsity model. In contrast, Cufflinks
markedly underestimated the number of transcripts for
many genes, suggesting that its strong sparsity objective
negatively affects both sensitivity and precision. Real-
data benchmarking was performed by comparing assem-
blies with both transcript annotations, PacBio long-read
sequencing data and independent assemblies made for
biological replicates to adjust for biases in the individ-
ual verification methods. As the latter two reference sets
(and likely also annotations) all favour highly abundant
transcripts, we used a novel curve-based metric to take
into account any possible abundance bias between assem-
blers. Bayesembler consistently outperformed all other
assemblers, with Cufflinks coming in as runner-up for all
metrics for all datasets. Clearly, the validity of the real-
data performance metrics is strengthened because the
same ranking of assembler performance was observed
across metrics and datasets. The performance ranking
of IsoLasso and Cufflinks was inconsistent between the
benchmarks for simulated and real data. We speculate
that annotation-based simulations may give rise to genes
with more complex splicing patterns (i.e. more variants
per gene), which may have impaired the performance
of Cufflinks. Abundance estimation accuracy was also
investigated, with Bayesembler and Cufflinks perform-
ing better than CEM and IsoLasso, but the results did
not allow for performance ranking of the former two
assemblers.

Importantly, the gain in accuracy provided by
Bayesembler does not come at the cost of increased com-
putation time. Indeed, our program took approximately
5.5 hours on 16 CPU cores to assemble the deepest
benchmark dataset (approximately 125 million paired-
end reads) with a maximum memory footprint of 1.7 GB.
This is both faster and more memory efficient than the
widely used Cufflinks assembler.

Looking ahead, we believe that our method will also
benefit fields outside of reference-based transcriptome
assembly. First, we note that our probabilistic inference
method is also directly applicable to de novo assembled
splice graphs and could easily be implemented as a post-
processing routine in packages like Trinity [12] and Oases
[16]. Second, the ability to consistently average quantities
that depend on the transcript structure provides an addi-
tional advantage of our probabilistic approach. Indeed,

a recent study highlighted the influence of transcript
structure on gene expression estimates [17] and we specu-
late that gene expression estimates averaged across assem-
blies may improve the accuracy of differential expression
tests.

Conclusions
RNA-seq is rapidly becoming the de facto standard
method for expression analysis. However, despite vast
amounts of available data, the reconstruction of com-
plete transcripts from such data remains a fundamental
challenge in computational biology.

We present here Bayesembler, a statistical approach to
transcriptome assembly based on a novel Bayesian model
and inference method. Using our approach, we observe
a marked and consistent improvement both in assem-
bly sensitivity and precision over state-of-the-art assem-
blers as judged using several independent robust measures
applied across several datasets. Moreover, the use of a fully
probabilistic approach allows us to provide a confidence
(and an abundance) estimate for each transcript, which we
expect will aid in prioritising newly discovered transcripts
for experimental validation.

Materials and methods
Our transcriptome assembly algorithm proceeds by first
constructing a set of splice graphs [1] (i.e. a directed
acyclic graph where vertices represent exons and edges
represent exon–exon junctions) from an alignment of
RNA-seq reads. Next, for each splice graph, transcript
candidates are enumerated by exhaustively searching
paths in the graph. Bayesian inference is then used to
identify the most probable transcript candidates and asso-
ciated abundance levels given the reads using a generative
model of the RNA sequencing process.

Splice graph construction and generation of transcript
candidates
Provided with a TopHat2 [9] alignment of RNA-seq reads,
putative PCR duplicates and multimapping reads are first
removed. Furthermore, only reads mapping in a proper
paired-end fashion are retained. For strand-specific data,
the originating strand is inferred for each paired-end
read and splice graphs are constructed separately for
each strand using the processsam utility from the CEM
(v0.9.1) [5] transcriptome assembly package with the
-d <strand> option. For unstranded data, the originat-
ing strand is inferred from splice site information by run-
ning processsam with the -d. option. All graphs for which
a strand cannot be inferred are discarded by the assem-
bler. For both stranded and unstranded data, processsam
is run with a minimum gap length between genes of
one and a minimum number of two reads per gene
(-g 1 -c 2).
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A set of candidate transcripts is then generated for
each splice graph using the following iterative procedure.
The algorithm is first initialised with an edge-coverage
threshold of one read. For each splice graph, all source-to-
sink paths are then enumerated using a depth-first search
until the search is complete or the number of candidates
exceeds 100. In the latter case, the edge-coverage thresh-
old is incremented by one and all edges with a coverage
below the threshold removed from the graph; the graph-
search and edge-pruning steps are iterated until the path
search has been completed without exceeding the thresh-
old or all edges have been removed. To model the presence
of pre-mRNA in the sample, a candidate with a single
exon spanning the entire genomic interval of the splice
graph is included. Next, to leverage paired-end infor-
mation, only candidates with paired-end read coverage
across all splice junctions are retained. Finally, to improve
detection of pre-mRNA material, candidates from over-
lapping splice graphs are combined and the resulting
candidate sets used as bases for the probabilistic inference
method.

A generative model of the RNA-sequencing process
We will use sequencing fragment to denote a read pair. The
overall process of generating a set F of n sequencing frag-
ments given a set S of m candidate transcripts proceeds as
follows. First, a set of relative transcript abundances tak-
ing values in [0,1] is drawn from a prior distribution. The
inclusion of point-zero abundances in the sample space
reflects prior knowledge that only a subset of the can-
didates are likely to be expressed. For each fragment to
be generated, a transcript candidate is then sampled con-
ditioned on the abundance values followed by sampling
the fragment’s two sequencing reads conditioned on the
selected candidate.

To define a prior distribution that allows for point-
zero transcript abundances, let first z be a vector of m
independent random variables drawn from the Bernoulli
distribution with parameter π such that:

P(z|π) = πbz (1 − π)m−bz Kz0

where:

bz =
m∑

j=1
zj and Kz0 = 1

1 − (1 − π)m

(Supplementary methods 1 in Additional file 1). Then, let
zj = 0 and zj = 1 indicate that transcript sj has point-zero
abundance (i.e. sj is not expressed) and positive abundance
(i.e. sj is expressed), respectively. Next, let e+ be a vector

containing the relative abundance levels for the expressed
transcripts such that:

|e+| = bz and
bz∑

k=1
e+

k = 1,

and let the values be symmetrically Dirichlet distributed
such that:

P(e+|z, γ ) = � (bzγ )

� (γ )bz

bz∏
k=1

(
e+

k
)γ−1

where � is the gamma function. Finally, define e to be the
vector of transcript abundances taking values in [0,1] and
let it be completely specified by z and e+ such that ej = 0
when zj = 0 and ej = e+

k when zj = 1, where:

k =
j∑

l=1
zl

Then, to generate a set of abundance values, m binary
values are first drawn from the Bernoulli distribution con-
ditioned on the parameter π followed by sampling of e+
from the bz-dimensional symmetric Dirichlet distribu-
tion. Conditioned on the set of abundances, each fragment
f ∈ F is then generated by first sampling a transcript index
t from the categorical distribution P(t|e) defined by e (i.e.
P(t|e) = et). Finally, conditioned on the candidate index,
the fragment sequences are sampled from P(f |t, q, S, μ, σ),
where q ∈ Q represent the observed quality scores for
fragment f , and μ and σ denote the mean and standard
deviation of the fragment length distribution, respectively,
essentially as proposed by Pachter [10].

The joint distribution over a set of n fragments F , tran-
script indices t and transcript abundances e conditioned
on the set of transcript candidates, quality scores and
hyperparameters then factorises as

P(F , t, e|Q, S, μ, σ , π , γ ) =

P(e|π , γ )

n∏
i=1

P
(

fi|ti, qi, S, μ, σ
)
P(ti|e)

with

P(e|π , γ ) = P
(
e+, z|π , γ

) = P
(
e+|z, γ

)
P(z|π)

The corresponding graphical model is shown in
Figure 5. Further details of the model derivation are pro-
vided in Supplementary methods 1 in Additional file 1.

Approximate inference using Gibbs sampling
To apply the model to transcriptome assembly, we need
to infer the posterior distribution over abundance levels e.
This will in turn provide information on both whether a
given transcript candidate sj is expressed (i.e. when ej > 0)
and its abundance value if expressed. We treat the vector
of transcript indices t as a nuisance variable to be inferred
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Figure 5 Graphical model of the joint probability distribution.
The arrows indicate dependencies between random variables.
Observed and unobserved random variables are coloured in red and
white, respectively. Small filled circles indicate hyperparameters. The
variables and hyperparameters are explained in the Materials and
methods section and in Supplementary methods 1 in Additional file 1.

to make inference tractable, and P(t, e|F , Q, S, μ, σ , π , γ )

thus becomes the target posterior distribution. Samples
from this joint distribution are obtained by iteratively
drawing samples from P(e|t, π , γ ) and P(t|e, F , Q, S, μ, σ).
To do this, let c denote the vector of occurrences of each
transcript index in t (i.e. |c| = m and

∑m
j=1 cj = n). It

follows from the model definition that c is a sufficient
statistic for t with respect to the posterior distribution of e.
From this and our definition of the prior distribution over
abundances, it follows that:

P (e|t, π , γ ) = P
(
e+|z, c, γ

)
P (z|c, π , γ )

A sample from P(e|t, π , γ ) can then be obtained by first
drawing the number of expressed transcripts bz from:

P(bz|c, π , γ ) =

( |J0|
bz − |J+|

)
�(bzγ )

�(n+bzγ )
πbz(1 − π)m−bz

∑m
b=|J+|

( |J0|
b − |J+|

)
�(bγ )

�(n+bγ )
πb(1 − π)m−b

where J+ is the subset of transcript indices j for which
cj > 0, J0 is the subset of indices for which cj = 0 and bz
is constrained such that J+ ≤ bz ≤ m. Conditioned on
bz, a binary vector z is first generated such that zj = 1 for

all j ∈ J+. The remaining transcripts are then allocated by
sampling bz − |J+| transcript indices H uniformly from J0

and setting zh = 1 for all h ∈ H . Equivalent to the defini-
tion of e+, let c+ denote the vector of occurrences cj for
which zj = 1. The abundance levels e+ are then sampled
from:

P
(
e+|z, c, γ

) = �(n + bzγ )∏bz
k=1 �

(
c+

k + γ
)

bz∏
k=1

(
e+

k
)c+

k +γ−1

Finally, it follows from conditional independence
of the elements in t given e that a sample from
P(t|e, F , Q, S, μ, σ) can be obtained by sampling the
individual elements of t from:

P(t|e, f , q, S, μ, σ) = P
(

f |t, q, S, μ, σ
)
P(t|e)∑m

j=1 P
(

f |j, q, S, μ, σ
)
P

(
j|e)

The sampler is initialised by randomly sampling a frag-
ment assignment t. A detailed derivation of the Gibbs
sampling updates is provided in Supplementary methods
2 in Additional file 1. To estimate π , the minimum number
of transcript candidates required to explain all paired-
end reads mmin is obtained using a greedy method and π

estimated using:

π = mmin
m

(Supplementary methods 3 in Additional file 1). The frag-
ment lengths of all paired-end reads mapping uniquely
to transcripts at least 2500 nt long from single-transcript
graphs are used to estimate the parameters of the Gaus-
sian distribution used to model fragment lengths. To
minimise the influence of outliers, we use the median
and median absolute deviance as estimators of μ and
σ , respectively (Supplementary methods 3 in Additional
file 1). Finally, an uninformative choice of γ = 1 corre-
sponding to the uniform symmetric Dirichlet distribution
is used for the prior over relative abundances. The number
of burn-in iterations required for each graph is calcu-
lated as 60 × m + 1000, where m is the number of
candidates; the number of subsequent iterations (i.e. the
sample size) is set to 10 times the number of burn-in
iterations.

The samples from P(e|t, π , γ ) are subsequently used
to estimate both a confidence and a mean abundance
estimate for each transcript candidate, where the confi-
dence estimate is calculated as the fraction of iterations
in which a candidate is expressed. The posterior mean
abundance estimate is calculated as the average of the
sampled abundances after they have been normalised
to the effective transcript length and total library size
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(Supplementary methods 2 in Additional file 1). The final
assembly is produced by selecting all transcript candidates
with a confidence above 0.5 and excluding transcripts
with an expected paired-end read count below 12; the
latter threshold was implemented to filter out putative
transcript fragments.

Implementation and availability
The inference algorithm is implemented in C++ as a com-
plete transcriptome assembly package under the name
Bayesembler and supports multi-threading. The program
is freely available under the MIT licence [18]. The algo-
rithm takes a TopHat2 [9] map as input and outputs
an assembly in GTF format and is thus compatible with
downstream analysis tools like CuffDiff2 [17].

Benchmarking
The Flux Simulator [14] (v1.2) was used to simulate
approximately 80 million strand-specific paired-end reads
from the human UCSC Known Genes annotation [13]
(hg19 version downloaded 10 May 2013) with read lengths
of 100 nt and a mean fragment length of 249 nt. Reads
were simulated without variation in transcription start
and end sites using the fragmentation-first protocol,
where fragmentation is performed prior to reverse tran-
scription with all other parameters set to their default
values. Paired-end strand-specific RNA-seq data from
two biological replicates of the K562 and H1 cell lines
[11], and a single replicate of mouse dendritic cells [12]
together with PacBio reads [15] from the H1 cell line were
downloaded from the NCBI Short Read Archive and the
Gene Expression Omnibus database (Table 1). Simulated
and real RNA-seq reads were mapped to either the hg19
or mm10 reference genomes using Tophat2 [9] (v2.0.8,
default settings) together with Bowtie2 [19] (v2.1.0).
The simulated, K562 and mouse data were divided into

Table 1 Datasets used in the benchmark

Sample Platform Approximate Accession Reference
depth

Human K562 cells
(replicate 1)

Illumina 125 million [SRX110318]a [11]

Human K562 cells
(replicate 2)

Illumina 88 million [SRX110318]a [11]

Human H1 cells
(replicate 1)

Illumina 41 million [SRX082572]a [11]

Human H1 cells
(replicate 2)

Illumina 37 million [SRX082572]a [11]

Human H1 cells PacBio 8 million [GSE51861]b [15]

Mouse dendritic
cells

Illumina 53 million [SRX062280]a [12]

aNCBI Sequence Read Archive.
bNCBI Gene Expression Omnibus.

separate validation and test sets each consisting of data
from half of the chromosomes. The H1 data were reserved
for testing purposes only. The validation sets were used
for estimating the maximum number of candidates, how
the number of Gibbs iterations should scale with the num-
ber of candidates as well as the transcript confidence and
expected count thresholds. Hence, the test datasets were
used exclusively to produce the benchmarks presented in
this paper.

The Cufflinks [2] (v2.1.1), IsoLasso [3] (v2.6), CEM
[5] (v0.9.1) and Traph [8] (v0.7) assemblers were used
in the performance evaluation. All assemblers were run
with default parameters except that bias estimation was
enabled for Cufflinks, IsoLasso and CEM, and Cufflinks
was also run with multimap correction. In addition, the
fragment length mean and standard deviation estimates
used by Bayesembler were provided as input to IsoLasso
and CEM. Bayesembler (v1.1.1) was used in the perfor-
mance evaluation.

The main benchmark criteria for the simulated data
were sensitivity, defined as the fraction of simulated
transcripts that were predicted correctly, and precision,
defined as the fraction of predicted transcripts that were
found in the simulation set. Here, a transcript match
was defined as a complete intron-chain match between
an assembled transcript and a simulated transcript (i.e.
identical intron coordinates between the two transcripts).
Single exon transcripts were considered matches if they
were contained in and covered at least 75% of a sim-
ulated single-exon transcript. As neither CEM, IsoLasso
nor Traph provides full support for strand-specific data,
transcripts were not matched by strand to provide a con-
servative estimate of our performance relative to these
assemblers. Of note, the abundance estimates of all other
assemblers were renormalised to the total library size
to allow for visual comparison with the Bayesembler
estimates to produce Figure 2d and Figures S2, S6 and
S7 in Additional file 1. Spearman’s rank correlation coef-
ficient was used to assess the accuracy of the abun-
dance estimates for each assembler; this metric was
selected to provide robustness to the scale of abun-
dances and outliers. To adjust for assembly size, only
abundance values of transcripts assembled correctly by
all assemblers (i.e. the intersection between assemblies
and the simulation set) were used to compute the
correlations.

Performance on the five real datasets was first assessed
by plotting the number of assembled transcripts that
could be confirmed using the UCSC Known Genes anno-
tations (hg19 version downloaded 10 May 2013; mm10
version downloaded 1 October 2013) against the corre-
sponding number of predicted transcripts in each assem-
bly. These estimates were computed across a sequence
of lower-bound thresholds on abundance to adjust for
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any abundance bias in the confirmation method using the
same transcript matching criteria as defined above for the
simulated transcripts. The same metric was also used for
further evaluation of the assemblers’ performance on the
H1 datasets using PacBio reads for confirmation. Finally,
performance was also estimated by assessing the over-
lap between replicate assemblies from the K562 and H1
datasets. To do this, we defined stable transcripts as multi-
exonic transcripts that were present in both replicate
assemblies. Assembled transcripts were ranked accord-
ing to abundance for each of the two replicates, and
the number of stable transcripts was plotted against the
corresponding number of predicted transcripts above a
certain rank, thus producing a curve with a point for
each rank. Finally, Spearman’s rank correlation coefficient
was computed for the predicted abundances of transcripts
assembled for both replicates. Only the intersection
between stable transcripts of the different assemblers was
used to compute the correlations to adjust for assembly
size.

Additional file

Additional file 1: Supplementary information. Supplementary figures
S1–S7 and Supplementary methods 1–3.
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