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Intrinsic defects within the embryos, reflected by elevated cell death and low proliferative
ability, are considered the most critical factors associated with bovine infertility. The
identification of embryonic factors, which are responsible for successful embryo devel-
opment, is thus critical in designing strategies for infertility intervention. In this experi-
ment, the possible mechanisms involved in both blastomere proliferation and regulation of
cell death were studied by analysis of relative expression patterns of IGF-II, BCL2-L1, BAK1,
and HSP70 in 3 classes of morphological quality groups (e.g., excellent, good, and poor) of
bovine blastocysts produced by IVF. Variation in total blastocyst cell numbers as well as
their allocation to inner cell mass and trophectoderm lineages were also determined by
differential CDX2 staining. Results showed that transcript levels for IGF-II, BCL2-L1, and the
BCL2-L1/BAK1 ratio were higher in excellent- and good-quality blastocysts compared with
low-quality blastocysts (P < 0.01), whereas mRNA levels for HSP70 were higher in low-
quality blastocyst compared with excellent-quality bovine blastocysts (P < 0.05). In
addition, excellent-quality blastocysts displayed not only greater total cell number but also
greater mean inner cell mass/total cell number proportion than that of poor-quality
blastocysts (P < 0.01). The expression levels of IGF-II showed negative correlation with
the levels of HSP70 (r ¼ �0.70; P < 0.05); however, the correlation of expression levels of
IGF-II with both of BCL2-L1 (r ¼ 0.91; P < 0.01) and the ratio of BCL2-L1/BAK1 (r ¼ 0.78;
P < 0.05) were highly positive. There was no correlation between the expression levels of
IGF-II and BAK1 genes. In conclusion, these observations suggested that levels of endog-
enous IGF-II transcripts might be associated with the quality of IVF embryos by regulating
either apoptosis-related genes or mitogenic actions in bovine preimplantation embryos.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Embryonic death has a significant influence on repro-
ductive efficiency in cattle [1]. There are likely to be
x: þ98 542 2242501.
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various reasons for embryonic death, but an intrinsic
defect within the embryo seems to play an important role
[2,3]. Although there is very little information on the
intrinsic defects in the embryo, it has been shown that
embryo quality determined by blastocyst total cell num-
ber, the ratio of inner cell mass (ICM) to trophectoderm
(TE) cells, and levels of apoptosis would be the most
important index of embryo survival and pregnancy rate
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after embryo transfer [4]. Accordingly, decrease in blas-
tocyst cell number and increase in blastocyst apoptotic
index were evidenced in morphologically poor-quality
blastocysts [5,6]. Studies in human, murine, and bovine
species have shown that the blastocyst proliferative po-
tential and blastocyst apoptotic cell index are regulated by
“survival” factors produced both by the embryo itself and
by the maternal reproductive tract [7,8]. Insulin-like
growth factor-II (IGF-II) is one of the best characterized
pro-mitogenic and anti-apoptotic molecule, which in the
cow is secreted by the embryo [9,10] and reproductive
tract tissues [11,12]. Although promitogenic and anti-
apoptotic effects of IGF-II have been reported for the
cleavage stages of preimplantation development in
several mammalian species in vitro [8,13,14], the under-
lying mechanisms of these embryotrophic effects of IGF-II
with respect to embryo quality remain unknown. Never-
theless, both of Bcl2 and heat shock protein 70 (HSP70)
family members have been shown to be involved in
regulation of apoptosis during early embryo development
[15–17].

As molecular mechanisms responsible for intrinsic de-
fects in the embryos are not yet completely understood, it
was hypothesized that various morphological grades of
blastocysts may express different levels of both IGF-II and
apoptosis regulatory genes. Therefore, the objective of the
present study was to test whether expression profiles of
endogenous IGF-II are correlated with various morpholog-
ical qualities of bovine blastocysts. To find more details on
the underlying mechanisms of embryotrophic actions of
IGF-II, we analyzed the correlation of expression patterns
between IGF-II and BCL2-L1 and HSP70 and BAK1 genes as
well as the relationships of blastocyst cell number and cell
allocation to the ICM and TE lineage with the levels of IGF-II
expression. The expression of selected genes and blastocyst
cell number and cell allocation are considered as reliable
predicators of embryodevelopmental competence [6,18,19].

2. Materials and methods

Chemicals and reagents were obtained from Sigma–
Aldrich Co. (St. Louis, MO) unless otherwise stated.

2.1. In vitro embryo production

2.1.1. Oocyte collection and IVM
Bovine ovaries were collected from a local slaughter-

house and then transported to the laboratory in 0.9%
physiological saline solution at 29 to 32 �C in a thermo
container. The immature cumulus–oocyte complexes
(COCs) aspirated from antral follicles (2–8 mm in diameter)
were washed 3 times in Hepes-buffered TCM-199 wash
medium (M2520) supplemented with 50-mg gentamicin
mL�1 and 0.5 mg BSA mL�1. The COCs were washed once
after retrieval in IVMmedium before maturation. Groups of
35 to 40 COCs with an evenly granulated cytoplasm and
surrounded by more than 3 layers of cumulus cells were
placed in 500-ml maturation medium in four-well dishes
(Nunc, Roskilde, Denmark) and culturedwithout oil overlay
for 24 hours at 38.8 � 0.2 �C in 5% CO2 in ambient hu-
midified air. The IVM medium consisted of Dulbecco’s
Modified Eagle Medium supplemented with 5% fetal calf
serum (FCS, produced by the Danish Veterinary Institute,
Copenhagen, Denmark), 2 IU/mL gonadotropins (2:1
mixture of PMSG:hCG; Suigonan, VetPharm, Løgstør,
Denmark), 0.2-mM pyruvate (P3662), 50-ng epidermal
growth factor (EGF; 4127), and 50 g/mL gentamicin.

2.1.2. Sperm preparation and IVF
Frozen–thawed semen from proven high fertile bulls,

(Viking Genetics, Randers, Denmark) were thawed at 37 �C
and washed twice by centrifugation at 328 � g for 5 mi-
nutes in noncapacitation medium. The mature oocytes in
groups of 40 were transferred into four-well dishes con-
taining 400 ml of fertilization medium (Fert-TALP) and
inseminated with viable spermatozoa at the concentration
of 2 � 106 spermatozoa/mL. The spermatozoa were coin-
cubated with matured COCs in TALP medium for 22 to
24 hours without oil overlay at 38.8 � 0.2 �C in 5% CO2
in ambient humidified air. The TALP medium consisted
of Tyrode medium with 25-mM sodium bicarbonate, 10-
mM lactate, 6-mg/mL fatty acid–free BSA, 0.2-mM pyru-
vate, 50-mg/mL gentamicin, 30-mg/mL heparin and PHE
(20-mM penicillamine, 10-mM hypotaurine, and 1-mM
epinephrine).

2.1.3. In vitro culture and embryo collection
After 22 to 24 hours of IVF, the presumptive zygotes

were liberated from surrounding cumulus cells and excess
spermatozoa by vortexing for 3minutes. After 3 timeswash
in Hepes-buffered tissue culture medium (TCM-199),
cumulus-free zygotes were transferred in groups of 35 in
500-ml BA 1216 culture media (Origio, Maløv, Denmark)
with an overlay of oil at 38.8 þ 0.2 �C in 5% O2, 5% CO2 for
168 hours. After culture period, the resulting blastocysts
were morphologically classified into three grades (grade A,
excellent; grade B, good; and grade C, poor) according to
Avery et al. [20]. After morphological classification, all
grade embryos were collected and frozen at �80 �C for
subsequent mRNA expression analysis or were fixed in 4%
paraformaldehyde and stored short term at 4 �C in PBS for
differential cell staining.

2.2. Differential staining of embryos

Differential cell staining was carried out as described by
Wydooghe et al. [21] with modification. Briefly, blastocysts
were permeabilized with 1% Triton X-100 in PBS for
40 minutes, then DNA was denatured by exposure to 2N
HCl for 20 minutes followed by 100-mM Tris-HCl (pH, 8.5)
for 10 minutes at room temperature (RT). After denatur-
ation, embryos were blocked in the Blocking Solution (2%
BSA in the PBS) for 40 minutes at RT and then incubated
with the primary CDX2 monoclonal (BioGenex, AM392-
ready to use) for 1 hour at RT. After washing (3 times for
20 minutes in PBS at RT), the embryos were treated with
secondary antibodies of Alexa Fluor 594-labeled Goat Anti-
Mouse IgG (Molecular Probes, Leiden, The Netherlands) for
1 hour at RT. After another wash step (3 times 20 minutes),
DNA was stained with Hoechst (1% Hoechst 33342 in PBS)
for 2 minutes at RT. Blastocysts were mounted onto a clean
glass slide with a drop of fluorescent Mounting Medium
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(Dako, Glostrup, Denmark). The embryos were examined
under a fluorescence microscope (Leica, Solms, Germany)
equipped with a DFC 350 digital camera (Leica). The total
number of cells per blastocyst and cell numbers in TE and
ICM cells were counted. The experiments were replicated 3
times. In each replication, 4 to 7 embryos per group were
processed.

2.3. Gene expression analysis

2.3.1. Primer design
Primer sequences for all target genes except IGF-II and

GAPDH were obtained from previously published data in
porcine and bovine. IGF-II and GAPDH primers were
designed using Premier 6.0 software (Premier Biosoft In-
ternational, Palo Alto, CA). Moreover, a Basic Local Align-
ment Search Tool search was conducted to confirm the
specificity of the nominated primers (http://www.ncbi.nlm.
nih.gov/BLAST). The target and reference primer sequences
and their expected product sizes are displayed in Table 1.

2.3.2. RNA extraction and cDNA synthesis
Messenger RNA from pools of 5 to 7 morphologically

poor blastocysts, 5 good blastocysts, or 5 excellent blasto-
cysts was extracted using the NucleoSpin RNA XS Kit
(Clontech, Mountain View, CA) according to the manufac-
turer’s instructions. RNA samples were converted to cDNA
with RevertAid first-strand cDNA synthesis kit (Fermen-
tase, Glen Burnie, MD) using random hexamer primers.
Samples were stored in the freezer (�20 �C) until analysis.

2.3.3. Quantitative real-time PCR (qPCR)
The mRNA levels were quantified using a LightCycler

480 SYBR Green I Master mix (Roche Applied Science) on a
LightCycler 480 Instrument (Roche Diagnostics, Indian-
apolis, IN). The qPCR mixture consisted of 2-ml diluted
cDNA (10 ng), 0.5-ml forward and reverse primers
(10 mM), 5-ml SYBR Green I master mix, and 2-ml water to
a total volume of 10 ml. Quantitative real-time PCR re-
actions were performed according to the following ther-
mal cycling conditions: 95 �C for 10 seconds, followed by
45 to 55 PCR cycles of 95 �C for 10 seconds, annealing for
10 seconds at 58 to 60 �C, and extension for 20 seconds at
72 �C (Table 1).
Table 1
Primer sequences and cycling conditions used for real-time PCR.

Gene GenBank accession number Primer sequence (50/

HSP70 AY149619.1 GTTCAAGAGGAAGCAC
GTTGATGCTCTTGTTTA

BAK1 NM_001077918.1 AGAACCTAGCAGCACCA
CGATCTTGGTGAAGTAC

BCL2-L1 NM_001077486.2 GAAACCCCTAGTGCCAT
GGGACGTCAGGTCACTG

H2A U62674 GTCGTGGCAAGCAAGG
GATCTCGGCCGTTAGGT

B-actin AF191490 CGTGGGCCGCCCTAGGC
TTGGCCTTAGGGTTCAG

IGF-II X53553 GGCAAGTTCTTCCAATA
TGGCAGAATTACGACAC

GAPDH XM_001252511.4 CGGCATCGTGGAAGGA
GCAGCACCAGTAGAAG
The qPCR experiments were replicated with 3 separate
pools of embryos for each quality grade, and a reaction
without template served as negative control. To verify qPCR
product identity, melting point curves were analyzed after
amplification. The relative quantification of gene expres-
sion was analyzed by the comparative Cp method [26],
using LightCycler 480 software (release 1.5.0 SP4). A stan-
dard curve was included on the assay plate for the relative
quantification. To correct the differences in RNA quantities,
relative gene expression levels were normalized using the
geometric mean of three reference genes (Using Norm-
Finder algorithm GAPDH, B-actin, and H2A were identified
as the most stable housekeeping genes among the set of
tested genes) according to Vandesompele et al. [27]. The
PCR product sizes were confirmed by gel electrophoresis on
a standard 2% agarose gel stained with ethidium bromide
and visualized by exposure to ultraviolet light.

2.4. Statistical analysis

Differences in relative mRNA expression assayed by
qPCR as well as embryo cell number and relative lineage
size (ICM/TE) were tested for significance by analysis of
variance (repeated measurement ANOVA) followed by
Tukey–Kramer multiple comparisons, using the JMP sta-
tistical software version 7.0 (SAS Institute Inc., Cary, NC).
Pearson pairwise correlation coefficient was used to
determine the degree of correlation between expression
patterns of selected genes in each groups of blastocyst
quality. P � 0.05 was considered statistically significant.

3. Results

3.1. Expression of IGF-II and apoptosis-related genes with
respect to blastocysts quality

In this study, we analyzed the expression of IGF-II and
apoptosis-related genes with respect to morphological
quality of bovine blastocysts. The geneswere selectedon the
basis of the results of our previous experiment (not pub-
lished data) and reports from other research groups [18,22].

The expression of IGF-II, BCL2-L1, BAK1, and HSP70
mRNAs was detected in all blastocyst quality groups (A, B,
and C). The relative abundance of IGF-II was found to be
30) Tm (�C) Product size (bp) Reference

AAGA 60 �C 361 [22]
GGT
T 60 �C 150 [18]
TC
CAA 60 �C 196 [23]
AAT
AG 58 �C 182 [24]
ACTC
ACCA 60 �C 244 [25]
GGGG
TGA 58 �C 239 This article
T
C 60 �C 138 This article
CAG

http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/BLAST
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significantly higher in morphologically excellent- (grade A)
and good-quality (grade B) blastocyst than in poor-quality
(grade C) blastocysts (P < 0.01; Fig. 1B). Relative abun-
dance of the antiapoptotic BCL2-L1 transcript was also
significantly higher in excellent- (grade A) and good-quality
(grade B) blastocysts compared with poor-quality ones
(grade C; P < 0.01; Fig. 1D). In contrast, transcript levels of
HSP70, an importantmediatorof responses to cellular stress,
were significantly higher in poor-quality blastocysts than
those in the excellent-quality blastocysts (P< 0.01; Fig. 1A).
Although, in the case of BAK1, no significant difference was
observed among the three experimental groups (P > 0.05;
Fig. 1C), but the ratio of BCL2-L1 to BAK1 expression was
significantly higher in excellent and good blastocysts
compared with poor blastocysts (P < 0.05; Fig. 1E).

In addition, the correlation analysis results demon-
strated that the levels of endogenous IGF-II transcripts not
only positively correlated with the levels of BCL2-L1
(r ¼ 0.91; P < 0.01) and BCL2-L1 to BAK1 ratio (r ¼ 0.78;
P< 0.05) but also negatively correlatedwith levels ofHSP70
expression (r ¼ �0.70; P < 0.05).

3.2. Differential cell staining

Different morphological grades of in vitro–produced
blastocysts were subjected to differential cell staining for
cell allocation analysis (Fig. 2). The mean of total cell
number in good- and excellent-quality blastocysts was
significantly greater than that of poor-quality blastocysts
(P< 0.01; Fig. 3). Moreover, the number of ICM cells and the
number of TE cells of excellent- and good-quality blasto-
cysts were significantly greater than those of poor-quality
blastocysts (P < 0.01; Fig. 3). However, there was no sig-
nificant difference between excellent- and good-quality
blastocysts in terms of ICM and TE cell number (P > 0.05;
Fig. 3). Notably, most of the low-quality blastocysts showed
a higher frequency of fragmented cells in ICM compared
with the other groups, which could be associatedwith early
pregnancy loss (Fig. 2C//). The percentage of ICM cells
(ICM%) was significantly greater in excellent-quality than
that of poor-quality blastocyst (P < 0.05; Figs. 2, 3).

4. Discussion

Despite the subjectivity of themorphological evaluation,
embryo quality is known to be associated with pregnancy
outcomes [28]. Accordingly, decrease in blastocyst cell
number and increase in blastocyst apoptotic index, which
evidenced inmorphologicallypoor-qualityblastocysts,have
been attributed to imbalance in gene expression [5,6].

In the present study, expression of HSP70 varied among
the three quality groups of blastocysts, with a higher level of
expression in morphologically poor-quality bovine blasto-
cysts compared with the other groups. HSP70 ensures the
survival of cells by regulation of several prosurvival signaling
cascades, including those mediated by Akt, JNK, and NF-kB
[29,30]. Accordingly, HSP70 induction has been proposed as
a valuable biomarker of embryo stress [16,31]. The expres-
sion levels of HSP70 have shown to be negatively correlated
with embryo quality and viability; such that in vitro–derived
blastocysts display a significantly lower expression of HSP70
than their in vivo counterparts [19,32,33]. Frozen–thawed
bovine blastocysts, which exhibit a significantly higher
apoptotic index than nonfrozen ones, were also shown to
express significantly higher levels of HSP70 transcripts than
their nonfrozen counterpart [31].

Relative transcript abundance of the proapoptotic gene
BAK1 did not show significant differences among the
different blastocyst quality groups. Nothing is known about
the role of BAK1 during early development of the preim-
plantation bovine embryos; however, BAK1 has been
shown to be involved in the regulation of apoptosis during
early embryogenesis of the pig [34,35], human [36], and
mouse [37], in a developmental stage–specific manner.
Although elevated expression of BAK1 has been shown to
play a critical role in the induction of apoptosis by inducing
permeabilization of the mitochondrial outer membrane
and by forming complexes with the protective BCL2-L1
proteins [38], the experimental evidence suggests that
post-transcriptional and/or post-translational modification
is also involved in regulation of BAK1 activation [39,40].
Therefore, one potential implication of these findings could
be related to species-specific differences in the mecha-
nisms that modulate the effects of BAK1 gene.

In our study, the antiapoptosis BCL2-L1 gene transcript
was significantly higher in excellent- and good-quality
blastocysts compared with those of poor quality. Accord-
ingly, several studies have shown an important role of BCL2-
L1 in the regulation of embryonic cell death in pig
[18,34,35,41],mouse [42], human [43], and cattle [44–46]. In
contrast, some studies have shown that the levels ofBCL2-L1
transcriptsdidnot correlatedwithblastocystquality [47,48].
Experimental sample size limitations and differences in
methodology of gene expression analysis among studies
may be the main reasons for this discrepancy.

In the present study, the ratio of BCL2-L1/BAK1 expres-
sion, as an indirect index of cytochrome C release and
apoptosis [38], was also significantly higher in excellent-
and good-quality blastocysts than that in poor-quality
blastocysts. It has been demonstrated that the inhibition
of BCL2-L1 and/or induction of BAK1 expressionwould alter
the ratio of BCL2-L1/BAK1 expression in favor of increase in
mitochondrial membrane permeability transition [49]. An
increase in permeability of the outer mitochondrial mem-
brane could lead to the release of cytochrome C from
mitochondria into the cytosol, which once present in the
cytoplasm activate the caspase cascade of cell degradation
[50]. Therefore, upregulation of BCL2-L1/BAK1 ratio in
excellent- and good-quality blastocyst compared with
poor-quality ones, suggests the presence of antiapoptotic
mechanisms that modulate the intrinsic mitochondrial
apoptotic pathway [18]. This result is consistent with the
mitochondria-dependent death pathway model, in which
the interactions between the pro- and anti-apoptotic
members of BCL-2 family determine the fate of a cell to
live or demise [51].

Another differentially regulated gene was IGF-II, which
was found to be significantly higher in morphologically
excellent- and good-quality blastocysts compared with
poor-quality blastocysts. Several studies have reported
that IGF-I is not expressed during early embryonic
development of cattle, indicating that the biological
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Fig. 1. Relative expression of IGF-II, BAK1, BCL2-L1, HSP70, and BCL2-L1/BAK1 ratio, in three different morphological groups of bovine Day 8 blastocysts (A, B, and C
represent excellent-, good-, and poor-quality in vitro-produced bovine blastocysts, respectively). Each value represents the mean � standard error of the mean of
3 samples. Values denoted by different superscripts differ significantly (P < 0.05) by Tukey test.
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functions of IGFs might be performed by IGF-II [10,52]. It
is demonstrated that IGF-II stimulates blastocyst forma-
tion, ICM mitogenesis, and protein synthesis in the pre-
implantation embryo [52–54]. IGF-II also enhances the
implantation competency of blastocysts possibly by the
stimulation of production of embryonic Interferon-tau
(IFN-s) [55]. Embryonic IFN- s plays a critical role in
establishment of pregnancy by inhibiting endometrial
PGF2a [56]. IGF-II was also found to be upregulated in
embryos with high implantation potential compared with
low implantation potential embryos [57]. Interestingly, it
has also been reported that the levels of IGF-II expression
are closely correlated with morphology of human em-
bryos, so that embryos with high developmental potential



Fig. 2. Representative pictures of different quality bovine blastocysts stained with DAPI and CDX2, a marker of trophectoderm cells (A, B, and C represent
excellent-, good-, and poor-quality in vitro-produced bovine blastocysts, respectively). The TE and ICM cell nuclei appeared in red and blue, respectively. (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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may express higher levels of IGF-II compared with their
lower competent counterpart [58]. In accordance, total
blastocyst cell numbers and mean ICM proportion were
also found to be greater in excellent- and good-quality
blastocysts than those in poor quality; however, the
mean ICM proportion only showed significant differences
between excellent- and poor-quality blastocysts. There is
good evidence that blastocyst proliferative potential and
relative lineage sizes influence subsequent growth and
viability of the embryo [4,28,59]. These findings are
consistent with other reports indicating that the mean
cell number and proportion of ICM of blastocyst recovered
in vivo or in vitro decreased with reduction in embryo
quality [60–62]. A growing body of evidence indicates
that changes in transcript abundance at the blastocyst
stage are frequently a direct consequence of perturbed
transcription early in development [57,63]. Therefore,
these findings may support the previous reports
regarding the important role of endogenous IGF-II tran-
scripts in controlling cell proliferation from the earliest
stages of embryonic development [53,54].
The pairwise correlation coefficients between selected
genes revealed that relative abundance of endogenous IGF-
II not only positively correlated with BCL2-L1 and the pro-
portion of BCL2-L1/BAK1 expression but also negatively
correlated with HSP70 expression, supporting previous
findings regarding antiapoptotic actions of IGF-II during
preimplantation development in vitro [13,14,64,65]. In our
study, the BCL2-L1/BAK1 ratio was mainly influenced by the
levels of BCL2-L1 transcripts rather than BAK1 levels. Se-
lective induction of BCL2-L1 expression by IGF-II has also
been reported in different cell lines [66,67]. Recent
evidence suggests that activation of phosphatidylinositol 3-
kinase-AKT/protein kinase B, which is activated on binding
of IGF-II to its receptor [68], could in turn lead to activation
of transcription of the BCL2-L1 gene [67]. The upregulation
of BCL2-L1 could prevent the apoptosis by either binding to
the pro-apoptotic BAK1 [51] or closing the mitochondrial
porin channel [69]. Similarly negative significant correla-
tion between levels of IGF-II and HSP70 transcripts may
support the notion that the IGF-II reduces cellular stress
and improves embryo viability [13,65]. However, there is



Fig. 3. The total cell number, inner cell mass (ICM), and trophectoderm cells
and the ICM/total cell ratio (ICM%) in three different morphological groups
of bovine blastocysts (A, B, and C represent excellent-, good-, and poor-
quality in vitro-produced bovine blastocysts, respectively). The number of
analyzed embryos (n) was as follows: 12 (A), 15 (B), and 10 (C). Data are
presented as the mean � standard deviation. Different letters (a, b, and c)
indicate significant differences between groups on the basis of one-way
ANOVA followed by Tukey test (P < 0.05).
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no evidence to elucidate the direct underlying molecular
mechanisms linking IGF-II and HSP70 transcripts levels.
Nevertheless, both IGF-II and HSP70 are involved in p53-
mediated regulation of cell proliferation and apoptosis
[70,71]. The p53 is normally expressed at very low levels
but may accumulate by post-transcriptional mechanisms in
cells exposed to diverse forms of cellular stress, which leads
to apoptosis and cell cycle arrest [72]. Induction of HSP70
following diverse forms of cellular stress has been shown to
be mediated by p53 [73]. In contrast, IGF-II has been shown
to downregulate p53 and thus inhibit programmed cell
death [74]. Therefore, p53-mediated regulation of cell
death could be accounted for the negative correlation be-
tween IGF-II and HSP70 expression that was found in the
present study; however, further studies are needed to
clarify the underlying mechanism.
4.1. Conclusions

We found that poor-quality embryos differ not only in
their expression patterns of IGF-II, BCL2-L1, and HSP70 but
also in the number of ICM and TE cells when compared
with their excellent counterparts. These results support the
hypothesis that preimplantation embryos use the same
mechanisms used in other cells to execute and regulate cell
proliferation and death. Besides, results of correlation an-
alyses suggest an important role of endogenous IGF-II
signaling pathway in embryo survival and development.
Expression analysis of these genes, therefore, potentially
could be used as valuable biomarkers for selecting embryos
with a higher potential of implantation or for evaluation
and optimization of culture medium.
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