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Type 1 diabetes (T1D) is an autoimmune disease ultimately leading to destruction of insulin secret-
ing b-cells in the pancreas. Genetic susceptibility plays an important role in T1D etiology, but even
mono-zygotic twins only have a concordance rate of around 50%, underlining that other factors
than purely genetic are involved in disease development. Here we review the influence of dietary
and environmental factors on T1D development in humans as well as animal models. Even though
data are still inconclusive, there are strong indications that gut microbiota dysbiosis plays an impor-
tant role in T1D development and evidence from animal models suggests that gut microbiota
manipulation might prove valuable in future prevention of T1D in genetically susceptible
individuals.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Type 1 diabetes (T1D) or insulin-dependent diabetes is an auto-
immune disease ultimately leading to destruction of insulin secret-
ing b-cells in the Langerhans islets within the pancreas [1]. With
destruction of the b-cells the body losses control of blood glucose
levels leading to hypoglycaemia, ketoacidosis and with time blind-
ness, renal failure, and cardiovascular disease [1,2]. If left untreated
T1D is deadly and even with well-managed insulin replacement
T1D will still shorten life-expectancy with as much as �10 years
[1,3]. Millions are diagnosed with T1D worldwide, and in general
incidence rates are increasing exerting pressure on health and wel-
fare systems [4], though this increase seems to level of in some
countries [5,6].

The exact cause(s) of T1D development are not completely
understood, but appears to be a combination of genetic predisposi-
tion and one or several environmental events [1]. A long list of
genetic loci predisposing for T1D development have been identi-
fied, with specific HLA (Human Leukocyte Antigen) genotypes
being the strongest identified genetic factor [1,7–9]. However,
genetic predisposition is not the only factor leading to develop-
ment of T1D. Twin studies have shown that for di-zygotic twins
the pairwise T1D concordance rate is ca. 10%, and even for
mono-zygotic twins the concordance rate is only around 50%,
while the incidence for individuals without first degree relatives
affected by T1D has been estimated to be around 0.4% [9,10],
though with very large regional differences [11–13]. Further, the
T1D incidence in Finland is 6 times higher than on the other side
of the border in Russian Karelia, even though the predisposing
HLA genotypes are equally frequent between the two populations
[14] and immigrant studies have shown that the offspring of immi-
grants tend to approach the ‘‘risk profile’’ of the country they
moved to [15–20], underlining that more than purely genetic
factors drive T1D etiology (Fig. 1).

2. Dietary factors influencing T1D incidence and development

2.1. Infant feeding

The possible protective role of breastfeeding on T1D remains an
unsettled issue, as some studies have shown a protective effect
while others show no effect [21–25]. However, a recent meta-anal-
ysis of 43 studies found that breast-feeding tends to offer some,
although limited protection against T1D development [26].
Similarly, early exposure to cow’s milk protein (i.e. through infant
formula) has in some studies been found to increase the risk of
developing b-cell immunity and later T1D [15,22,23,27], but the
results remain somewhat contradictory, as other studies found
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Fig. 1. The exact etiology of type 1 diabetes is still unresolved, but involves genetic as well as environmental factors. A range of possible disease drivers, many of which seem
to be mediated via the gut microbiota, have been identified. See text for further details.
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no effect [15,25,28,29]. However, recent studies using highly
hydrolysed casein formula have showed promising results lower-
ing T1D incidence in non-obese diabetic (NOD) mice, a mouse
strain that spontaneously develop leukocytic infiltrations of pan-
creatic islets that subsequently develops into T1D with varying
onset time and incidence depending on environmental factors
[30,31]. Further, in humans, highly hydrolysed casein reduced
the cumulative incidence of one of more T1D-associated antibodies
with more than 50% in young (ca. 5 years) genetically predisposed
children [32]. Knip et al. [32] speculate that the protective effect of
the extensively hydrolysed casein formula could be due to (1)
elimination of intact bovine insulin (that is present in cow’s milk)
by the protein hydrolysis carried out during the preparation of the
formula; (2) decreased gut permeability, possibly mediated by the
many short peptides present in the extensively hydrolysed for-
mula, leading to less foreign peptides and proteins migrating into
the gut associated lymphoid tissue (GALT) in the lamina propria,
leading to better regulation of the gut associated immune system;
(3) induced maturation of regulatory T cells, through an yet
unknown mechanism; and/or (4) changed gut microbiota (GM)
composition, that again influence immune system development
[32]. A recent Finnish study seems to confirm the protective effect
of removing bovine insulin from cow’s milk based infant formula,
as children fed bovine insulin free formula had significantly lower
cumulative incidence of b-cell autoimmunity at the age of 3 years
compared to children fed traditional whey based infant formula
[33].

After weaning, excessive intake of cow’s milk (more than 540 g/
day) has been linked with a significantly increased risk of develop-
ing T1D, especially in children with HLA-DQB1 genotypes confer-
ring an increased risk of T1D development [34]. The exact cause
is not known, but large intake of casein has been associated with
high T1D incidence in NOD mice [35] and the per capita consump-
tion of casein variants A1 and B has been linked with T1D incidence
[36]. Possibly because casein variants A1 and B yield b-casomor-
phin-7 when enzymatically cleaved, while casein variant A2 does
not, due to a slightly different amino acid composition. b-Casomor-
phin-7 has in vitro been shown to inhibit intestinal lymphocyte
proliferation and is speculated to have immunosuppressive effects
[36]. However, the actual risk associated with milk intake in terms
of T1D development is far from elucidated as conflicting results
have been reported [37]. Several studies report that milk intake
correlates positively with b-cell autoimmunity and T1D incidence
rates in children [36,38,39], but also studies showing no effect
has been published [37,40].

2.2. Cereals

Early weaning and introduction of solid foods [41] and espe-
cially gluten containing cereals [42,43] has been associated with
development of T1D associated autoimmunity, though other stud-
ies did not find the same relationship [28]. According to Norris
et al. both early (before 3 months of age) and late (after 7 months)
introduction to cereals were associated with an increased hazard
ratio for developing islet autoimmunity [43], indicating that timing
is important possibly due to interference with the developing
immune system in the infant. In a more recent study, delaying
gluten exposure from 6 months, as officially recommended in Ger-
many, to 12 months did not have any influence on the risk of devel-
oping islet autoimmunity at the age of 3 years [44,45]. However, in
animal models exposure to gluten has been found to have pro-
found impact on T1D incidence. NOD mice fed a gluten-free diet,
where cereal based protein have been replaced with meat-based
protein, have a 4-fold lower diabetes incidence (15% vs. 64%)
compared to mice fed a standard (gluten-containing) diet [46]. Fur-
ther, compared to a gluten-free diet (with soya replacing wheat as
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protein source), a wheat-based diet was found to induce a Th1-
type, proinflammatory cytokine-bias in the gut of NOD mice [47].
Also in fully immune-competent BALB/c-mice a gluten-containing
diet (same diet as in [46]) has been found to alter the cytokine-pro-
file of lymphoid Foxp3� and Foxp3+ regulatory T cells in a
pro-inflammatory direction and in general result in a decreased
proportion of cdT cells in lymphoid tissue compared to a gluten-
free diet [48,49]. Similarly, in diabetes-prone BioBreeding rats
(BB-DP) a cereal containing diet induces Th1 cytokine-bias with
up-regulation of the proinflammatory cytokine Ifng [50]. Gluten
(and cereal) free diets strongly influences GM composition com-
pared to a standard, cereal-based chow diet [51–53] and it can
been speculated that the protective effect on T1D development is
due to diet-mediated changes of the GM which in turn influence
immune system maturation and function, though dietary compo-
nents themselves probably also play an important role, as a cereal
free diet has been found to protect germ free mice against T1D
development [50,52]. In an interesting case-study a 6 years old
boy newly diagnosed with T1D was administered to a strict glu-
ten-free diet which stabilized HbAc1 and fasting glucose levels
within the non-diabetic range without the need for insulin treat-
ment [54]. After having had T1D for 3 years he still does not need
insulin regularly.

However, whether it is gluten per se that initiates the process
leading to T1D in the animal models (as well as humans?) or
whether other cereal (/wheat) dietary components might influence
the picture is not fully elucidated. Surprisingly, it has for instance
been found, that not only a gluten-free diet but also a diet enriched
with purified gluten protects NOD mice against T1D development
[55] compared to the standard Altromin diet used in [46,48,49].
A recent study on the other hand reported that when purified glu-
ten was supplemented to a gluten-free diet, the T1D protective
effect was abolished [52]. The finding that up to 10% of individuals
diagnosed with T1D also have celiac disorders [56] does however
indicate that gluten is likely to play a role T1D development, at
least in some individuals [54].

2.3. Other major dietary groups

The average per capita intake of meat [39,40] and fruit and
berry juices [38] has been found to correlate positively with b-cell
autoimmunity. However, a later study could not confirm the asso-
ciation between meat consumption and b-cell autoimmunity [38]
and possibly the associations are confounded by other factors.

2.4. Vitamin D

In Europe there is a North-South gradient in T1D incidence,
with Finland in the north having the highest incidence worldwide,
and more southern regions generally having lower incidence,
though with exceptions such as Sardina, where incidence is very
high, despite its geographical position in the southern part of Eur-
ope [11,13,57]. This has been ascribed to many factors including
genetics, but also vitamin D deficiency has been speculated to play
a role. The human body is able to synthesize vitamin D, but this
requires the exposure of the skin to UV-light from the sun [58],
putting the population in countries with only little daylight during
winter time at risk of vitamin D deficiency [58]. In vitro vitamin D
has been found to protect rat pancreatic islet b-cell function
against interleukin-1b-induced inhibition [59] and in vivo adminis-
tration of high doses of vitamin D has also been found to protect
NOD mice against T1D development, but only if administered
throughout life, while administration of vitamin D during
pregnancy/lactation and early in life (3–14 weeks of age) had no
protective effect [60]. Vitamin D supplementation in early child-
hood has been associated with significantly lowered T1D incidence
[61] with e.g. Hyppönen et al. reporting that both regular and irreg-
ular intake of vitamin D supplementation reduced the T1D
incidence with more than a factor 6 among Finnish children. How-
ever, it should be noted, that the population living in Russian
Karalia neighboring Finland and with the same genetic T1D sus-
ceptibility has as mentioned previously approximately one-sixth
the risk of developing T1D as Finns, despite the fact that their
circulating vitamin D concentrations are almost similar [14,62].
Further, a recent study found no correlation between vitamin D
status and increased risk of b-cell autoimmunity [63] leaving the
influence of vitamin D on T1D incidence open for debate.

2.5. Other food related factors

Nitrite and nitrate has also been linked to T1D development in
several studies [64,65]. Nitrate is found in many vegetables and
depending on local conditions also in drinking water, while both
nitrite and nitrate is found in meat products, such as sausages,
where they are used to stabilize color and add an extra barrier
towards the growth of Clostridium botulinum [66]. In case-control
studies intake of nitrite and nitrate from food and drinking water
has been linked to T1D incidence [64,65]. It is not the two com-
pounds themselves that constitute a risk in terms of T1D develop-
ment, but in the gut they may react with amines and amides in a
process mediated by gut microbes and form toxic nitrosamines
and nitrosamides [67,68]. Also the pH of drinking water has been
directly linked with T1D development in NOD mice, with mice
receiving acidified drinking water developing T1D faster and with
a significantly higher incidence compared to mice receiving drink-
ing water with a neutral pH [69].

Food and beverages might also indirectly become sources of
pollutants such as the endocrine disruptor bisphenol A, used in
food and beverage containers made of polycarbonate plastic.
Through leaking from the packaging material food and beverages
are the major sources of human exposure to bisphenol A. Though
no direct link between bisphenol A exposure and T1D development
has been established in humans, bisphenol A exposure has been
linked to allergic asthma in children, modulate the immune system
in mice models, and both perinatal and postnatal exposure has
been shown to accelerate T1D development in NOD mice [70–72].

3. Exposure to microbial agents

The intriguing observation that there is an inverse relationship
between the incidence of a wide range of infectious diseases (mea-
sles, mumps, rheumatic fever etc., incidence all decreasing) and
diseases related to immune disorders (asthma, multiple sclerosis,
T1D etc., incidence all increasing) led to the development of the
so-called hygiene hypothesis [13,73,74], basically stating that
due to better hygiene and health care systems we are less exposed
to infectious agents, symbiotic microorganisms, parasites and
allergens during childhood which influences immune system
development leading to among other things an altered Th1/Th2
balance, which again might render us more susceptible to autoim-
mune diseases [75,76].

The above mentioned 6-fold difference in T1D incidence
between Russian Karelia and Finland is one of several examples
speaking in favor of environmental factors possibly linked to differ-
ent hygiene levels and risk of infections playing an important role
in T1D development [13,75].

3.1. Helminths

Decreasing incidences of helminth infections as a result of bet-
ter hygiene conditions have been speculated to play a role in the
increasing T1D incidence observed worldwide. Gale (2002) argue
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that the decreasing rate of children infected with the pinworm
Enterobius vermicularis correlates well with the simultaneously
increasing T1D incidence in industrialized countries [77]. In addi-
tion to pinworms, also the helminth parasites Heligmosomoides
polygyrus, Trichinella spiralis, Litomosoides sigmodontis and Schisto-
soma mansoni either completely inhibit or significantly slow T1D
development and lower incidence in NOD mice [77–80]. In the case
of H. polygyrus inoculation at 5 weeks of age protected entirely
against T1D development, but even inoculation as late as 12 weeks
of age significantly delayed onset time and reduced T1D incidence
[79]. The protective effect is generally believed to be mediated
through a shift in the Th1/Th2-balance, towards a more pro-
nounced Th2-type response and with increased numbers of splenic
regulatory T-cells [78–83]. However, recent findings from studies
carried out in IL-4 deficient NOD-mice suggest that protection
against T1D is independent of a Th2 shift, but requires secretion
of the regulatory cytokines IL-10 and TGF-b [83,84]. No human
studies investigating the potential of using helminths as ‘‘vaccines’’
against T1D development have been published to date, but for
inflammatory bowel disease and multiple sclerosis pilot clinical
trials have shown promising results [81,85,86]. The use of hel-
minths in profylatic treatment of T1D is potentially promising,
but not without concerns in terms of possible negative side effects
[83]. Helminths cause chronic IgE-mediated activation of basophils
and mast cells. In a proof of concept study it has been shown that
instead of infecting with live helminths, protection against T1D
development in NOD mice can also, at least to some extent be
achieved by mimicking helminth infection through injection with
anti-FceR1 antibodies binding to the FceR1 IgE receptor on baso-
phils and mast cells thus releasing IL-4 and delaying T1D onset
[87] pointing at a strategy for obtaining the protective effect of hel-
minth infections, without the need for infection with actual
helminths.

3.2. Viruses

Onset of T1D follows a seasonal pattern, with higher onset inci-
dence during Autumn and Winter which already in 1926 led
Adams to suspect a viral cause of T1D [88,89]. A range of viruses
have been implicated in T1D etiology, but in most cases the asso-
ciations were found to be weak or irreproducible in follow-up
studies as recently reviewed [88]. However, in the case of single-
stranded RNA enterovirus of the Picornaviridae family, the associa-
tion between viral infection and T1D incidence seems rather
strong. In a recent meta-analysis enterovirus infection was associ-
ated with T1D related autoimmunity at an odds ratio of 3.7 and
with clinical T1D at an odds ratio of 9.8 [90]. Similarly, a Finnish
study has also shown that enteroviral RNA is found in diabetics sig-
nificantly more frequent than in both celiacs and healthy controls
[91]. Further, it was found that the infection was prolonged or per-
sistent in many of the T1D patients and that the infection was asso-
ciated with gut mucosa inflammation, though a later Italian study
was not able to confirm this finding, as they were unable to detect
enterovirus in small intestinal biopsy samples from neither T1D
patients, nor healthy controls [92]. Also perinatal exposure to
enterovirus is possibly a risk factor, as a Swedish study found
increased prevalence of enteroviral RNA in the blood of newborns
who later developed T1D, while the prevalence of cytomegalovirus
(CMV) and parvovirus B19 was similar between newborns who
later developed T1D and healthy controls [93]. The presence of
enteroviral RNA in blood has been linked with a particular, T1D-
associated genotype of the IFIH1 gene encoding interferon-induced
helicase C that senses double-stranded RNA of the Picornavirales
virus family including enterovirus [94]. During the first couple of
years after birth there is also a high risk of enterovirus exposure
with for instance 29% of a cohort of genetically T1D susceptible
Finnish children aged 2 years or younger being positive [95], but
the implications in terms of T1D development (if any) does proba-
bly not manifest until later in life, as a German study found no
correlation between enterovirus infections during the first year
of life and development of islet antibodies [91,96]. Another recent
German study showed that also respiratory infections during the
first year of life is associated with increased risk of islet antibody
sero-conversion [97]. Furthermore, Encephalomyocarditis virus
(EMCV), which is a picornavirus, induces fulminant type 1 diabetes
in specific inbred strains of mice [98], and milder diabetes in Syrian
hamsters [99] and Mongolian gerbils [100].

3.3. Gut microbiota

Recent years development within mainly high throughput
sequencing technologies have enabled hitherto unseen detailed
characterization of the human GM establishing links between
GM and a range of disease conditions such as type 2 diabetes
[101,102] and autoimmune diseases like atopic dermatitis [103].
The possible involvement of the GM in T1D development is receiv-
ing increasing attention and several lines of evidence not only sug-
gest that GM is an important factor in the progression towards
T1D, but also that GM manipulation offers possibilities for delaying
and perhaps even preventing T1D development [104–106].

The human gastrointestinal (GI) system harbours a complex
and dynamic consortium of 10–100 trillion microorganisms encod-
ing as much as 100-fold more unique genes than the human gen-
ome itself. The genetic potential of the microbial inhabitants of
our GI-tract is consequently massive and strongly influences
human health and disease [107]. GM composition and develop-
ment is determined in a delicate interplay between genetic and
environmental factors [108–110] that we are only beginning to
understand. In utero the GI tract is sterile, but during and after
birth it is rapidly colonized. Mode of birth (vaginal birth vs. caesar-
ean section (CS)) and feeding (breast feeding vs. bottle feeding) are
both important drivers of GM development [108,109,111–114].
Initially the GM is dominated by oxygen tolerant species (e.g.
staphylococci and Enterobacteriaceae), before obligate anaerobes
(bifidobacteria, clostridia, eubacteria) take over and after a couple
of years the child GM tend to approach the composition of the
adult gut [108,109,115,116].

Several studies report that the GM differs between children
with b-cell autoimmunity [117] or T1D and healthy, age and geno-
typically matched controls [118–121]. A recent German study
comparing GM development in genetically at risk children up to
the age of 3 years rather than identifying a particular GM compo-
sitional fingerprint associated with anti-islet cell autoimmunity,
instead identified substantial alterations in microbial interaction
networks between anti-islet antibody positive children and genet-
ically and age-matched healthy controls [122]. In all cases the
investigated cohorts are rather small (between 3 and 22 diabet-
ics/individuals with b-cell autoimmunity) and even though they
all provide valuable findings larger cohort studies investigating
the link between GM and T1D development are highly needed.
Several studies [117,120,121] indicate that b-cell autoimmunity
and T1D is associated with a lower overall GM diversity, though
in [122] no significant difference in GM diversity was found
between children who developed anti-islet cell autoimmunity
and healthy controls. Low GM diversity has also been linked to ato-
pic dermatitis [103], another autoimmune condition, and low over-
all GM genetic diversity (‘‘low gene count’’) has been linked to
metabolic syndrome [123]. Birth by CS is associated with an
increased risk of T1D development [124]. Recently, birth by CS
has been linked with reduced GM diversity, and especially within
the Bacteroidetes phylum infants born by CS had significantly
lower diversity compared to infants born vaginally. Further, the



4238 D.S. Nielsen et al. / FEBS Letters 588 (2014) 4234–4243
infants born by CS had significantly lower blood concentrations of
the Th1 associated chemokines CXCL10 and CXCL11, while no
significant differences where observed for the Th2 associated che-
mokines CCL17 and CCL22. Differences in GM composition
between children born vaginally and by CS has been shown to per-
sist up 7 years of age [125].

In the investigated Finnish and Spanish co-horts the abundance
of Bacteroides is in general higher in cases compared to controls,
with for instance Bacteroides ovatus and Bacteroides uniformis being
associated with autoimmunity, while Bacteroides fragilis on the
other hand seems to play a protective role [117,118,120,121].
However, no differences in Bacteroides abundance between chil-
dren who developed anti-islet cell autoimmunity and healthy con-
trols were observed in a recent German study [122]. Bifidobacteria,
butyrate producers such as Faecalibacterium and Roseburia and
mucin degraders like Prevotella and Akkermansia all constitute a
larger proportion of the GM in healthy controls compared to cases
indicating that they might play a protective role [117,118,120,
121,126,127], though [120] could not confirm the tendency for Pre-
votella and [122] as mentioned above rather than identifying par-
ticular taxonomic units differing between children who
developed anti-islet cell autoimmunity and healthy controls,
instead identified substantial microbial interaction network distur-
bances in the anti-islet antibody positive children. The reason
behind the possibly protective role of bifidobacteria is not clear,
but de Goffau et al. [117] suggest that they reduce growth of e.g.
Bacteroides members and/or reduce their translocation over the
epithelium reducing inflammation. Butyrate is an inducer of mucin
production [128,129]. In line with this, Brown et al. [118] suggests,
that a GM rich in butyrate producers leads to increased mucin pro-
duction, more tight junctions and increased gut integrity. The
increased mucin production then creates a favorable niche for
mucin degraders (Prevotella, Akkermansia), and [118] suggest that
mucin degraders possibly can be used as indicators of gut integrity.
In this context it is interesting to note, that even though not
reported as significantly different, phylum Verrucomicrobia (of
which Akkermansia muciniphila is the only known gut microbiota
associated member [130]) has been found to be more abundant
in children that did not develop anti-islet autoimmunity, compared
to those that did, at all time points from 6 months of age to 3 years
[122]. Metabolome studies support, that GM differs between T1D
patients and healthy controls, as a range of metabolites of gut
microbial metabolism differs between the 2 groups [131,132].

Evidence from animal models supports that GM plays an impor-
tant role in T1D development. Bio-breeding diabetes-prone (BB-
DR) rats have a GM significantly different from the GM of
bio-breeding diabetes-resistant (BB-DR) rats, with the BB-DP rats
having lower GM diversity, especially later in life (70 days), more
Bacteroides and less Bifidobacterium compared to BB-DR rats
[133], which by large corresponds well with the picture seen in
humans [117,118,120]. Similarly, NOD mice that develop diabetes
have a different GM already at weaning compared to NOD mice
that do not develop T1D. This difference in GM composition per-
sists into adulthood, where NOD mice that has developed T1D
has a GM different from NOD mice that had not developed T1D
up to 30 weeks of age [51 and own data, submitted for
publication].

In some cases germ-free rearing has been found to exacerbate
T1D development in NOD mice, but newer studies report divergent
results. According to King and Sarvetnick [134] do germ-free mice
not have higher T1D incidence compared to conventional mice, but
a restricted gut microbiota offers some protection. Alam et al. [135]
report that diabetes develops with equal incidence under both
germ-free and specific pathogen free (SPF) conditions, but with sig-
nificantly higher insulitis scores under germ-free conditions. The
lacking GM results in an altered immune regulation in the colon,
the mesenteric and the pancreatic lymph nodes with increased
levels of IL17 and less FoxP3 cells which may explain the higher
insulitis scores [135].

Wen et al. [136] showed that a specific protein, MyD88,
involved in recognising microbial stimuli in the gut is essential
for T1D progression in NOD mice. MyD88-knockout NOD mice
were almost completely protected from developing T1D, whereas
heterozygous MyD88KO/+ NOD mice developed T1D. Interestingly,
when reared under germ-free conditions, the MyD88-knockout
NOD mice develops robust insulitis, while colonization of the
germ-free MyD88-knockout mice attenuated T1D development.
In a recent study it was found that not only MyD88, but also
TLR3 is critical for T1D development in the RIP-B7.1 diabetes
mouse model, confirming the important role of receptors recognis-
ing microbial stimuli in the gut [137].

T1D incidence in NOD mice has a strong gender bias, with
female mice having higher incidence compared to male mice
[138,139]. At weaning the male and female GM does not differ,
but when the mice reach puberty, the GM and metabolome differs
between sexes [138,139]. SPF male mice had significantly higher
testosterone levels compared to SPF female mice, but when reared
under germ-free conditions, male mice had comparable lower and
female mice higher testosterone levels, indicating that a ‘‘sex spe-
cific’’ GM influences testosterone levels [139]. Transfer of adult
male GM to young females altered the GM of the recipients, ele-
vated testosterone levels, changed the metabolome and conferred
protection against T1D [139]. Further, if castrated, the male GM
does not differ from the female mice and their insulitis score is
comparable to female mice [138]. Yurkovetskiy et al. [138] suggests
a positive feedback mechanism, where hormones influence GM
that again influence the hormone balance; a hypothesis overall in
agreement with the finding in [139]. Also in adult humans, gender
specific differences in blood metabolome has been identified [140]
and a range of autoimmune diseases has a gender bias towards
woman having higher incidence, but not in the case of T1D, where
men and woman have approximately the same risk (with males
even having a slightly higher risk in adulthood) [141]. Nevertheless,
the findings in [138,139] underline that GM strongly influences
host and T1D development and that disease development can be
prevented or at least postponed by GM manipulation.

The influence of GM on T1D is further augmented by the finding
that the presence or absence of segmented filamentous bacteria
(SFB) in the gut has profound impact in T1D incidence in NOD mice
[142]. SFB strongly influence host immune system development
influencing T helper cell maturation and inducing intestinal Th17
cells [143–145] and has been found to be associated with protec-
tion against T1D development in female NOD mice (male NOD
mice had low incidence regardless of SFB status) [142]. The exact
mechanism behind the possible protective effect of SFB on T1D
development in NOD mice has not been elucidated but Kriegel
et al. [142] hypothesize that possibly the SFB induces a robust pop-
ulation of intestinal Th17 cells protecting against islet destruction
by inhibiting the Th1-response, though this notion remains
debateable [146]. However, in another study female NOD mice
mono-colonized with SFB had a similar diabetes incidence as the
germ-free mice [138]. No matter the exact role of SFB in protecting
female NOD mice against T1D it should be noted that different ven-
dors and experimental animal facilities differs with respect to gut
microbiota composition, including SFB status [142,145], which
probably explain the large differences in NOD mice T1D incidence
occasionally reported.

3.4. Gut microbiota manipulation

Antibiotic treatment reduce diabetes incidence in both BB-DP
rats and NOD mice [104,147,148]. In BB-DP rats, treatment with
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a mixture of sulfamethoxazole, trimethoprim and colistine sulfate
from weaning significantly reduced T1D incidence [147]. Exchang-
ing the conventional plant-based diet, with a diet where hydroly-
sed casein was the sole protein source also offered some
protection and if the hydrolysed casein diet was combined with
antibiotic treatment no rats developed T1D [147]. A later study
in NOD mice underlines that timing is important, as treatment
with vancomycin from birth to weaning significantly reduced
T1D incidence, while treatment only during adulthood did not offer
the same protection [104]. Vancomycin treatment resulted in a
switch from a GM dominated by Firmicutes and Bacteroidetes to
a GM dominated by A. muciniphila (Verrucomicrobia) and to a les-
ser extent Proteobacteria [104]. The mechanism behind the protec-
tive effect of vancomycin treatment is not known, but it can be
speculated, that the abundance of the mucin degrader A. mucini-
phila leads to an increased metabolisation of mucin, which might
increase the possibility for other Gram-negative bacteria (like Pro-
teobacteria) or ligands therefrom (e.g. lipopolysaccharides, LPS) to
get in contact with intestinal immune cells at a critical stage during
immune system maturation stimulating e.g. TLR-4, known to play
a role in protection against T1D development [104], though other
mechanisms are also possible. Humans diagnosed with T1D have
a slightly decreased natural killer cell expression of NKG2D and
also NOD mice have an altered natural killer cell NKG2D expres-
sion profile [149,150]. Intestinal epithelial cell expression of
NKG2D has to date not been implicated in T1D etiology, but given
that a receptor like My88D involved in recognition of intestinal
microbial stimuli has a profound impact on T1D development in
NOD mice, it is of interest, that vancomycin treatment has been
found to decrease the expression of NKG2D ligands on intestinal
epithelial cells [151]. Interestingly, propagation of A. muciniphila
and decreased NKG2D ligand expression could also be achieved
through feeding with dietary xylosaccharides as well, showing that
also through a dietary intervention is it possible to influence gut
epithelial ligand expression and increase A. muciniphila in the GI
tract [151].

Recently, Sofi et al. [69] showed that female NOD mice receiving
acidified water (pH 3.0–3.2) compared to neutral water (pH 7.0–
7.2) markedly change GM composition and increase T1D incidence.
Switching from acidified water to neutral water lowered abun-
dance of Bacteroides but where in general associated with an
increase in GM diversity, which corresponds well with previous
findings indicating that low GM diversity is associated with auto-
immunity and T1D [117,120,121]. Colonisation of mice receiving
acidified drinking water with SFB lowered T1D incidence, while
SFB colonisation did not influence T1D incidence in mice receiving
neutral pH water [69], indicating that SFB influences T1D incidence
in NOD mice, but only in collaboration with specific gut
microbiotas.

Switching from a conventional chow-based diet to a gluten-free
diet significantly reduces T1D-incidence in NOD-mice and is asso-
ciated with pronounced GM differences between the 2 feeding
regimes [46,51,52], with the gluten-free diet promoting A. mucini-
phila, while the gluten-containing chows were associated with
increased Tannerella, Barnesiella and perhaps more surprisingly bif-
idobacteria [52], which also contradicts findings from our labora-
tory, showing that a gluten-free diet is associated with higher
GM prevalence of bifidobacteria (own results, submitted for publi-
cation). Similar results have been obtained in BB-DP rats, where
feeding a diet with hydrolysed casein as protein source resulted
in significantly lower T1D incidence in both germ-free and SPF ani-
mals, compared to being fed a cereal-based, gluten-containing diet
[50]. In a recent study, we show that maternal feeding with a glu-
ten-free diet significantly reduces T1D incidence in the offspring
(NOD mice). Pregnant NOD mice were fed either a gluten-free or
a standard chow diet, until the pups were weaned to the standard
diet – meaning that the pups were exposed to the effect of a
gluten-free diet via cohousing with the mother. This resulted in
pronounced GM differences between the 2 feeding regimes (also
in the pups at weaning), with the gluten-free GM being character-
ized by increased Akkermansia, Proteobacteria, and TM7. Pancreatic
FoxP3 regulatory T cells were increased in gluten-free fed off-
spring, while intestinal gene expression of proinflammatory cyto-
kines was reduced. An increased proportion of pancreatic T cells
expressing the mucosal integrin a4b7 indicates the T1D protective
mechanism involve increased transport of gut-primed immune
cells to the pancreas [53]. Whether the protective effect of a glu-
ten-free diet is transferable to humans is far from given, as the
importance of gluten in human T1D etiology is still up for debate
[43–45]. But a case report indicating that switching to a gluten-free
diet as diabetes is diagnosed at least delays and possibly even pre-
vents disease progression [see 54 and discussion above] warrants
further studies. Furthermore, the findings that probiotic adminis-
tration [152] and GM manipulation through diet [50,52], pH of
drinking water [69], and antibiotics [104] prevents or delays T1D
onset in experimental animals point towards the gut as a promis-
ing target for T1D prevention in individuals genetically at risk.

4. Conclusion

The drivers of T1D development are far from identified, but a
range of candidates have been identified, including dietary habits
(breast feeding vs. infant formula, highly hydrolysed infant for-
mula vs. conventional infant formula, early/late exposure to gluten,
vitamin D deficiency etc.), exposure to certain viruses and hel-
minths. What unifies these candidates (with the exception of vita-
min D) is that their effect one way or the other is mediated via the
gut. The importance of our GI system in T1D etiology is further
augmented by the differences in GM composition and gut micro-
bial networks observed between individuals diagnosed with T1D/
b-cell autoimmunity and healthy controls and perhaps even more
importantly the increasing number of animal studies providing
proof of concept of how GM manipulation can be used to prevent
or reduce T1D incidence. Time is up for carefully designed, longitu-
dinal studies with adequate power first establishing in greater
detail how GM, metabolome, immune system development, and
autoimmunity/T1D are connected and whether ‘‘early warning
GM patterns’’ can be identified. In individuals at risk, it then
becomes highly relevant to develop tools for directing the GM in
a desired direction away from the ‘‘T1D risk profile’’ using appro-
priate means, be it dietary intervention, targeted use of antibiotics
or possibly by using bacteriocin-producing bacteria [153] or phage
cocktails [154] targeting unwanted GM members.
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