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Abstract

17b-estradiol (E2) may interfere with endocrine, metabolic, and gender-differentiated functions in liver in both females and
males. Indirect mechanisms play a crucial role because of the E2 influence on the pituitary GH secretion and the GHR-JAK2-
STAT5 signaling pathway in the target tissues. E2, through its interaction with the estrogen receptor, exerts direct effects on
liver. Hypothyroidism also affects endocrine and metabolic functions of the liver, rendering a metabolic phenotype with
features that mimic deficiencies in E2 or GH. In this work, we combined the lipid and transcriptomic analysis to obtain
comprehensive information on the molecular mechanisms of E2 effects, alone and in combination with GH, to regulate liver
functions in males. We used the adult hypothyroid-orchidectomized rat model to minimize the influence of internal
hormones on E2 treatment and to explore its role in male-differentiated functions. E2 influenced genes involved in
metabolism of lipids and endo-xenobiotics, and the GH-regulated endocrine, metabolic, immune, and male-specific
responses. E2 induced a female-pattern of gene expression and inhibited GH-regulated STAT5b targeted genes. E2 did not
prevent the inhibitory effects of GH on urea and amino acid metabolism-related genes. The combination of E2 and GH
decreased transcriptional immune responses. E2 decreased the hepatic content of saturated fatty acids and induced a
transcriptional program that seems to be mediated by the activation of PPARa. In contrast, GH inhibited fatty acid oxidation.
Both E2 and GH replacements reduced hepatic CHO levels and increased the formation of cholesterol esters and
triacylglycerols. Notably, the hepatic lipid profiles were endowed with singular fingerprints that may be used to segregate
the effects of different hormonal replacements. In summary, we provide in vivo evidence that E2 has a significant impact on
lipid content and transcriptome in male liver and that E2 exerts a marked influence on GH physiology, with implications in
human therapy.
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Introduction

17b-estradiol (E2), a major natural estrogen in mammals, has

physiological actions not limited to reproductive organs in males

[1,2,3,4,5,6]. Studies in patients with natural mutations in the

human estrogen receptor alpha (ERa) [7,8] and aromatase [9,10]

genes, and in the ERa (ERKO) and aromatase (ArKO) null mice

models have shown that E2 can play a critical physiological role in

males [1]. In particular, an insufficient E2 signaling in the ERKO

and ArKO null mice models results in a metabolic syndrome-like

phenotype with fatty liver due to a disruption in b-oxidation and

increased lipogenesis, a phenotype that is reversed by physiological

doses of E2. Moreover, both of these models exhibit a sexually

dimorphic fatty liver that, notably, is male specific [1].

The effects of E2 in the liver can be explained through the direct

actions of ER [2,11,12,13] or, indirectly, by modulating growth

hormone (GH) physiology [14,15]. E2 can influence pituitary GH

secretion but also GH direct actions in the liver. In particular, E2

induces the expression of Suppressor of Cytokine Signaling

(SOCS)-2, which is a negative regulator of the GHR-JAK2-

STAT5 signaling pathway [16]. Recently, we have identified

SOCS2 as an important regulator of hepatic homeostasis (i.e., lipid

and glucose metabolism and inflammation) under conditions of

high-fat dietary stress [17]. The ability of GHR-JAK2-STAT5
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signaling pathway to regulate hepatic lipid metabolism has also

been highlighted in recent mouse genetic studies showing that

hepatic inactivation of the GHR [18], its associated kinase, JAK2

[19] or its downstream signaling intermediary, STAT5b [20],

leads to fatty liver. The metabolic influence of GH deficiency has

also been well documented in humans by the development of a

metabolic syndrome (i.e, increased visceral obesity, reduced lean

body mass and fatty liver), a phenotype that is ameliorated by GH

replacement therapy [21]. Notably, oral administration of

pharmacological doses of E2 in humans inhibits GH-regulated

endocrine (e.g., IGF-I) and metabolic (e.g., lipid oxidation, protein

synthesis) effects [22,23] but these effects are attenuated when E2

is administered transdermally, suggesting that liver is the major

target of regulatory cross-talk between estrogens and GH.

However, the molecular characterization of the hepatic changes

induced by long-term E2 treatment, when it is administered

subcutaneously, and how they influence the liver response to male

pattern of GH administration are not well understood.

Animal studies of hepatic effects of E2 or its interplay with GH

actions have been focused on females [24,25]. Nonetheless, it is

unclear if males exhibit equivalent responses, and there are

reasons why such equivalence should not be presumed. In

particular, gender dimorphism in GH secretion patterns develops

soon after birth and the pituitary GH release maintains a sexually

dimorphic liver function in adulthood [15], which may influence

the nature of E2 effects in the livers of males and females. Several

GH deficient models can be used to study the interplay between

E2 and GH in males. Notably, the hypothyroid-orchidectomized

(TXOX) rat model reaches very low or undetectable blood levels

of GH and E2, which can be readily restored by hormone

replacement treatment (HRT) [25,26,27], and shows systemic and

hepatic metabolic disturbances with features that mimic deficien-

cies in E2 [2] and GH [28] (e.g., hypercholesterolemia, adiposity,

fatty liver). In this study, we hypothesized that functional interplay

between E2 and GH influences liver physiology in male. To test

this hypothesis, we investigated the mechanisms of E2 and GH to

regulate liver function at the molecular level. We studied gene

expression profiles in liver tissue and correlated them with the

changes in hepatic lipid content in TXOX rats before and after E2

and/or GH replacement. The results show that the interactions

with GH contribute to multiple effects of E2 in male rat liver.

Indeed, we found that E2 significantly influenced the GH-

regulated endocrine, metabolic, immune, and gender specific

responses in the liver. E2- and GH-induced changes in hepatic

gene expression profiles were associated with changes in hepatic

lipid composition. Finally, hepatic lipid profiles from E2- and/or

GH-treated TXOX rats substantially differ from those observed in

intact animals, indicating that the normal functions of thyroid

glands and testes are an absolute requirement for physiological

hepatic lipid homeostasis.

Material and Methods

Materials
Recombinant human GH was kindly donated by Pfizer

laboratories (Spain). E2 benzoate, Tri-Reagent and, unless

otherwise indicated, the rest of the products cited in this work

were purchased from the Sigma Chemical Co. (St. Louis, MO).

Animal treatment
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the University of Las Palmas de Gran

Canaria and conducted in accordance with European and Spanish

laws and regulations. The protocol was approved by the

Committee on the Ethics of Animal Experiments of the University

of Las Palmas de G.C. (permit number: 2006-07824). All efforts

were made to minimize suffering. Adult (2–3 months old) male

Sprague-Dawley rats (n = 6 per group) were used throughout these

experiments. Animals were kept under a constant dark/light cycle,

and in a controlled temperature (21–23uC) environment, and had

free access to autoclaved standard chow (A04 SAFE Panlab,

Barcelona, Spain) and tap water throughout the experiment. The

generation of hypothyroid animals was performed as previously

described [27,29]. The goitrogenic drug methimazole (MMI;

0.05%) was added to the drinking water for 5 weeks starting on

postnatal day (PND) 59 until sacrifice on PND94. Calcium

chloride (1%) was included with MMI in the water to ensure

adequate dietary calcium intake because hypothyroidism decreases

food intake by up to 40% [25]. The MMI-containing water was

changed twice per week. Two weeks after starting MMI

administration, rats were orchidectomized (OX) or sham–operat-

ed to make TXOX or testis-intact hypothyroid (TX) groups,

respectively. Six rats were not treated with MMI and were

subjected to sham-surgery to provide euthyroid testis-intact

controls (INTACT). Four days after OX, we began HRT with

E2 benzoate (50 mg/kg; sc; 5 days per week, from Monday to

Friday) (TXOXE2) or vehicle (0.2 ml corn oil; sc; 5 days per week,

from Monday to Friday) (TXOX) to TXOX rats for 20 days

[30,31] before hormonal replacement for 7 days with either E2

plus GH (TXOXE2GH) or vehicle plus GH (TXOXGH). GH

(0.3 mg/kg/day) was administered as two daily sc injections at 12-

h intervals (08:00h and 20:00h) to mimic the male-specific GH

secretion [32,33]. TX and TXOX control animals received

equivalent amounts of the vehicle alone. Hypothyroidism status

was corroborated by monitoring the body weight gain at 7 day

intervals and the serum levels of T4 and T3. Twenty-four hours (in

the case of E2) or twelve hours (in the case of GH) after the last

injection, the animals were killed by exsanguinations. On PND94,

blood samples were collected and serum stored at 280uC until

analysis. Portions of the liver were snap frozen in liquid nitrogen

and stored at 280uC until processed for mRNA analysis.

Serum analysis
The blood was analyzed for T3, T4, glucose, cholesterol (CHO),

triacylglycerols (TG), leptin, IGF-I, E2, and testosterone (T).

Serum free T3 and T4 concentrations were measured in duplicate

by enzyme immunoassay (Access Systems, Beckman Coulter, Inc),

with a detection limit of 0.60 ng/dl and 88 ng/dl, respectively.

Serum levels of glucose, CHO, and TG were quantified by using

an Olympus AU2700 chemistry analyzer (Beckman Coulter Inc.).

The immunoassay method was also used to determine serum levels

of E2 and T by using the UniCel DxI 800 immunoassay system

(Beckman Coulter Inc). Serum levels of leptin and IGF-I were

determined by using rat immunoassays (Quantikine, R&D

systems) according to manufacturer recommendations. The IGF-

I and leptin assays included quality controls provided by the

manufacturer, and the standard curves of the assays were

performed in accordance with the manufacturer’s provided

samples. All the samples were assayed together and each sample

was assayed in duplicate.

Hepatic lipid analysis
Liver lipids were analyzed following the procedures detailed in

Fabelo et al. [34]. Briefly, total lipids were extracted with

chloroform/methanol (2:1 v/v) containing 0.01% butylated

hydroxytoluene (BHT) as an antioxidant. Lipid classes were

separated by one-dimensional double-development high-perfor-
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mance thin-layer chromatography (HPTLC) using methyl ace-

tate/isopropanol/chloroform/methanol/0.25% (w/v) KCl

(5:5:5:2:1.8 by vol.) as the developing solvent system for the polar

lipid classes and hexane/diethyl ether/acetic acid (22.5:2.5:0.25 by

vol.) for the neutral lipid classes. Lipid classes were quantified by

densitometry using a Shimadzu CS-9001PC spot scanner. Total

and neutral lipid fractions were subjected to acid-catalyzed

transmethylation for 16 h at 50uC using 1 ml of toluene and

2 ml of 1% sulfuric acid (v/v) in methanol. The resultant fatty acid

methyl esters (FAME) were purified by TLC, and visualized by

spraying with 1% iodine in chloroform [35]. FAME were

separated, and quantified by using a Thermo gas chromatograph

equipped with a flame ionization detector (250uC) and a fused

silica capillary column Supelcowax TM 10 (30 m60.32 mm I.D.).

Individual FAMEs were identified by referring to authentic

standards. Equal amounts of total lipids were used in all analyses.

Throughout the manuscript, lipid nomenclature adhered LIPID

MAPS classification system (http://www.lipidmaps.org/data/

structure/index.html).

RNA isolation, cDNA microarray, probe preparation, and
hybridization

Total RNA was isolated by homogenization of frozen rat tissues

using a polytrone PT-2000 (Kinematica AG) and TriReagent

(Sigma, St. Louis, MO) according to the protocol supplied by the

manufacturer. All samples were treated with RNAse-free DNase

(Promega, Madison, WI). RNA yields were measured by UV

absorbance and the quality of total RNA was analyzed by using a

2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). A

microarray containing 27000 rat 70-mer oligo probe sets produced

at the KTH Microarray Center (www.biotech.kth.se) was used to

evaluate the effects of hypothyroidism and hormonal replacement

in TXOX animals on liver gene expression. Five mg of high-

quality total RNA from the liver were reversed-transcribed,

labeled, and hybridized following the manufacturer’s protocol

(Pronto Plus System, Promega). After 16 h of hybridization, the

slides were washed and scanned using the GenePix Microarray

Scanner (Axon Instruments, CA). Four independent hybridiza-

tions were performed comparing individual animals from the

different experimental groups for a total of 4 analyses.

Microarray data processing and analysis
Image analysis was performed using the GenePix Pro 6.0

software (Axon Instruments, Union City, CA) as previously

described [36]. The LOWESS (Locally Weighted Scatter Plot

Smoother) method was used to normalize the raw intensity data

[37]. If the measured probe sets were not present in at least 3 of

the 4 chips, they were assumed to contain no information and

therefore were eliminated to reduce data complexity. Differentially

expressed genes were identified by using the SAM (Significance

Analysis for Microarrays) statistical technique [38]. A q value was

assigned for each of the detectable genes in the array. This value is

similar to a P-value, measuring the lowest false discovery rate

(FDR) at which differential expression of a gene is considered

significant. A minimal FDR of 0.05 was assigned for each gene. In

this work, a completed list of regulated genes is available as

supplementary (S) files. An additional selection requirement was

added to FDR based on absolute changes in the gene expression

ratios. A value of 1.5 (50%) (log2 ratio $|0.58|) was chosen to

describe ratios as up- or down-regulated. The microarray data

discussed in this publication have been deposited in NCBIs Gene

Expression Omnibus [39] and are accessible through GEO Series

accession number GSE50014 (www.ncbi.nlm.nih.gov/geo). Func-

tional and system biological network analyses were performed on

the basis of the Gene Ontology (GO) enrichment of differentially

expressed genes in liver using DAVID [40], and the results were

depicted using Cytoscape [41]. For the graphical representation,

the significance cut-off was set to a p value ,0.05 and a corrected q

value (Benjamini) ,0.1. GO graphs interpretation: node (inner

circle) size corresponds to the number of genes up-regulated by

GH or E2; node border (outer circle) size corresponds to the

number of genes down-regulated by GH or E2; color of the node

and border corresponds to the significance of the gene set for up or

down regulated genes, respectively (dark red = significantly

enriched, light red = enriched no significantly; grey = absent); edge

size corresponds to the number of genes that overlap between the

two connected gene sets. Green edges correspond to shared up-

regulated genes and blue edges correspond to shared down-

regulated genes.

Analysis of gene expression by real-time quantitative-
PCR (qPCR)

The mRNA expression levels of genes were measured using

qPCR. Briefly, 2 mg of total RNA was treated with RNase-free

DNase I (Promega) to remove genomic DNA and reverse

transcribed using iScript (Bio-Rad) according to the manufactur-

er’s instructions. Two ml of cDNA served as a template in a 20 ml

qPCR reaction mix containing the primers and SYBR Green PCR

Master Mix (Diagenode, Belgium). Quantification of gene

expression was performed according to the manufacturer’s

protocol using ABI PRISM 7000 SD RT-PCR. A relative

standard curve was constructed with serial dilutions (1:1, 1:10,

1:100) using a pool of the cDNA generated from all animals used

in the study. The amplification program consisted of 1 cycle of

95uC for 10 min, followed by 45 cycles of 95uC for 15 s, annealing

for 10 s, and 72uC for 30 s. The fluorescent intensity was

measured at a specific acquisition temperature for each gene. A

dissociation protocol was performed to assess the specificity of the

primers and the uniformity of the PCR generated products. The

amplified PCR products were subjected to agarose electrophoresis

to confirm their predicted size. Data were extracted and

amplification plots generated with ABI SDS software. All

amplifications were performed in duplicate, and Ct scores were

averaged for subsequent calculations of relative expression values.

The level of individual mRNA measured by qPCR was

normalized to the level of the housekeeping gene cyclophilin by

using the Pfaffl method [42]. Exon-specific primers (Table S1)

were designed by the Primer 3 program [43].

Statistical analysis
The significance of differences between groups was tested by

one-way ANOVA, followed by post hoc comparisons of group

means according to the GraphPad Prism 5 program (GraphPad

Software, San Diego, CA). Statistical significance was reported if

P,0.05 was achieved. For graphing purposes in the qPCR

analysis, the relative expression levels were scaled so that the

expression level of the INTACT group equaled one. Lipids classes

and main fatty acids were additionally submitted to factor analysis

by means of Principal Component Analysis (PCA) [44]. Variable

extraction was carried out based on the proportion of total

variance explained by two principal components. Factor scores for

principal component 1 in multivariate analyses of lipid classes, and

fatty acids from total and neutral lipid are depicted. Factor scores

were further analyzed by one-way and to assess statistical

differences between treatments and by two-way ANOVA to

evaluate the combined effects of hormonal treatments and their

interactions, as we have previously reported [45].
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Results

Estradiol inhibits the effects of GH on somatotropic-liver
axis and induces negative regulators of GH-STAT5
signaling and a female-pattern of gene expression in
adult hypothyroid-orchidectomized rat liver

Upon sacrifice on PND94, biochemical hypothyroidism was

shown, and significantly (P = 0.001) lower or undetectable serum

levels of T3 (ng/dl) [36.1765.43 (INTACT); 7.9264.84 (TXOX);

1.4862.14 (TXOXE2); 0 (TXOXGH); 0.1460.33 (TXOX-

E2GH)] and T4 (ng/dl) [(1.9060.17 (INTACT) vs. 0)] were

found in all TXOX groups in comparison with the age-matched

euthyroid control group (INTACT). Serum E2 levels (pg/ml)

[6.3365.57 (INTACT); 438.806122.12 (TXOXE2);

363.106107.95 (TXOXE2GH)] were increased (P = 0.001 vs

INTACT) in E2-treated TXOX rats up to 5-10 times those

observed in rats during pregnancy [46] or the proestrus phase of

the reproductive cycle [12]. A first approach to assess the effects of

E2 on TXOX rat liver was made through analysis of its influence

on the somatotropic-liver axis. TXOX caused impaired growth,

which was evident as a reduction in daily body weight gain

(Fig. 1A). At the last measurement, on PND94, a significant

difference (P,0.001) in body weight remained between INTACT

(447633 g) and TXOX (338628 g) groups. Accordingly, TXOX

showed reduced levels of hepatic IGF-I mRNA (Fig. 1B) and

circulating IGF-I (Fig. 1C). Treatment of TXOX rats with GH,

partially or totally, restored body weight gain (Fig.1A), liver IGF-I

mRNA (Fig.1B), and circulating IGF-I (Fig.1C), whereas these

effects were prevented in the presence of E2. Notably, E2

administration to TXOX rats increased hepatic IGF-I mRNA to

the level of non-orchidectomized-hypothyroid (TX) rats (Fig.1B).

Next, we carried out mRNA quantitative analysis of SOCS2, CIS,

and FGF21, which are negative regulators of GHR-STAT5

signaling [47,48]. E2 treatment of TXOX rats induced the mRNA

expression of SOCS2 (Fig. 1D) and CIS (Fig.1E), but only to a

fraction of the levels obtained after GH treatment. Indeed, when

E2 was used in combination with GH, a 2-3-fold reduced mRNA

expression levels of SOCS2 (Fig. 1D) and CIS (Fig.1E) were

observed compared with GH treatment alone, again demonstrat-

ing the inhibitory actions of E2 on GH hepatic actions. In contrast,

the positive effect of GH on FGF21 mRNA was not affected in the

presence of E2 (Fig.1F). The level of SOCS3 mRNA was induced

by hypothyroidism itself (Fig.1G), whereas neither hypothyroidism

nor hormonal replacement altered SOCS5 (Fig.1H). Finally, we

measured GH-regulated gene markers of liver sexual dimorphism

[15]. Figure 1I shows that the mRNA expression level of

CYP2C11, a male-specific gene, was completely abolished in

TXOX liver, whereas it was recovered by intermittent GH

replacement. In contrast, E2 prevented the GH-induced mRNA

expression levels of CYP2C11 (Fig.1I) and CYP2C13 (Fig.1J).

Unlike intermittent GH, E2 induced the female-specific CYP2C12

gene in TXOX liver (Fig.1K). Our microarray analysis (see below)

also showed that male predominant genes (e.g., CYP2C11,

CYP2C13, CYP2E1, alpha-2u-globulin) were down-regulated by

E2, whereas female predominant genes (e.g., CYP2C12, CYP2A1,

CYP2C7) were induced [15]. Overall, these findings demonstrate

that E2 influences the transcription of GHR-STAT5 targeted

genes and induces a female-pattern of gene expression in TXOX

rat liver.

Influence of estradiol on serum and hepatic lipids in
hypothyroid-orchidectomized rats

The effects of E2 and GH on hepatic lipid composition were

explored in TXOX rats by carrying out a quantitative analysis of

lipid classes (Table 1) and fatty acids from total (Table 2) and

neutral (Table 3) lipids. The development of a hypothyroid state in

male rats was accompanied by altered circulating lipids: a 2-fold

increase of total CHO and a 3-fold decrease of TG (Table 1).

However, these changes were not prevented by E2 or GH

replacement. Hypothyroidism increased the hepatic levels of CHO

and decreased those of TG and diacylglycerols (DG) in

comparison with the INTACT group (Table 1). However, the

levels of free fatty acids (FFA) were not significantly affected by

hypothyroidism, though the average values were lower than in the

INTACT animals. Among fatty acids from neutral lipids (Table 3),

TXOX rats contained increased levels of total saturated fatty acids

(SFA) (due to the significant increase in18:0 content). Among

monounsaturated fatty acids (MUFAs), 18:1n-9 (oleic acid), 16:1n-

7 (palmitoleic acid), and 18:1n-7 (vaccenic acid) were all

significantly reduced in neutral lipids (where these MUFAs are

abundant) compared with INTACT animals. Interestingly, these

changes paralleled the increase in 18:0. These findings suggest an

alteration of D9 desaturase in TXOX animals. The most

representative 18 carbon polyunsaturated fatty acids (PUFAs),

18:2n-6 (linoleic acid) and 18:3n-3 (linolenic acid) from total

(Table 2) or neutral (Table 3) lipids, were unaffected in TXOX.

Noticeably, TXOX rats exhibited increased levels of 20:4n-6

[arachidonic acid (AA)] and reduced levels of its elongated

precursor 22:4n-6. This later effect on AA was a direct

consequence of hypothyroidism and orquidectomy and could be

restored by the hormonal therapies used here, especially when

used in combination. Another physiologically relevant very long

chain polyunsaturated fatty acid (VLCPUFA), namely 22:6n-3

(DHA), exhibited a significant reduction in total lipids from

TXOX rats (Table 2). As expected, levels of essential fatty acids

20:4n-6 and 22:6n-3 in INTACT and TXOX animals were three-

to-four times higher in total lipids than in neutral lipids,

confirming their preferential location within membrane phospho-

lipids. Moreover, the results from total lipids indicate that

hypothyroidism and orquidectomy strongly affect the acylation

of DHA-containing phospholipids in liver cells. These findings are

physiologically relevant since depletion of membrane 22:6n-3 is

known to severely impact physicochemical properties of cell

membrane [45,49].

E2 treatment in TXOX rats brought about an important

reduction in total SFA compared with the TXOX group, this

effect was due to the significant reduction in 14:0 (myristic acid),

16:0 (palmitic acid), and 18:0 (stearic acid) from both total (Table 2)

and neutral (Table 3) lipids. In parallel to these changes, FFA as a

lipid class and DG were dramatically reduced by more than 75%

and 38%, respectively, whereas TG increased significantly by 72%

in comparison to TXOX rats. It is worth mentioning that E2 did

not alter VLCPUFA metabolism in terms of the levels of 20:4n-6,

20:5n-3, and 22:6n-3, which remained similar to the values for

neutral and total lipids in the TXOX group. However, E2

increased the levels of the essential n-6 precursor 18:2n-6 (but not

the essential n-3 precursor 18:3n-3) in neutral lipids. Noticeably,

E2 treatment partly reversed the effects of hypothyroidism on

MUFAs. Thus, E2 significantly increased levels of 18:1n-9 (and

also those of 16:1n-7 acid though to a lower extent) in total and

neutral lipids (Table 2 and 3, respectively), which, together with

the reductions in 16:0 and 18:0, point to an upregulation of

stearoyl-CoA desaturase (Scd) genes in response to E2. Overall,

these changes indicate that E2 stimulates b-oxidation of SFA in the
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liver while it increases the depots of n-6 polyunsaturated

precursors in TG. Regarding other lipid classes, namely, CHO,

CHO esters (CE), and phospholipids, we observed that E2 slightly

reduces hepatic CHO levels (yet not statistically significant)

compared with TXOX but induces a significant increase in the

formation of CE (32% and 47% over TXOX and INTACT

groups, respectively). This effect on CE formation is independent

of hypothyroidism but totally determined by E2 and likely reflects

an up-regulation of acyl:cholesterol acyltransferase (ACAT)

activity (see discussion).

To some extent, GH administration to TXOX rats resembled

the effects of E2 on hepatic lipid composition described above.

Thus, GH increased TG and decreased FFA hepatic contents

compared with TXOX rats. However, the levels of DG were

notably increased by GH treatment in the TXOX group

compared with the vehicle- or E2-treated TXOX group

(Table 1). TG levels were also increased in serum from GH-

treated rats (Table 1). Compared with the TXOX group, the

hepatic levels of 18:0, 16:0 and total SFA in neutral lipids (Table 3)

were reduced in GH-treated animals. Interestingly, unlike in E2-

treated animals, the levels of 18:0 and 16:0 in neutral and total

lipids in GH-treated rats approached those observed in INTACT

animals. Taken together, these data suggest that GH induces a

lipogenic effect in hypothyroid animals by mobilizing SFAs as

FFARDGRTG. Furthermore, when compared with vehicle- or

E2-treated TXOX group, GH treatment induced a significant

increase in 20:4n-6 and 22:6n-3 in total lipids (Table 2), which is

reflected in the high levels of VLCPUFA observed in this group of

animals. Because these later effects on LCPUFA were not

observed in neutral lipids, the results point to a significant effect

of GH on phospholipid remodeling, though the effect of E2 in

modulating phospholipid acylation-reacylation has been estab-

lished [34], similar effects induced by GH or by the combined

treatment E2+GH represent a novel finding. Finally, CHO levels

in the GH-treated TXOX group were returned to values observed

in the INTACT group, but as in the E2-treated TXOX group, an

increased CE level was present in response to GH (Table 1).

In the presence of E2, GH gave rise to a complex hepatic lipid

phenotype. Thus, total SFA, 14:0, 16:0, and 18:0 in total lipids

(Table 2), were reduced compared with TXOX and reached the

levels observed in INTACT animals. In neutral lipids (Table 3),

however, the contents of these fatty acids were significantly lower

than in TXOX. Among VLCPUFA, AA was also decreased well

below TXOX animals to values similar to those found in the

INTACT group in neutral lipids (Table 3), while as in the

TXOXGH group, DHA was significantly increased in the

phospholipids of the TXOXE2GH group to achieve the levels

in INTACT animals. A striking effect of the combined effects of

E2 and GH is the complete restoration of MUFA levels from total

and neutral lipids, an effect attributable to the increase in 18:1n9,

likely through alteration of D9 desaturase expression. Interestingly,

the combined E2+GH treatment gave raise to significantly higher

MUFA levels compared to E2 and GH treatments individually.

Given that MUFA levels of in GH-treated rats were identical to

those in TXOX rats, and that E2 treatment increased MUFA

(especially 18:1n-9) as compared for GH, the results suggest a

permissive action of GH on E2 effect. We have described above

that E2 and GH increased hepatic CHO and CE, but the

combined effect of the two hormones seemed to be additive with

regard to CE, because its levels doubled those found in INTACT

animals and were approximately 30% higher than in the E2 and

GH groups (Table 1). Conversely, in the presence of E2, GH

reduced the hepatic CHO content compared not only to the

TXOX group but also in relation to the E2- or GH-treated

TXOX groups, indicating an antagonistic hormonal interaction.

Finally, the significant increase in hepatic TG by GH in the

presence of E2, with the largest content among all groups (.96%

compared with the INTACT and .133% compared with the

TXOX group), points to a substantial stimulation of hepatic

lipogenesis by the combination of E2 and GH.

Finally, we performed PCA to identify data that discriminate

groups. Figure 2 shows the outcomes of PCA on lipid profiles for

lipid classes and total and neutral lipids. For lipid classes (Fig. 2A),

PC1 (principal component 1) was positively related to FFA, CHO,

sphingomyelin (SM) and phosphatidylethanolamine (PE), and

negatively correlated with CE and TG. On the other hand, for

fatty acids from neutral (Fig. 2C) and total (Fig. 2B) lipids, PC1 was

negatively related to C18 PUFA (18:2n-6, 18:3n-6 and 18:3n-3) in

total lipids, and positively to saturated (14:0, 15:0 and 16:0) and n-

7 MUFA. Therefore, PCA allowed a substantial simplification of

lipid data for group discrimination. When we computed factor

scores 1 and 2 from PC1 to obtain a group simplification for lipid

classes (Fig. 2A) and fatty acids from total (Fig. 2B), and neutral

lipids (Fig. 2C), these results allowed a neat discrimination between

HRT conditions for all three analyses. INTACT rats are

represented by a discrete cluster whereas the effects of E2 or

GH on TXOX rats can be distinguished from the untreated

TXOX group and display some degree of overlap with the

combined E2 and GH treatments. Thus, in contrast with somatic

growth in which E2 clearly prevented GH actions, the quantitative

lipid analysis displays a more complex picture of the molecular

changes induced by the different hormonal treatments. The E2

and GH effects on lipid contents display significant similarities but

also treatment-dependent specific effects, such those leading to the

regulation of DG content by GH.

Estradiol influences liver transcriptome in hypothyroid
male rats

Next, we performed a genome wide gene expression analysis to

better understand the influence of E2 on liver physiology. This

experiment identified 634 genes that were differentially regulated

in TXOX rats after E2 treatment (Table S2). Next, we identified

the active biological processes from expression profiles by GO

enrichment analysis [40] and system biological network [41]

analysis. GO enrichment analysis of the 352 genes up-regulated by

E2 revealed a significant over-representation of genes related to

fatty acid metabolism whereas among the 282 down-regulated

genes, over-representation of genes involved in steroid and

xenobiotic metabolism was observed (Fig. 3). Accordingly, the

genes up-regulated by E2 were clustered in cellular pathways

(KEEG) related to the PPARa signaling (P = 1,4E-05; Bonferroni

Figure 1. E2 inhibits the effects of GH on somatotropic-liver axis and induces negative regulators of GH-STAT5 signaling and a
female-pattern of gene expression in hypothyroid-orchidectomized rat liver. Euthyroid testis-intact controls (INTACT) and hypothyroid-
orchidectomized (TXOX) rats were described in Material and Methods. E2 or vehicle (VEH) administration to TXOX rats was performed for 20 days.
Then, GH replacement during 7 days rats was carried out in TXOX in the absence (-E2) or in the presence (+E2) of E2. On PND90, body weight gain (A),
hepatic IGF-I mRNA (B), circulating IGF-I (C), SOCS2 (D), CIS (E), FGF21 (F), SOCS3 (G), SOCS5 (H), CYP2C11 (I), CYP2C13 (J), and CYP2C12 (K) were
measured by qPCR. Results are expressed as mean 6 S.D. (n = 6). ***, P,0.001 for comparison with vehicle treated INTACT group; +, P,0.05, ++, P,
0.01, +++, P,0.001 for comparison with vehicle treated TXOX group.
doi:10.1371/journal.pone.0096305.g001
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= 0.002) and biosynthesis of unsaturated fatty acids (P = 8,2E-04;

Bonferroni = 0.02). Among the genes up-regulated by E2 we

observed PPARa and PPARa target genes [48,50] such as

CYP4A1, CYP4A3, FGF21, carnitine palmitoyltransferase 2

(CPT-2), Scd1, LCFA-CoA ligase 4, acyl-CoA oxidase (ACOX1),

acyl-CoA synthetase (ACS), fatty acid translocase (FAT/CD36),

angiopoietin-like 4 (ANGPTL4), ELOVL5, and BAAT. The fatty

acid desaturases FAD6 and FAD1 were also upregulated by E2. In

contrast, genes involved in the metabolism of C21-steroid hormones

(P = 1,6E-05; Bonferroni = 0.001), metabolism of xenobiotic by

cytochrome 450 (P = 1,2E-04; Bonferroni = 0.006), glutathione

(P = 0.002; Bonferroni = 0.04), and androgen and estrogen

Figure 2. Principal component analysis for liver lipid composition. (A) Lipid classes, (B) Total lipids and (C) Neutral lipids. Left panels
represent the factor loadings of principal components 1 (PC1) and 2 (PC2), and right panels the factor scores plots for PC1. Percent values in
parentheses indicate the proportion of overall variance explained by each principal component. Each ellipse denotes a hormonal cluster. SM:
sphingomyelin, PS: phosphatidylserine, PE: phosphatidylethanolamine, CHO: cholesterol, SE: sterol esters, FFA: free fatty acids, DG: diacylglycerols, TG:
triacylglycerols.
doi:10.1371/journal.pone.0096305.g002

Figure 3. System biological network analyses of the effects of E2 on liver transcriptome in hypothyroid-orchidectomized rats. The
genes differentially-expressed in the livers were identified by DNA microarrays as described under Material and Methods. Then, functional and system
biological network analysis were performed on the basis of the GO enrichment of differentially-expressed genes in liver using DAVID, and the results
depicted using Cytoscape. Node (inner circle) size corresponds to the number of genes up-regulated by E2; node border (outer circle) size
corresponds to the number of genes down-regulated by E2; color of the node and border corresponds to the significance of the gene set for up or
down regulated genes, respectively (dark red = significantly enriched, light red = enriched no significantly; grey = absent); edge size corresponds to
the number of genes that overlap between the two connected gene sets. Green edges correspond to shared up-regulated genes and blue edges
correspond to shared down-regulated genes.
doi:10.1371/journal.pone.0096305.g003
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(P = 0.002; Bonferroni = 0.05) were significantly down-regulated by

E2 [i.e., aldo-keto reductase 1D1 (Akr1d1), epoxide hydrolase 1;

glutathione S-transferases (GST) (mu 2, mu 3, mu 4, mu 7, pi 1),

CYP3A18, CYP2C23, CYP2E1, CYP17A1, 3b-HSD, 11b-HSD1,

and estrogen sulfotransferase (SULT1E)]. Overall, these results

reveal an extensive re-programing of liver’s transcriptome by long-

term E2 treatment of TXOX rats, particularly genes involved in the

metabolism of fatty acids and endo-xenobiotics.

Estradiol influences GH-regulated liver transcriptome in
hypothyroid male rats

Finally, we performed a genome wide gene expression analysis

to better understand the interplay between E2 and GH in liver.

We first defined the gene expression changes induced by GH

replacement in TXOX rats (Table S3). Second, we analyzed the

similarities in gene expression changes induced by treatment with

E2 or GH in TXOX rats and identified 869 significantly (FDR ,

5%) regulated transcripts in both cases. A Spearman rank

correlation test comparing the E2 and GH effects on these genes

yields a positive correlation (r = 0.6287; P,0.0001) indicative of

strong similarities between E2 and GH effects in the TXOX liver.

Accordingly, 94% of these genes were regulated by E2 and GH in

the same direction. Third, we obtained transcription profiles from

TXOX rats simultaneously treated with both E2 and GH (Table

S4). A comparative analysis of genes with altered expression levels

in TXOXGH or TXOXE2GH groups revealed considerable

reduction in the presence of E2 of the effects induced by GH in

TXOX rats (Fig. 4A–B). This was a general phenomenon that

affected a large fraction of GH-regulated genes. Accordingly, in

the absence of E2, the average expression changes (log2) across

four independent hybridizations were 0.9860.04 and 2

0.8260.02 for GH-induced (Fig. 4C) and GH-repressed (Fig. 4D)

Figure 4. E2 influences the gene expression profiling regulated by GH in hypothyroid-orchidectomized rat liver. Hypothyroid-
orchidectomized (TXOX) rats were injected with GH for 7 days in the absence (2E2) or in the presence (+E2) of E2. Differently expressed genes in the
livers were identified by DNA microarrays as described under Material and Methods. (A) The number of genes regulated by GH in the absence of E2,
by E2, or GH in the presence of E2. The overlapping areas show genes for which expression was altered by GH in the absence or presence of E2. (B)
Individual genes are arranged along the X axis according to the value order of decreases and increases in gene expression measured in GH-treated
TXOX rats in the absence of E2. The Y axis shows the log 2 ratio of the transcript signals in GH-treated TXOX rats in the absence (2E2) and in the
presence (+E2) of E2. (C) Box plot shows a statistical evaluation of the differences in the mean expression changes induced by GH in the absence (2
E2) or in the presence (+E2) of E2 for the set of genes induced and repressed by GH treatment in the absence of E2. (D) SAM multiclass analysis was
performed to identify GH regulated genes whose mean expression (SMD) values were significantly different from E2 or E2 plus GH-treated TXOX rats.
In Box plots, the lines connect the medians, the boxes cover the 25th to 75th percentiles, and the minimum and maximum values are shown by the
ends of the bars. ***, P,0.001.
doi:10.1371/journal.pone.0096305.g004
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genes, respectively, whereas the average fold regulation for the

same set of genes in the presence of E2 was 0.6060.05 (Fig. 4C)

and 20.6160.04 (Fig. 4D). These differences were significant (P,

0.001) and demonstrate an inhibition by E2 of the hepatic

response to GH treatment. Finally, SAM multiclass analysis [38]

identified genes regulated by GH whose mean expression values

were significantly different from those in E2- or E2 plus GH-

treated TXOX rats (Fig. 4E and 4F and Table S5) (e.g., Snapc2,

SLC13A2, Apo-H, TNFR, SULT1E1, CYP2C11, CYP2C12,

EGFR, Hsd3b6, SPI, alpha 2u-globulin, FTO, Acacb, PPARa,

ACOX1, SOCS5, Akr1c14).

Functional analysis [40] revealed that the biological processes

over-represented in the list of genes up-regulated by GH in

TXOX liver, were connected with the positive regulation of

Figure 5. System biological network analyses on GH effects on liver transcriptome in hypothyroid-orchidectomized rats. The
differentially-expressed genes in the livers were identified by DNA microarrays as described under Material and Methods. Then, functional and system
biological network analysis were performed on the basis of the GO enrichment of differentially-expressed genes in liver using DAVID, and the results
depicted using Cytoscape. Node (inner circle) size corresponds to the number of genes up-regulated by GH; node border (outer circle) size
corresponds to the number of genes down-regulated by GH; color of the node and border corresponds to the significance of the gene set for up or
down regulated genes, respectively (dark red = significantly enriched, light red = enriched no significantly; grey = absent); edge size corresponds to
the number of genes that overlap between the two connected gene sets. Green edges correspond to shared up-regulated genes and blue edges
correspond to shared down-regulated genes.
doi:10.1371/journal.pone.0096305.g005
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cellular catabolism (e.g., GCLC, GCK, ABHD5, IGF-I, APOC2,

HSP90AB1) whereas the metabolism of aminoacids and urea (e.g.,

CTH, ARG1, ASS1, OTC, ASL, CPS1, MAT1A, MTR, BHMT,

PAH) was significantly down-regulated (Fig. 5). When these

changes were mapped to cellular pathways (KEEG), we confirmed

a significant connection with the metabolism of aminoacids and

urea, metabolism of xenobiotics by P450, or PPARa signaling

(Table 4). In contrast to E2, GH repressed the PPARa signaling

pathway. Notably, in the presence of E2, the biological functions

and network regulated by GH varied notably (Fig. 6). Thus,

whereas GH still reduced the expression of genes involved in urea

and amino acid metabolism in the presence of E2 [e.g.,

carbamoyl-phosphate synthetase-1 (CPS1), ornithine carbamoyl-

transferase (OTC); argininosuccinate synthase (ASS1)], it was no

longer able to induce the expression of genes related to cell

catabolism [e.g., glutamate-cysteine ligase (GCLC) and APOC2]

(Table 5 and Table S4). In contrast, genes involved in the

metabolism of steroids and xenobiotics (e.g., Gst2, Gst-m3, Gst-

m4, EPHX1, CYP2E1, Gst-p1, Gst-m7) downregulated by E2 but

not by GH alone are even further inhibited by the combined

treatment. Finally, when E2 was present, GH exerted a significant

influence on immune system response (Fig. 6). In particular, the

mRNA expression levels of genes involved in complement

activation, lymphocyte immune response, wounding or acute

inflammatory response were significantly reduced (e.g., C9, C4a,

AHCY, ASS1, MASP1, C5, CLU, CST3, A1I3, C4BPB,

SERPING1, C1S, C4BPA, C8B, SDC1, IL10RB, IldR1,

SLC7A2, PIGR, sialomucin, IGFBP1, or CFI) (Table 5 and

Table S4). Taken together, these data indicate that E2 and GH

may be effective regulators of immune system contributing to the

maintenance of immune homeostasis under conditions of immu-

nological stress to reduce the susceptibility to stress-induced disease

by negative immunoregulators.

Discussion

In this study, we show that E2 and GH replacements in

hypothyroid male rats have a significant impact on lipid content

and transcriptome in the liver and that E2 exerts a marked

influence on GH-regulated endocrine, metabolic, immune, and

gender specific responses in the liver.

Hypothyroidism impaired body weight gain and decreased

circulating levels of IGF-I and biological markers of GH-STAT5b

signaling activity in the liver (i.e., mRNA levels of IGF-I, ASL,

Figure 6. System biological network analyses on GH effects on liver transcriptome in E2-treated hypothyroid-orchidectomized rats.
The differentially-expressed genes in the livers were identified by DNA microarrays as described under Material and Methods. Then, functional and
system biological network analysis were performed on the basis of the GO enrichment of differentially-expressed genes in liver using DAVID, and the
results depicted using Cytoscape. Node (inner circle) size corresponds to the number of genes up-regulated by E2-GH; node border (outer circle) size
corresponds to the number of genes down-regulated by E2-GH; color of the node and border corresponds to the significance of the gene set for up
or down regulated genes, respectively (dark red = significantly enriched, light red = enriched no significantly; grey = absent); edge size corresponds
to the number of genes that overlap between the two connected gene sets. Green edges correspond to shared up-regulated genes and blue edges
correspond to shared down-regulated genes.
doi:10.1371/journal.pone.0096305.g006
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SOCS2, CIS, and CYP2C11) [51]. These changes were totally or

partially restored by intermittent GH administration to TXOX

rats. However, the effects of GH were largely prevented by E2

which is in line with the negative effects of estrogens on

continuously GH administration in hypophysectomized female

rats [52]. The positive effects of E2 on hepatic SOCS2, CIS, and

FGF21 transcripts (see Fig.1) suggest that E2 might prevent the

activation of GH-STAT5b signaling in liver through induction of

these negative regulators of GH signaling [14,48]. Similarly,

estrogen administration in humans can prevent the GH-induced

increase in IGF-I, IGFBP-3, lipid oxidation, and protein synthesis

[22,23]. The effects of hypothyroidism on growth are associated,

in part, with an increased hepatic amino acid catabolism and urea

synthesis [53]. Biological network analysis shows that intermittent

GH administration to TXOX rats causes a positive regulation of

cellular catabolism, whereas the genes involved in the metabolism

of amino acids and urea (i.e., OTC, ASS1, aminotransferases, and

methyltransferases) are significantly down-regulated. This is in line

with the positive effects of GH on nitrogen balance, which have

been previously studied in hypophysectomized rats [54,55,56].

GH serves as an anabolic hormone that promotes lipolysis and

prevents lipogenesis in adipose tissue, which increases the

availability of FFA for energy expenditure [56]. E2 is also able

to interfere with this process by preventing the induction of some

genes related to fat utilization, such as ApoC2, which activates the

enzyme LPL that hydrolyzes TG. Therefore, E2 actions in liver

can impact the peripheral metabolic actions of GH.

Lipogenesis is often increased in situations of reduced energy

expenditure such as hypothyroidism, GH deficiency, E2 deficien-

cy, or aging [57]. Accordingly, our analysis of the hepatic lipid

content revealed that TXOX rats contained significantly increased

levels of total SFA compared to INTACT rats. E2 replacement did

not modify the mRNA expression levels of key regulators of

hepatic lipogenesis [i.e., Sterol regulatory element binding protein

(SREBP)1c, acetyl-Co A carboxylase alpha (ACC), fatty-acid

synthase (FAS)] [58], whereas it activated a PPARa transcriptional

program that promotes fatty acid catabolism in liver [50,59]. This

was evidenced by the E2 increased expression of the PPARa gene

itself and the PPARa target genes involved in the b/v-oxidation of

fatty acids (i.e., CTE-I, CPT-2, Fasd6, Fasd1, Fasd2, Scd1,

ACOX1, ECH1, BAAT, FGF21, CYP4A1, CYP4A3) (Table S2).

Accordingly, E2 replacement caused a significant reduction in

SFAs. Overall these findings are indicative of a positive crosstalk

between E2 and PPARa that is supported by multiple independent

studies [2,60,61,62]. Interestingly, despite the increased expression

of genes involved in b-oxidation, we detected a significant increase

in hepatic TG content in E2 treated TXOX rats, which is likely

explained by effects on lipid transport. The first step of long chain

fatty acids uptake is its translocation across the plasma membrane.

Notably, E2 increased the transcription of several known PPARa
activated genes encoding proteins that have been implicated in

fatty acids uptake and activation such as CD36, ACSL4 and

SLC27A5 (FATP5) [63,64]. We have previously demonstrated

that the fatty acid transporter CD36 is predominantly expressed in

female rat livers and proposed that this sexual dimorphism

depends on the GH secretion pattern, which can be influenced by

E2 treatment. E2 also increased transcripts of the SLC27A5 gene

which encodes FATP5, an fatty acid transporter that is an acyl-

CoA synthetase (bile acid ligase) that catalyzes the conjugation of

bile acids with amino acids before excretion into bile canaliculi

[65]. Following fatty acids uptake, the first step for the intracellular

use of long chain fatty acids is its esterification with CoA. This

reaction is catalyzed by acyl-CoA synthetases such as ACSL4

which was also induced by E2 in TXOX rat liver. The produced

Table 4. Cellular pathways regulated by GH in hypothyroid-orchidectomized rat liver.

Pathway up-regulated genes down-regulated genes P B

Arginine and proline metabolism GLUD-1 CPS-1, mitochondrial; OCT; ASS-1; arginase; aminotransferase 2,6E-05 3,1E-03

Urea cycle and metabolism of
amino groups

CPS-1, mitochondrial; OCT; ASS-1; arginase 1,3E-03 3,8E-02

Glycine, serine and threonine
metabolism

choline kinase a; glycyl-tRNA
synthetase

serine dehydratase; betaine-homocysteine methyltransferase;
cystathionase; glycine N-methyltransferase

1,6E-03 3,7E-02

Drug metabolism - Metabolism
of xenobiotics by P450

CYP2C11; CYP2D2 CYP2A1; CYP2C23; ADH 1; GST (k1 and A3) 1,0E-03 4,0E-02

Methionine metabolism methionine-tRNA synthetase methionine adenosyltransferase I, alpha; betaine-homocysteine
methyltransferase; cystathionase; 5-methyltetrahydrofolate-
homocysteine methyltransferase

9,4E-04 5,4E-02

Retinol metabolism CYP2C11 CYP2A1; CYP2C23; ADH 1; Dgat2 4,8E-03 9,1E-02

Caffeine metabolism NAT-2 CYP2A1; urate oxidase 1,1E-02 1,7E-01

PPAR signaling CPT-2; ANGPTL4 CYP27A1; CYP8B1; PEPK 1; ACOX-1 1,3E-02 1,8E-01

Cysteine metabolism LDH-A serine dehydratase; cystathionase 2,8E-02 2,9E-01

p53 signaling pathway IGF-1; GADD-inducible, a and c cyclin B3; sestrin 1 4,4E-02 3,9E-01

The genes differentially-expressed in the livers were identified by DNA microarrays as described under Material and Methods. DAVID was used to identify the hepatic
KEEG pathways that were affected by GH. The table shows pathway name, up- and down-regulated genes, P value, and corrected P value (Benjamini). Abbreviations:
carbamoyl-phosphate synthetase-1 (CPS1); ornithine carbamoyltransferase (OTC); argininosuccinate synthase (ASS1); acyl-CoA oxidase 1, palmitoyl (ACOX-1);
angiopoietin-like 4 (ANGPTL4); diacylglycerol O-acyltransferase 2 (Dgat2); glutamate dehydrogenase 1 (GLUD-1); Lactate dehydrogenase A (LDH-A); stearoyl-CoA
desaturase (Scd); estrogen sulfotransferase (SULT).
doi:10.1371/journal.pone.0096305.t004
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acyl-CoAs are substrates for b-oxidation but also can prime the

synthesis of TG, phospholipids, CE, and ceramides and therefore

are also a primary source of signaling molecules [66]. The notion

that E2 may regulate the formation of lipid signaling intermedi-

aries is supported by the stimulation of fatty acids elongase-5

(Elovl5). Elovl functions with fatty acid desaturases to generate

many of the long-chain PUFAs assimilated into cellular lipids (i.e.,

20:4n-6 and 22:6n-3). However, it is worth mentioning that E2

administration did not alter VLCPUFA metabolism because the

levels of 20:4n-6, 20:5n-3 and 22:6n-3 remained similar to values

in the TXOX group. It has been reported that E2 might play a

critical role in lipogenesis and Scd1 transcription [2], a gene that

encodes a rate-limiting enzyme to generate MUFAs such as 18:1

n29 and 16:1 n27. Previous studies have reported that the

absence of E2 or ERa in rats provoked a profound increase in

lipogenesis and Scd1 transcription [67], which suggests that E2

inhibits Scd1 transcription. Interestingly, the antilipogenic effect of

E2 therapy, while maintaining efficient TG export and reduced

phospholipid transfer protein, has been reported to depend on

hepatic ERa [13,61]. Our study, however, shows that E2

increased the Scd1 gene expression and that this effect was

paralleled by reduced hepatic content of 18:0 and increased of

18:1 n29 (the main product of SCD reaction) contents, in total

and, especially, in neutral lipids compared with TXOX animals,

which indicates that E2 modulates SCD1 activity in TXOX liver.

Surprisingly, E2 also downregulated Scd2 gene expression in

TXOX rat livers. The significance of this opposed transcriptional

regulation of Scd genes is unknown, but given that transcript levels

of Scd1 are about 1800 times higher than that of Scd2 in the rat

liver [68], changes in 18:1n-9 and 18:0 must be entirely attributed

to variations in Scd1 gene expression. Overall, the changes in the

lipid composition and gene expression profile seen in E2-treated

TXOX rats support the finding that E2-PPARa functional

interactions play a physiological role in the regulation of hepatic

lipid metabolism.

E2 has the ability to reduce circulating CHO in women and in

animal models fed on a high-fat diet [69]. However, E2 was

unable to efficiently reverse hypercholesterolemia or hypotrigly-

ceridemia in TXOX rats. This result may be due to the fact that

E2 reduced expression levels of several transporters of CHO (and

CE), including ApoB and ABCA1 in TXOX rats, which most

likely contributed to maintaining an increased hepatic level CE.

E2 may also induce intracellular CHO mobilization by modulat-

ing enzymes involved in CE and CHO synthesis and/or turnover

[57,70]. Distinct enzymes can catalyze the CHO to CE conversion

in liver: lecithin:cholesterol acyltransferase (LCAT), which uses

phosphatidylcholine (PC) as a source of acyl changes and ACAT,

which uses acyl-CoA. Because the levels of lysophosphatidylcho-

line (LPC) were undetectable in all groups, our initial conclusion

was that E2 stimulated the ACAT2 reaction to increase CE.

However, we did not detect changes in the expression level of the

ACAT gene, which did not discard posttranslational modification

of enzymes in the CE cycle in the liver from E2-treated TXOX

rats.

Table 5. E2 influences the cellular pathways regulated by GH in hypothyroid-orchidectomized rat liver.

Pathway name up-regulated genes down-regulated genes P B

Drug metabolism-Metabolism of
xenobiotics by P450

FMO 3; CYP2C11; CYP2C24;
NAT

CYP2A1; CYP2C23; CYP2E1; UGT (2B17; 2B36 and 1A); ADH 1; GST (mu 2;
mu 3; mu 4; mu 7; pi 1; A3); uridine phosphorylase 2; epoxide hydrolase
1, microsomal

9,6E-10 1,2E-07

Complement and coagulation
cascades

fibrinogen a chain complement [C1; C4; C5; C8; C9]; serine (or cysteine) peptidase inhibitor;
mannan-binding lectin serine peptidase 1

6,5E-07 2,8E-05

Retinol metabolism CYP2C11; CYP2C24 CYP2A1; CYP2C23; CYP2A1; UGT (2B17; 2B36; and 1A); ADH A1; retinal
pigment epithelium 65

1,0E-06 3,3E-05

Nitrogen metabolism GLUD 1 CPS-1, mitochondrial; carbonic anhydrase (3 and 8); cystathionase;
histidine ammonia lyase

1,7E-04 4,5E-03

PPAR signaling CPT-1a; CPT-2; ANGPTL4 CYP7A1; CYP8B1; PEPK 1; CD36; LCA-CoA synthetase 1; Scd2 2,6E-04 5,7E-03

Fatty acid metabolism CPT-1a; CPT-2 glutaryl-CoA dehydrogenase; ADH 1; enoyl CoA hydratase, short chain,
1, mitochondrial; ADH 2 (mitochondrial); LCA-CoA synthetase 1

4,4E-04 8,0E-03

Arginine and proline metabolism GLUD1; spermidine synthase CPS-1, mitochondrial; OCT; ASS-1; aminotransferase; ADH-2 1,5E-03 2,2E-02

Steroid hormone biosynthesis CYP7A1; UGT (2B17; 2B36; 1A); SULT; HSD11B1 3,4E-03 4,3E-02

Tryptophan metabolism tryptophan 2,3-dioxygenase; glutaryl-CoA dehydrogenase; kynurenine
3-monooxygenase; catalase; enoyl CoA hydratase, short chain, 1,
mitochondrial; ADH-2

3,4E-03 4,3E-02

Glutathione metabolism spermidine synthase isocitrate dehydrogenase 1 (NADP+), soluble; GST (A3; mu2; mu 3; mu 4;
mu 7; pi 1)

6,6E-03 7,4E-02

The genes differentially-expressed in the livers were identified by DNA microarrays as described under Material and Methods. DAVID was used to identify the hepatic
KEEG pathways that were affected by GH in the presence of E2. The table shows pathway name, up- and down-regulated genes, P value, and corrected P value
(Benjamini). Abbreviations: carbamoyl-phosphate synthetase-1 (CPS1); argininosuccinate synthase (ASS1); acyl-CoA oxidase 1, palmitoyl (ACOX-1); angiopoietin-like 4
(ANGPTL4); diacylglycerol O-acyltransferase 2 (Dgat2); glutamate dehydrogenase 1 (GLUD1); ornithine carbamoyltransferase (OTC); stearoyl-CoA desaturase (Scd);
estrogen sulfotransferase (SULT).
doi:10.1371/journal.pone.0096305.t005
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An increased level of hepatic CE, together with the increased

TG and decreased FFA hepatic contents in GH-treated TXOX

rats, resemble the effects of E2 on hepatic lipid composition and

suggest that some effects of E2 might be GH mediated. A striking

consequence of the combined replacement with E2 and GH is the

complete restoration of MUFA levels from total and neutral lipids,

an effect attributable to the increase in 18:1n9, likely through

alteration of D9 desaturase expression. Moreover, GH and E2

increased hepatic CE and the combined effect of the two

hormones were additive with regard to CE because its levels

doubled those found in INTACT animals and were approximately

30% higher than in the E2 or GH groups which indicates a more

efficient hepatic CHO metabolism. Accordingly, in the presence of

E2, GH reduced hepatic CHO content compared not only to the

TXOX group but also in relation to the E2- or GH-treated

TXOX groups. The hepatic content of TG was, however,

significantly increased by GH in E2-pretreated TXOX rats,

which suggests that combined treatment by E2 and GH

dramatically enhances lipogenesis. It is known that in contrast

with its lipolytic effects in adipose tissue, GH exerts lipogenic

actions in liver through stimulation of SREBP1, which is usually

accompanied by increased hepatic TG (VLDL) secretion [56].

Indeed, our lipid profiling analysis suggested that intermittent GH

administration to TXOX rats increased lipogenesis in the liver.

However, in contrast to the effects of a continuous infusion of GH

in hypophisectomized rats [55], intermittent GH administration to

TXOX rats did not increase SERBP1, whereas several genes

involved in fatty acids transport (e.g., FABP) and the biosynthesis

of unsaturated fatty acids from 18:2n-6 and 18:3n-3 (e.g., fatty acid

desaturases 4, 5 and 6) were induced. Interestingly, intermittent

GH administration to TXOX rats down-regulated the expression

of the lipin gene, an SREBP1c target gene, which is critical in the

regulation of cellular levels of DG and TG and a key regulator of

fatty acid oxidation in adipose tissue, skeletal muscle, and liver

tissue [71]. These findings support the hypothesis that the female

pattern of GH administration is a more efficient stimulus to induce

lipogenic effects in the liver than the male pattern [72,73].

Another mechanism whereby GH might promote lipogenesis in

the liver is through the down-regulation of lipid oxidation. We

have previously shown that continuous GH administration to

hypophysectomized [55] and to old-intact [74] male rats inhibited

PPARa. Accordingly, our lipidomic and genomic analysis showed

that intermittent GH administration to TXOX rats also leads to

down-regulation of the PPARa signaling pathway. In particular,

GH represses the expression of PPARa itself, ACOX-1, CPT-1,

FGF21, and several members of the CYP4A family, which are

involved in fatty acid oxidation.

In summary, our study adds novel data that highlight the impact

of subcutaneous E2 administration on liver physiology and its

interplay with GH. These results highlight the role of E2 as a

critical regulator of liver metabolism in mammals and add further

weight to the hypothesis that E2 acts as an important regulator of

GH actions in the liver. The E2-GH interplay in the liver is

relevant because of the physiological roles that these hormones

have in mammals and the widespread use of estrogen and

estrogen-related compounds in human. Notably, this is the first

study to demonstrate that hepatic lipid profiles are endowed with

singular fingerprints that may be used to segregate different groups

with altered hormone status. This includes different hormonal

replacements (E2 or GH) that induced overlapping changes in

gene expression. Therefore, liver lipid profiling can serve to

identify cryptic hormone deficiencies or exposure to hormones or

hormone-like substances.
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