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Abstract

The light dependency of respiratory activity of two scleractinian corals was examined using O2 microsensors and CO2

exchange measurements. Light respiration increased strongly but asymptotically with elevated irradiance in both species.
Light respiration in Pocillopora damicornis was higher than in Pavona decussata under low irradiance, indicating species-
specific differences in light-dependent metabolic processes. Overall, the coral P. decussata exhibited higher CO2 uptake
rates than P. damicornis over the experimental irradiance range. P. decussata also harboured twice as many algal symbionts
and higher total protein biomass compared to P. damicornis, possibly resulting in self-shading of the symbionts and/or
changes in host tissue specific light distribution. Differences in light respiration and CO2 availability could be due to host-
specific characteristics that modulate the symbiont microenvironment, its photosynthesis, and hence the overall
performance of the coral holobiont.
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Introduction

The success of scleractinian corals in oligotrophic tropical

waters is based on the endosymbiosis between the coral host and

single-celled microalgae, i.e., dinoflagellates in the genus Symbio-
dinium that reside within the host’s endodermal cells. The algal

symbionts translocate up to 95% of their photosynthetically fixed

carbon (C) to the coral host under optimal conditions [1], whilst

the algal symbionts receive nutrients and shelter from the host

[2,3]. There is considerable genotypic variation within the

Symbiodinium genus [4] that can modulate the stress resilience

of the holobiont [5].

The dark reactions of photosynthesis fix CO2 into organic

carbon using the enzyme Ribulose-1,5-bisphosphate-carboxylase/

oxygenase (RuBisCO). Symbiodinium contains a prokaryotic-type

II RuBisCO, which has a low affinity for CO2 [6–9]. High

concentrations of CO2 are therefore necessary to promote carbon

assimilation and to meet the hosts’ energetic demand for symbiont-

derived photosynthates [10–12]. Holobiont respiration may

present an additional internal CO2 source contributing to the

complex carbon exchange and transfer system within corals.

Chlororespiration, involving plastoquinone (PQ) oxidation with

O2 and a terminal oxidase (PTOX) [13] can be active within the

chloroplasts of Symbiodinium. Furthermore, calcification occurring

in the calicodermis of the coral [14] and host mitochondrial

respiration can further contribute to the internal CO2 supply in

the holobiont [15,16].

Coral host respiration is just one source of inorganic carbon for

symbiont photosynthesis [17–19]; external inorganic carbon

sources such as seawater are also utilised. However, the supply

of inorganic carbon via passive diffusion from the surrounding

seawater and host tissue is restricted by several factors: 1) the

generally low CO2 content of seawater, 2) the presence of a

diffusive boundary layer, and 3) the presence of multiple

membranes of the host tissue surrounding the endodermal

Symbiodinium cells, which need to be traversed. Both, coral host

and symbionts employ a range of carbon concentrating mecha-

nisms (CCMs) [20–24] to enhance the carbon supply from the

external medium and thus increase CO2 availability to the

Symbiodinium chloroplasts [25] as well as for calcification purposes

[26].

The rate of photosynthesis by the symbionts and therefore their

carbon demand is closely correlated with photon irradiance [27],

and may become carbon limited under high irradiance [28]. As

the delivery of carbon to the algal symbionts is controlled by the

activity of CCMs (of coral host as well as algal symbionts), as well

PLOS ONE | www.plosone.org 1 October 2014 | Volume 9 | Issue 10 | e110814

http://creativecommons.org/licenses/by/4.0/
http://www.arc.gov.au
http://ufm.dk/en/research-and-innovation/councils-and-commissions/the-danish-council-for-independent-research/the-council-1/the-danish-council-for-independent-research-natural-sciences
http://ufm.dk/en/research-and-innovation/councils-and-commissions/the-danish-council-for-independent-research/the-council-1/the-danish-council-for-independent-research-natural-sciences
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0110814&domain=pdf


as host respiration [19], the host metabolism can thus have a

strong impact on symbiont photosynthesis, e.g., by supplying

sufficient inorganic carbon under high irradiance. While demands

on the host-supplied carbon shift with irradiance, e.g., due to extra

demand in light-enhanced calcification [29], there are only few

experimental investigations of such responses in the literature

[26,30]. We investigated if respiratory-dependent processes in the

coral would follow a typical asymptotic rise with increasing

irradiance, as it is known for photosynthetic processes.

Photosynthesis and calcification require carbon as substrate

[31,32]; photosynthesis is directly dependent on light and coral

calcification is known to be light-enhanced [33,34]. Indeed, there

is a close interplay of internal utilization of metabolically derived

carbon for both processes. Carbonic anhydrase enzymes catalyse

the reaction CO2+H2O « HCO3
2+H+, and therefore generate

substrate for the calcification reaction (CO2+H2O+Ca++ «
CaCO3+2H+), as well as for photosynthesis: CO2+H2O «
CH2O+O2 [35,36].

The exchange of respiratory gases (O2 and CO2) in photosyn-

thetic symbioses is difficult to study in the light because respiratory

O2 uptake is masked by the O2 production from photosynthesis.

At low irradiance, where symbiont photosynthesis is lower than

respiratory activity in the coral, i.e., below the irradiance

compensation point net O2 uptake and CO2 release can be

measured [37]. To measure these gas exchange patterns in corals

is challenging, as several discrete ‘compartments’ of respiration

operate in parallel and in close proximity, and therefore there is a

close coupling between autotrophic and heterotrophic processes

[38].

Enhanced post-illumination dark respiration (EPIR), which is

the respiratory activity measured just after transition from light to

darkness, has been used to support assumptions about light-driven

respiratory processes in corals [16,34]. However, in the absence of

light there is no production of reducing agents due to the absence

of photosynthetic light reactions, so that EPIR likely underesti-

mates light respiration. To quantify respiration in the light, O2

microsensors can be used to quantify gross photosynthesis rates

(GPO2 micro) in corals independent of respiration [14,39,40]. In

conjunction with flux calculations of the net photosynthetic rate

(PnetO2 micro) from measured steady-state O2 concentration

profiles, microsensor measurements allow for the determination

of respiration rates in the light [41].

In this study, we present the first direct measurements of light

respiration in corals as a function of irradiance. We combine O2

microsensor measurements with detailed CO2 exchange measure-

ments to assess the relationship between CO2 exchange and

symbiont gross photosynthesis rates in two scleractinian corals,

Pocillopora damicornis (Linnaeus, 1758) and Pavona decussata
(Dana, 1846), that are known to harbour the same Symbiodinium
subclade (C1) [42]. The light dependency of external carbon

uptake and respiratory activity was also examined, to see if

respiratory processes followed an asymptotic rise with irradiance

similar to photosynthetic processes.

Materials and Methods

Coral collection and preparation
Specimens of Pocillopora damicornis (Pocilloporidae) and

Pavona decussata (Agariciidae) were collected from Heron Island

reef flat (23u 269 60 S, 151u 559 0 E) (Great Barrier Reef Marine

Park Authority collection permit G09/30854.1) and maintained

for up to 2 months at the University of Technology Sydney. The

coral P. damicornis is finely branched and highly sensitive to

environmental factors that cause bleaching, while P. decussata is

foliaceous (plate-like) and tolerant to environmental factors that

cause bleaching [43]. After fragmentation of coral colonies, a

number of similar sized pieces (average surface area:

28.6611.3 cm2 and 23.567.2 cm2 for P. damicornis and P.
decussata, respectively; mean 6s.e.m.; n = 3–4) were fixed with

non-toxic epoxy (AquaKnead, Selleys, Australia) to sample

holders. Corals were kept at 2661uC under irradiance of

,40 mmol photons m22 s21 (12 h: 12 h, light: dark cycle) in

aquaria with recirculating artificial seawater (ASW; Aquasonic,

Australia; salinity of 33 and a carbonate content of 140 ppm).

Experimental setup
We used a novel instrumental array, a photobioreactor (PBR)

(Gademann Instruments GmbH, Effeltrich, Germany), combining

two metabolic gas exchange measuring techniques (O2 exchange

and CO2 exchange). Only CO2 measurements are presented in

this study. The setup consisted of a closed, continuously stirred

thermostated chamber with a known volume of seawater

containing a coral sample and an overlaying headspace [44].

The CO2 content in the overlying headspace of the chamber was

measured on a calibrated infrared gas analyser (IRGA; MGA3000,

ANRI instruments, Ferntree Gully, Victoria, Australia) with a 1 s

sampling frequency. The sample chamber had a vertically

mounted ‘warm white’ LED panel (NS2L123BT, Nichia, Japan)

with 96 single-spot LEDs capable of applying up to 1500 mmol

photons m22 s21 at the sample surface.

Dissolved CO2, as well as incident irradiance and temperature

were measured for each specimen held in the PBR chamber.

During PBR operation, the gas-phase effervesced through the

liquid-phase to equilibrate dissolved CO2. CO2 concentration

changes within the headspace of the PBR chamber were estimated

according to Henry’s gas law, which states that at a constant

temperature and pressure the gas content between gas- and liquid-

phase will move into a steady-state equilibrium. Measured CO2

concentrations (ppm) in the headspace were therefore used to

calculate molar changes of CO2. The molar volume of CO2 (Vn)

in the seawater was determined as follows:

Vn ~ Rco2 | Tð Þ7P ð1Þ

where RCO2 is the specific CO2 gas constant 188.9 m3 Pa K21

mol21, T is the incubating temperature 26uC (299.15 K), and P is

the ambient atmospheric pressure at sea level 1000 Pa [45]. In the

measurement setup, Vn = 56.5 m3 mol21. By dividing Vn with the

molar mass of CO2 (44.01 g mol21) the molar volume of CO2 per

1 ppm was then determined to be M = 1.3 mg m3. The measured

CO2 concentrations in units of ppm could thus be converted to

metric units and further into molar flux rates considering molar

mass, the time of incubation, the volume of the gas-phase of the

PBR, as well as the coral surface area. CO2 exchange was

expressed as nmol CO2 cm22s21.

Experimental protocol
At the beginning of the experiment, each coral specimen was

incubated for ,20 min in the PBR to account for the

establishment of equilibrium between gas- and liquid- phase.

Photosynthesis–irradiance (P–E) curve measurements for P.
damicornis (n = 4) and P. decussata (n = 3) began with a dark

incubation to determine dark CO2 respiration rates followed by

subsequent illumination using 9 photon irradiance levels (10, 20,

40, 78, 210, 360, 560, 780 and 1100 mmol-photons-m-2-s-1). Each

illumination period lasted for 20 min and was followed by a

20 min dark incubation period. Incubation times were chosen to

Light Respiration in Corals
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account for equilibration of gas- and liquid-phase. Gas exchange

readings were taken from the last 5 min of each incubation

interval.

Net CO2 uptake, measured during the light in the PBR, as well

as respiratory CO2 production, measured during the dark in the

PBR, were used to estimate gross CO2 exchange (GCO2 PBR). For

an overview of parameters see Table 1.

Oxygen microsensor measurements
We used O2 microsensors to quantify gross and net photosyn-

thesis under a set of increasing photon irradiance levels. Corals

were placed in an acrylic flow-through chamber (flow velocity

,1 cm s21) [46] with aerated, artificial seawater (see above).

Samples were illuminated vertically using a fiber-optic tungsten-

halogen lamp equipped with a heat filter and a collimating lens

(KL-2500, Schott GmbH, Germany). The O2 microsensors were

mounted on a PC-controlled motorized micromanipulator for

automatic profiling (Pyro-Science GmbH, Germany) at an angle of

20u relative to the vertical incident light. A detailed description of

the microsensor setup can be found in Wangpraseurt et al. [46].

Microscale O2 measurements were performed with Clark-type O2

microsensors (tip size: 25 mm; stirring sensitivity: ,1%, 90%

response time: ,0.5 s; Unisense A/S, Aarhus, Denmark). Given

that this high-precision technique requires more measuring time,

only six photon irradiance levels (0, 40, 80, 210, 550, 1100 mmol

photons m22s21) were applied for 20 min each (matching

irradiance levels used in the PBR). At each irradiance, net and

gross photosynthesis rates were determined by measuring steady-

state O2 concentration profiles and O2 concentration dynamics

under light-dark shifts, respectively [39,40]. The O2 concentration

profiles were measured from the coral surface upwards into the

water column in vertical steps of 40 mm. Light-dark shifts were

conducted from the coral surface down to the coral skeleton,

which covered a distance of ,80 mm for both species. The

position of the sensor on the skeleton surface was identified as a

slight bending of the microsensor. For each fragment, three

locations at least 2 cm apart were randomly chosen and

measurements were averaged. Measurements were exclusively

conducted on the coenosarc (tissue connecting polyps) to minimize

the influence of tissue movement [39].

Net O2 exchange fluxes were calculated from the measured

steady-state concentration profiles using Fick’s first law of diffusion

with a molecular diffusion coefficient for O2 of 2.24161025 cm2

s21 (25uC and salinity 33) [47]. Area-specific gross photosynthesis

rates (GPO2 micro) were obtained by dividing the measurements of

volume-specific GP with the thickness of the tissue, i.e. 80 mm (see

above). The light respiration rate (Rlight O2 micro) was then

calculated by subtracting the area-specific GPO2 micro and net

photosynthesis rate (PnetO2 micro):

Rlight O2 micro ~ GPO2 micro{PnetO2 micro ð2Þ

Biometric measures
Following gas exchange measurements, coral specimens were

snap frozen in liquid N2 for subsequent determinations of algal

symbiont density, chlorophyll concentration and protein content.

Once removed from the liquid N2, corals were transferred to a

100 mL Erlenmeyer flask and kept on ice, with 15 mL of

homogenization buffer (4uC) consisting 1 mM phenylmethylsulfo-

nyl fluoride (protease inhibitor) in 0.2 mm-filtered seawater (FSW).

The flask was sealed with Parafilm and shaken for 10 min by hand

in a circular motion, allowing the coral tissue to be torn off the

skeleton. The resulting liquid was homogenized on ice (Ultra-

Turrax, Ika, Rawang, Malaysia) for 30 s. The homogenate was

centrifuged at 700 g for 5 min at 4uC and the resulting pellet of

Symbiodinium was retained for algal cell density counts and for

chlorophyll concentration analyses (see below). The supernatant

contained coral tissue remains, of which 2 mL were sampled for

protein content determination using the Bradford assay, with

bovine serum albumin standards [48]. Protein assay absorbance

was measured at 595 nm with a 96-well plate reader (Bio Rad

Bench Mark Plus spectrophotometer, Hercules, California, USA)

and analysed using the Microplate Manager Software (Bio Rad,

Hercules, California, USA).

The Symbiodinium pellet was re-suspended in 4 mL of FSW

and subsamples were taken for algal symbiont counts according to

Edmunds and Gates [49]. The algal suspension was again

centrifuged at 1789 g and the pellet re-suspended in 3 mL of

90% acetone and incubated for 24 h at 4uC to extract pigments.

Chlorophyll a and c2 concentrations were measured using a

spectrophotometer (Cary UV-VIS, Agilent Technologies, Austra-

lia) using absorbance readings according to Ritchie [50]. The coral

skeleton surface area was determined using the single-dip paraffin

wax technique [51].

Statistical analyses
Differences in biometric parameters between the two coral

species were analysed using Student’s t-test (t; a= 0.05). Differ-

ences in respiratory rates were determined by using univariate

one-way and two-way analysis of variance (ANOVA; F; a= 0.05).

ANOVA assumptions for normal distribution and homogeneity of

variance were tested using Shapiro Wilk and Levene’s tests,

respectively. Tukey’s honest significant difference (HSD) test (t;

Table 1. Overview of abbreviations and definition of gas exchange parameters from analyses with the photobioreactor (PBR) and
from microsensor measurements.

Abbreviation Parameter Definition

GPO2 micro In hospite gross O2 production Measured using microsensor within the coral tissue as a direct measure

PnetO2 micro Net photosynthetic O2 production Measured using microsensor above the coral tissue e.g. including O2 uptake processes

Rlight O2 micro Light O2 respiration Measured using microsensor measurements; determined through calculation of net and gross O2

production

Rdark O2 micro Steady-state O2 dark respiration Measured using microsensor within the coral tissue as a direct measure after sufficient dark
incubation; respiratory O2 consumption

GCO2 PBR Gross CO2 exchange Measured with the PBR; determined as the sum of net and respiratory CO2 exchange

doi:10.1371/journal.pone.0110814.t001
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a= 0.05) was used for post-hoc comparison of means to identify

differences at 95% confidence interval. All statistical analyses were

carried out using Statistica 10 (Statsoft Inc., Tulsa, OK, USA).

Results

Biometric measures
The two coral species differed in protein content, total

chlorophyll (Chl; Chl a+c2) concentration, as well as algal

symbiont cell density (Table 2). The coral P. decussata displayed

a significantly higher protein concentration than P. damicornis
(t(6) = 3.925, p = 0.026). Further, P. decussata contained more

than twice the total Chl concentration (mg cm22) (t(6) = 3.83,

p = 0.009) and harboured significantly higher algal cell densities

than P. damicornis (t(6) = 2.73, p = 0.034). However, Symbiodi-
nium in both species contained similar amounts of total Chl cell21.

Gross CO2 exchange
For P. damicornis, gross CO2 uptake from the seawater

declined up to an irradiance of 78 mmol photons m22 s21 (one-

way ANOVA, F (8, 27) = 2.90, p = 0.018; Fig. 1 A), and then

increased slightly up to an irradiance of 560 mmol photons

m22 s21 followed by a small but significant decline at irradiances

of 780 and 1100 mmol photons m22 s21 (Tukey HSD, p,0.05;

Fig. 1 A, also see Table S1). In contrast, gross CO2 uptake of P.
decussata showed no decline in the first phase of illumination (10

and 20 mmol photons m22 s21). Gross CO2 uptake increased from

an irradiance of 40 up to 78 mmol photons m22 s21 and then

remained steady besides a dip at an irradiance of 560 mmol

photons m22 s21 (Fig. 1 B). The metabolic activity differed most

significantly between the two species under low irradiance (pooled

CO2 rates for irradiances of 10–40 mmol photons m22 s21; t (22)

= 3.54, p,0.001; Figs. 1 A and B, also see Table S1).

Microsensor measurements of gross photosynthesis, GPO2 micro

in P. damicornis revealed maximum rates of 0.50260.017 nmol

O2 cm22 s21 at irradiances of 210 mmol photons m22 s21 (one-

way ANOVA, F(4,5) = 115.06, p,0.001; Tukey HSD; p,0.05;

Fig. 1 A, also see Table S1). In P. decussata, GPO2 micro increased

more gradually reaching a maximum at an irradiance of 560 mmol

photons m22 s21 (one-way ANOVA, F(4,5) = 8.9182, p = 0.017;

Tukey HSD, p,0.05) with an average GPO2 micro rate of

0.52760.020 nmol O2 cm22 s21 (Fig. 1 B). In both species we

did not detect down-regulation of GPO2 micro at above saturating

irradiance levels (i.e. up to 1100 mmol photons m22 s21).

Respiration
Light respiration (Rlight O2 micro) increased with increasing

irradiance (Fig. 2), with a maximum Rlight O2 micro of ,0.5 nmol

O2 cm22 s21 for both coral species (one-way ANOVA, F(5,6)

= 10.26; p = 0.007 for P. decussata and F(5) = 101.08; p,0.001

for P. damicornis). However, Rlight O2 micro increased more rapidly

with irradiance in P. damicornis than in P. decussata (Fig. 2, also

see Table S1).

A comparison of Rlight O2 micro with Rdark O2 micro revealed a

strong light response at photon irradiances .210 mmol photons

m22 s21 in both species (data not displayed). Where the increase

in light-driven respiration rates compared to dark respiration rates

was greater in P. damicornis than it was found for P. decussata.

For example, at 210 mmol photons m22 s21 light respiration

increased 25 times in P. damicornis but only 11 times in P.
decussata.

The ratio of Rlight O2 micro to microsensor derived gross

photosynthesis (GPO2 micro) differed between the two species. The

maximum Rlight O2 micro constituted ,97% of GPO2 micro in P.
damicornis, while it only accounted for ,88% in P. decussata.

Discussion

This is the first study reporting an integrated approach

measuring coral light respiration and gross photosynthesis with

O2 microsensors and CO2 gas exchange techniques across a range

of irradiance. The two main finding of this study are that i) light-

saturated (at 210 mmol photons m22 s21) respiration rates (Rlight

O2 micro) were multiple times higher than steady-state dark

respiration rates (Rdark O2 micro) (11 times for P. decussata and

25 times for P. damicornis, and ii) P. damicornis and P. decussata
differ in their photophysiological function despite likely harbouring

the same symbiont subclade C1 [42] (see Fig. 3 for a conceptual

diagram of the main findings).

Sufficient supply of CO2 to the algal symbionts is of paramount

importance for the functioning of a coral symbiosis [18,52,53],

where an increased supply enhances photosynthesis [31]. Gross

photosynthesis rates (GPO2 micro) were similar for both coral

species across the applied irradiance levels. However, gross CO2

uptake rates, as well as algal symbiont density were generally

higher in P. decussata (Fig. 1 B). These results raise the question as

to why a coral with twice as many symbionts and greater CO2

uptake (P. decussata) did not show a greater photosynthetic

productivity. The coral P. decussata had a much greater protein

biomass than the coral P. damicornis and the algal symbionts

would have been more densely packed within the coral tissue. Self-

shading of the algal symbionts [54], as well as species-specific

differences in light propagation within the host tissue [46,55] could

explain our findings for P. decussata. A model of how canopy-

understory development can influence the photosynthesis-irradi-

ance (P-I) relationship has previously been introduced [56]. Here

we could expand that model to introduce the light respiratory

activity as well as carbon uptake in relation to how canopy-

Table 2. Biometric measures of the hard corals Pocillopora damicornis and Pavona decussata, displaying total protein content (mg
cm22), total chlorophyll per area (Chl a+c2) (mg cm22), algal cell densities (cells cm22) and total Chl per cell (pg cell21) (n = 4; mean
6s.e.m.).

Pocillopora damicornis Pavona decussate

Total protein (mg cm-2) 1.1960.22 2.3160.36*

Chl (mg cm22) 0.00360.001 0.00760.001*

Algal cell densities (cells cm22) 5.32610561.916105 16.7610562.006105*

Total Chl (pg cell21) 9.73561.509 9.66662.463

*Significantly different values are indicated with an asterisk.
doi:10.1371/journal.pone.0110814.t002
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understory influences the P-I relationship in the two corals

examined here (see Fig. 3).

Light respiration in P. damicornis reached its maximum at a

lower irradiance than in P. decussata and exceeded dark

respiration (Fig. 2). A higher proportion of GPO2 micro was

therefore contributed by light respiration in P. damicornis than in

P. decussata. Our results suggest therefore that species-specific

light-driven respiratory processes are active within the two coral

species.

Light-driven respiration is often coupled to calcification in the

calicodermis [14,29,33,36,57] and it seems possible that the

calcification process accounts for a large fraction of the light

respiration. For calcification to take place, O2 and photosynthate

are necessary so that the coral host can liberate adenosine-

triphospate (ATP) for the calcifying process [58,59]. The

Figure 1. Variation in gas exchange measurements with irradiance. The graphs display gross CO2 exchange (GCO2 PBR; black circles; CO2 nmol
cm22 s21) and microsensor derived gross photosynthetic O2 production (GPO2 micro; open circles; O2 nmol cm22 s21) of the hard coral species
Pocillopora damicornis (A) and Pavona decussata (B) as a function of nine irradiances (mean 6s.e.m.; GCO2 PBR: n = 4 and GPO2 micro: n = 2); Tukey honest
significant difference test results are indicated for GCO2 PBR (lower case letters) and GPO2 micro (capitals) (p,0.05).
doi:10.1371/journal.pone.0110814.g001
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hyperbolic increase in light respiration for both species, up to the

maximum measured photon irradiance (1100 mmol photons

m22 s21; Fig. 2) suggests that host respiration is closely coupled

to release of photosynthates from zooxanthellae. However, recent

attempts to investigate calcification and light respiration rates in

corals, using an indirect measuring technique, found that light

respiration increased the most in zooxanthellae as opposed to the

coral host [60]. Given these results, it seems more likely that

metabolic activity supporting calcification, e.g., Symbiodinium’s

photosynthetic reaction and carbon fixation, are responsible for

most of the increase in light respiration. Calcification itself is a

positive feedback mechanism for Symbiodinium photosynthesis, as

CO2 is being produced during skeleton accretion [29]. Both

species showed steady and light-independent gross CO2 uptake

rates at .78 mmol photons m22 s21, where calcification could

then fuel the photosynthetic activity through internal carbon

Figure 2. Light respiration (Rlight O2 micro) of the hard coral species Pocillopora damicornis (clear circle) and Pavona decussata (clear
triangle) are displayed as a function of 6 irradiances (mean ±s.e.m.; n = 2). Tukey honest significance difference test results are indicated,
where capital letters are describing groupings for P. damicornis and lower case letters groupings of P. decussata (p,0.05).
doi:10.1371/journal.pone.0110814.g002

Figure 3. Conceptual model of light and carbon availability, in the two hard coral species, Pocillopora damicornis and Pavona
decussata in moderate light (,100 mmol photons m22 s21). The schematic diagram of a coral shows the coral tissue containing algal
symbionts (green circles), which lies above the calicoblastic layer. Photosynthetic active radiation (PAR) (rainbow arrow) penetrates the coral tissue. In
P. decussata a higher density of symbionts reduced light availability compared to P. damicornis. Dissolved inorganic carbon (grey arrows; quantity is
relative to arrow thickness) can originate from internal sources such as the calicoblastic layer or from the external environment, where P. decussata
draws stronger on the external carbon uptake. Light respiration (R) (strength indicated through size), was greater in P. damicornis than in P. decussata.
doi:10.1371/journal.pone.0110814.g003
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release. However, the recently proposed ‘proton flux hypothesis’

[36], where the shedding of protons generated during the

calcification process is proposed to result in a lag of CO2 uptake

could also explain our results. Whether light respiration is simply

controlled by the availability and source of carbon substrates or

other metabolic controls remains to be investigated.

In both corals, P. damicornis and P. decussata, light-saturated

respiration rates (Rlight O2 micro) at 210 mmol photons m22 s21

were similar. Light stimulated respiration in P. damicornis
increased to a greater degree than that in P. decussata (25 versus

11 times). Light-saturated respiration rates in both species reached

an asymptotic value of 5 nmol cm22 s21 at photon irradiances .

210 mmol photons m22 s21 (Fig. 2). The strong increase of

respiration rates during the light as compared to steady-state dark

respiration rates are most likely due to the low-light acclimation of

the experimental corals (40 mmol photons m22 s21). Dark

respiration rates are generally dependent upon pre-experimental

incubation irradiances [61,62]. Under low light adaptation steady-

state dark respiration rates are low but once exposed to light, the

metabolic activity increases and so do light respiration rates and

other oxygen uptake processes. The magnitude of this increase is

independent on the pre-experimental incubation irradiance [62].

Photoacclimation is a process of morphological (here in terms of

coral host) and physiological adjustments of a phototrophic

organism towards growth irradiances. Pigmentation (coral host

pigmentation [63] and light harvesting pigments such as accessory

pigments and chlorophyll [64]), as well as photochemical

quenching capacity (xanthophyll pool [65,66]) can be increased

and decreased in abundance and concentrations. During high light

exposure these adjustments help acclimatization in the phototroph

only to some extend, and as a result, high light stress results in the

accumulation of reactive oxygen species [67], the stimulation of

alternative electron transport systems [68,69], often consuming

oxygen, and of photorepair mechanisms [70,71]. The cost of all

these processes results in low net photosynthesis [62], due to

increased respiration and other oxygen uptake [39,72]. The light

source in the experiments of this study excluded the naturally

occurring ultraviolet radiation, which corals experience in the field

and which is a major cause of photodamage [73,74]. Translating

our findings to corals in the field, the increase of oxygen uptake

rates on going from dark to light (or from low to high light) might

therefore not be as great as found in this study; however, once

photorepair processes are entrained the actual oxygen uptake rates

might be just as high or even higher.

Pronounced stimulation of respiration in light has been reported

for the coral species Galaxea fascicularis, where light respiration

was ,12 times higher than dark respiration under an irradiance of

140 mmol photons m22 s21 [14]. Kühl et al. [39] observed values

of light respiration to be ,6 times higher than during dark

respiration in Favia sp. under an irradiance of 350 mmol photons

m22 s21. Here light respiration accounted for 77% of the gross

photosynthetic O2 production. The differing increase of respira-

tion rates from dark to light between the reporting studies and our

results are probably due to species differences and differential pre-

experimental and experimental irradiances. In our study light

respiration accounted for 88% of gross photosynthetic O2

production in P. decussata and 97% of gross photosynthetic O2

production in P. damicornis at 210 mmol photons m22 s21.

Maximum gross photosynthetic O2 production were on average

,0.53 nmol O2 cm22 s21 for both coral species (Fig. 1) and were

of a similar magnitude to other microsensor measurements of gross

photosynthesis rates in corals [75].

Light dependent increase in O2 consumption through respira-

tory processes has been discussed previously [68]. Tchernov et al.

[68] concluded that ongoing activity of the MAP cycle could be

accounted for by the increased O2 uptake with increasing photon

irradiance. Indeed, various light-driven O2 consuming processes,

such as photorespiration [76,77] and the MAP cycle [68,78,79]

could also be involved in the high level of light respiration

observed here. However, the activity of the MAP cycle does not

result in net O2 concentration changes [78]; it therefore cannot be

measured in O2 exchange measurements with microsensors [80].

Hence, we conclude that the only other process to explain the light

respiration results apart from light-stimulated mitochondrial O2

uptake is photorespiration, involving oxygenase activity of

RuBisCO [81]. However, further investigations are needed to

verify and describe these processes.

Conclusions

Light-saturated respiration rates (Rlight O2 micro) were similar in

both corals and multiple times higher than steady-state dark

respiration rates (Rdark O2 micro). This is interpreted as the activity

of light-driven metabolic pathways that increase with increasing

irradiance. The light respiration rates show, that differential CO2

uptake rates of the two species examined could indicate that

carbon availability influences the metabolic processes of the

holobiont. Although both coral hosts are known to harbour the

same Symbiodinium subclade C1 [42], it seems that they

experience different host-specific microenvironmental conditions

(see Figure 3).

Supporting Information

Table S1 Gas exchange rates measured as a function of
irradiance for Pocillopora damicornis and Pavona
decussata. Following gas exchange rates are presented: GPO2

micro – In hospite gross O2 production (microsensor based), PnetO2

micro – net photosynthetic O2 production (microsensor based),

Rlight O2 micro – light O2 respiration (microsensor based), GCO2 PBR

– Gross CO2 exchange for 6 light intensities.
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