UNIVERSITY OF COPENHAGEN

Novel reservoirs of metallo--lactamases in soil bacteria

Gudeta, Dereje Dadi; Bortolaia, Valeria; Wellington, Elizabeth M. H. ; Amos, Greg; Brandt, Kristian K. ; Poirel , Laurent ; Guardabassi, Luca

Publication date: 2014

Document version Early version, also known as pre-print

Citation for published version (APA):

Gudeta, D. D., Bortolaia, V., Wellington, E. M. H., Amos, G., Brandt, K. K., Poirel , L., & Guardabassi, L. (2014). *Novel reservoirs of metallo--lactamases in soil bacteria*. Poster session presented at International Symposium on Microbial Ecology, Seoul, Korea, Republic of.

Novel reservoirs of metallo-β-lactamases in soil bacteria

D. D. Gudeta,¹ V. Bortolaia,¹ E. M. H. Wellington,² G. Amos,² K. K. Brandt,³ L. Poirel⁴ and L. Guardabassi¹

¹Department of Veterinary Disease Biology, University of Copenhagen, Denmark; ²School of Life Sciences, University of Warwick, UK; ³Department of Plant and

Environmental Sciences University of Copenhagen, Denmark; ⁴Medical and Molecular Microbiology Unit, Department of Medicine, University of Fribourg, Switzerland.

BACKGROUND

- Metallo-beta-lactamases (MBLs) confer resistance to last resort beta-lactam antibiotics such as imipenem and meropenem used to treat life-threatening infections by Gram-negative bacteria [1].
- New classes of MBLs are continuously emerging in clinical bacteria from unknown sources [2].

CONTACT INFORMATION: <u>azazera@sund.ku.dk;</u> <u>www.evotar.eu</u>

RESULTS

Isolation of meropenem-resistant bacteria and identification of new MBLs

Meropenem-resistant bacteria (n=152) were isolated from all soil samples

20% of the soil isolates were confirmed

to produce MBLs (Fig. 1).

- Novel MBL-encoding genes were detected in:
- Pedobacter agri (bla_{PGR-1})
- Pedobacter roseus (bla_{PEDO-1})

Soil bacteria are considered as an important sources of

antibiotic resistance genes [3,4].

OBJECTIVE

- The aim of this study was to explore the occurrence of
- MBLs in soil bacteria and to elucidate the evolutionary
- relationships between MBLs occurring in soil and in

(DNB)

clinical bacteria.

METHODS

Bacteria were isolated from 30 different soil types obtained from different geographical origin.

Selective agents (µg/ml)

- Fig. 1. MBL confirmatory test
- These new MBL-encoding genes were distantly related to the ones encountered in clinically-relevant Gram-negative spp. (Fig. 2).
- The MIC of meropenem increased 3-fold (0.094 μ g/ml) by *bla*_{PEDO-1} and *bla*_{CSP-1} expression and 15-fold (0.5 µg/ml) by *bla*_{TEN-1} expression in the TOP10

- *Chryseobacterium* scophthalmum (bla_{CSP-1})
- Epilithonimonas tenax (bla_{TEN-1})
- Sphingomonas spp. strain SH (bla_{SPG-1})
- Massilia timonae (bla_{MSI-1})

Autritious media Oligotrophic media

- Meropenem (4)
- Cycloheximide (100)
- Vancomycin (8)

16S rDNA sequencing was used for taxonomic characterization.

- Carbapenemase production was tested by carbapenem hydrolysis test (CarbaNP test).
- Minimum inhibitory concentration (MIC) of meropenem and MBL activity were determined by E-

Escherichia coli used for cloning.

Fig. 2. Phylogenetic tree of constitutive (black),

acquired (red) and new MBLs (blue)

Genetic organization of selected MBLs

Fig. 3. bla_{PEDO-1} is associated with putative phage protein- and efflux pump protein-encoding genes suggesting that it is an acquired MBL.

 MBL-encoding genes were MCS

test.

detected by cloning and whole

genome sequencing, followed by

bioinformatics analysis.

• Reference strains with > 95% 16S

rDNA similarity to the MBL-producing

bacteria from soil were tested for

carbapenemase production.

Fig. 4. Massilia timonae soil isolate harbors overlapping β -lactamases.

CONCLUSIONS

- MBL producers are widespread in soil. •••
- The novel MBL-encoding genes in soil bacteria are mainly ** harbored on the chromosome and distantly related to those occurring in clinically-relevant Gram-negative spp.
- The MBLs from soil bacteria confer reduced susceptibility when ** expressed in E. coli, thus constituting potential sources of carbapenem resistance in clinical strains. This work was supported by the EU grant HEALTH-F3-2011-282004 EvoTAR